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Abstract: In the stochastic multi-objective multi-armed bandit (MOMAB), arms generate a vector of stochastic normal

rewards, one per objective, instead of a single scalar reward. As a result, there is not only one optimal arm,
but there is a set of optimal arms (Pareto front) using Pareto dominance relation. The goal of an agent is to
find the Pareto front. To find the optimal arms, the agent can use linear scalarization function that transforms
a multi-objective problem into a single problem by summing the weighted objectives. Selecting the weights is
crucial, since different weights will result in selecting a different optimum arm from the Pareto front. Usually,

a predefined weights set is used and this can be computational inefficient when different weights will optimize
the same Pareto optimal arm and arms in the Pareto front are not identified. In this paper, we propose a
number of techniques that adapt the weights on the fly in order to ameliorate the performance of the scalarized
MOMAB. We use genetic and adaptive scalarization functions from multi-objective optimization to generate
new weights. We propose to use Thompson sampling policy to select frequently the weights that identify new
arms on the Pareto front. We experimentally show that Thompson sampling improves the performance of the
genetic and adaptive scalarization functions. All the proposed techniques improves the performance of the

standard scalarized MOMAB with a fixed set of weights.

1 INTRODUCTION for example from a normal probability distribution
N(w,0?), wherey is the true mean vector amf is

Multi-Objective Optimization (MOO) problem with the covariance matrix parameters_of the arnThe
conflicting objectives is present everywhere in the réward vector; that the agent receives from the arm
real-world. For instance, in shipping firm, the con- 1S independent from all other arms and mdepe_ndent
flicting objectives could be consist of the shipping from the past reward vectors of the selected arm
time and the cost. At the same time, shorten shipping Moreover, the mean.vecgo.r of the airhasindepen-
time is needed in order to improve customer satisfac- dent.Dd|str|but|ons, i.e.0° is adiagonal covariance
tion, while also reducing the number of used ships to Matrix We assume that the true mean vector and co-
reduce the operating cost. It is obvious that adding Variance maitrix of each armnare unknown parame-
more ships will reduce the needed shipping time but t€rs to the agent. Thus, by drawing each arrthe
will increase the operating cost. The goal of the MOO @gent maintains estimations of the true mean vector
with conflicted objectives is to tradeoff the conflicting and the diagonal covariance matrix (or the variance
objectives. The Multi-Objective Multi-Armed Ban-  vector) which are known 4 anda?, respectively.
dit (MOMAB) problem (Drugan and Nowe, 2013; S. The MOMARB problem has a set of Pareto optimal
Q. Yahyaa and Manderick, 2014b) is the simplest ap- arms (Pareto fron#\*, that are incomparable, i.e. can
proach to representing the MOO problem. not be classified using a designed partial order rela-
MOMAB problem is a sequential stochastic learn- tions (Zitzler and et al., 2002). The agent has to fig-
ing problem. At each time step an agent pulls one  ure out the optimal arms to minimize the total Pareto
armi from an available set of arm& and receives a  loss of not pulling the optimal arms. At each time
reward vector; from the armi with D dimensions  stept, the Pareto loss (or Pareto regret) is the distance
(or objectives) as feedback signal. The reward vec- between the set mean of Pareto optimal arms and the
tor is drawn from a probability distribution vector, mean of the selected arm (Drugan and Nowe, 2013).
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Thus, the total Pareto regret is the cumulative summa-
tion of the Pareto regret ovetime steps.

The Pareto fronA* can be found for example,
by using linear scalarized functiorf (Eichfelder,
2008). Linear scalarized function is simple and in-
tuitive. Given a predefined set weight the linear
scalarized functiorf weighs each value of the mean
vector of an arm, converts the multi-objective space
to a single-objective one by summing the weighted
mean values and selects the optimal afnthat has
the maximum scalarized function. However, solving
a multi-objective optimization problem means find-
ing the Pareto fronA*. Thus, we need various lin-
ear scalarized functioris, each scalarized function
fS, fSeF,s=1,---,S has a corresponding set of
weightws, to generate the variety of elements belong-
ing to the Pareto front. The predefined total weight
setW, W = {w! ... wS} is uniformly random spread
sampling in the weighted space (Das and Dennis,
1997). However, there is no guarantee that the to-
tal weight seW can find all the optimal arms in the
Pareto frontA*. To improve the performance of the
linear scalarized function (S. Q. Yahyaa and Mander-
ick, 2014a) have used Knowledge Gradient (KG) pol-
icy (I. O. Ryzhov and Frazier, 2011) in the MOMAB
problem, resulting Linear Scalarized Knowledge Gra-
dient Function (LS-KG-F).

In this paper, we improve the performance of
the linear scalarized knowledge gradient function LS-
KG-F by introducing techniques from multi-objective
optimization that redefine the weights for the weight
setw. We either generate a new weight setby
using genetic operators that change the weights di-
rectly (Drugan, 2013) or adapt the weights by using
the arms in the Pareto front like in (J. Dubois-Lacoste

and Stutzle, 2011). We propose also the Thompsonine com

sampling policy (Thompson, 1933) to select from the
total weight seW, the weight setw that identifies a
larger set of optimal arms from the Pareto frévit

The rest of the paper is organized as follows:
In Section 2 we introduce the multi-objective multi-
armed bandit problem. In Section 3 we present the
linear scalarized functions and the scalarized multi-
objective bandits algorithm. In Section 4 we intro-
duce algorithms to determine the weight set, the stan-
dard, the adaptive and the genetic algorithms. In
Section 5 we introduce the adaptive scalarized multi-
objective bandits algorithm that uses Thompson sam-
pling policy to select the appropriate weight set. In
Section 6, we describe the experiments set up fol-
lowed by experimental results. Finally, we conclude
and discuss future work.

56

2 MULTI OBJECTIVE MULTI
ARMED BANDITS PROBLEM

Let us consider the MOMABSs problems with| > 2
arms and witindependent bjectives per arm. At
each time stef, the agent selects one arimand
receives a reward vecta§. The reward vector;

is drawn from a corresponding normal probability
distributionN(p,062) with unknown mean parameter
vectorp, W = [W},---,pP]T and unknown variance
parameter vecta?, 62 = [0>,--- ,6>°]T, whereT

is the transpose. Thus, by drawing each asrthe
agent maintains estimate of the mean parameter vec-
tor f and the variancé? parameter vector, and com-
putes the number of timds; armi is drawn. The
agent updates the estimated mqaan the estimated

varianceé‘;iz’d of the selected armin each objective
d,d € D and the number of timel; armi has been

selected as follows (Powell, 2007):

Nijg=N+1 (1)
1
~d ~d d
d = (1-—)p+ = 2
2d _ Ngi—2.204, 1 4 42
0= N =1 + Ni+l(rt+1 VRN )

whereN;; 1 is the updated number of times airhas
been selectedy’; is the updated estimated mean,

andc“rizfl is the updated estimated variance of the arm
i in the objectived andrg , is the observed reward of
the armi in the objectived.

When the objectives are conflicting with one an-
other then the mean componast of armi corre-
sponding with objectivel, d € D, can be better than
ponenpﬁj of another armj but worse if we
compare the components for another objectie
> pd butpd’ < ¢ for objectivesd andd’, respec-
tively. The agent has a set of optimal arms (Pareto
front) A* which can be found by the Pareto dominance
relation (or Pareto partial order relation).

The Pareto dominance relatiofinds the Pareto
front A* directly in the multi-objective MO space (Zit-
zler and et al., 2002). It uses the following relations
between the mean vectors of two arms. We iused
j to refer to the mean vector (estimated mean vector
or true mean vector) of armisand j, respectively:

Arm i dominates or is better thani > j, if there
exists at least one objectivkefor whichi? - j4 and
for all other objectives!’ we havei? = j%'. Armi is
incomparable withj, i || j, if and only if there exists
at least one objective for which i = j9 and there
exists another objectivé for whichi® < j4'. Arm i
is not dominated by, j # i, if and only if there exists



Thompson Sampling in the Adaptive Linear Scalarized Multi Objective Multi Armed Bandit

at least one objectiveé for which j9 < i9. This means
that eitheri > j ori || j.

Using the above relations, Pareto fréitA* C A
be the set of arms that are not dominated by all other
arms. Moreover, the optimal armsAfi are incompa-
rable with each other.

In the MOMAB, the agent has to find the Pareto
front A*, therefore, the performance measure is the
Pareto regret (Drugan and Nowe, 2013he Pareto
regret measurgRparetg) Measures the distance be-
tween a mean vector of an arimthat is pulled at
time stept and the Pareto fronA*. Pareto regret
Rrareto IS calculated by finding firstly the virtual dis-
tancedis*. The virtual distancealis* is defined as
the minimum distance that is added to the mean
vector of the pulled army at time stept in each
objective to create a virtual mean vecig, W' =
l +&* that is incomparable with all the arms in
Pareto sefA®, i.e. ||l Viea~- Wheree* is a vec-
tor, €* = [dis"!,--- ,dis"P|T. Then, the Pareto regret
RPareto, RPareto - d|s(ut,p{*) —. d|S(£*,0) |S the d|S'
tance between the mean vector of the virtual g§m
and the mean vector of the pulled aggnat time step

t, wheredis, dis(p, ) = (58 (1 — i)/ is

the Euclidean distance. Thus, the regret of the Pareto

front is O for optimal arms, i.e. the mean of the opti-
mal arm coincides itself.

3 THE SCALARIZED
MULTI-OBJECTIEVE BANDITS

Linear scalarization function converts the multi-
objective into single-objective optimization (Eich-
felder, 2008). However, solving a multi-objective op-
timization problem means finding the Pareto fréiit
Thus, we need a set of scalarized functibhd =
{fl ... fS ... S} to generate a variety of elements
belonging to the Pareto froA*. Each scalarized
function 5, S € F has a corresponding predefined
set of weighws, w € W, whereW = (W!,--- \w®).

Thelinear scalarization function assigns to each
value of the mean vector of an arima weightw?
and the result is the sum of these weighted mean
values. Given a predefined set of weigis w° =
(WL, .wP) such thaty)_, wf = 1, the linear scalar-
ized across mean vector is:

F() = Wha + -+ WP )

where f3(;) is a linear scalarized functiog) s€ S
over the mean vectqy of the armi. After transform-
ing the multi-objective problem to a single-objective
problem, the linear scalarized functidf selects the

armits that has the maximum linear scalarized func-
tion value:

its = argmaxf (i)
1<i<A

The linear scalarization is very popular because of
its simplicity. However, it can not find all the optimal
arms in the Pareto froA* (Das and Dennis, 1997).
To improve the performance of the linear scalar-
ized function, (S. Q. Yahyaa and Manderick, 2014b)
have extended Knowledge Gradient (KG) policy (l.
O. Ryzhov and Frazier, 2011) to the MOMAB prob-
lem, resulting linear scalarization function knowledge
gradient. (S. Q. Yahyaa and Manderick, 2014b) have
proposed two variants of linear scalarized KG, lin-
ear saclarized KG across arms (LS1-KG) and linear
saclarized KG across dimensions (LS2-KG). Since
LS1-KG performs better than LS2-KG, we will use
linear scalarized KG across arms LS1-KG.

The linear scalarized-KG across arms (LS1-
KG) converts the multi-objective estimated mean
i, = AL, fP]T and estimated varian@®, 62 =
[6>1,-..,67P]T of each arm to one-objective, then
computes the corresponding bound (or term) ExpB
At each time ste, LS1-KG weighs both the esti-
mated mean vectql, and estimated variance vector
67 of each armi, converts the multi-objective vec-
tors to one-objective values by summing the elements
of each vector. Thus, we have one-objective multi-
armed bandits problem. The KG policy calculates
for each arm, a bound which depends on all avail-
able arms and selects the arm that has the maximum
estimated mean plus the bound. The LS1-KG is as
follows:

B = 5) = w4+ WP vi  (5)
o7 = 15(67) =w'e? + - +wPE?" v (6)
5 =% Vi@
B — max
V; = a g —|$| Vi (8)
o

where fS is a linear scalarization function that has a
predefined set of weighw® = (w!,--- ,wP), [, and

02 are the modified estimated mean, and the modi-
fied estimated variance of an arpnespectively which
are one-objective values aml is the modified Root
Mean Square Error (RMSE) of an arm Thev; is

the KG index of an arnh. The functiong(), g({)
{P(Q) + 9(0), whered, and ¢ are the cumulative
distribution, and the density of the standard normal
densityN(0,1), respectively. Linear scalarized-KG
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across arms selects the optimal af), g according
to:

ils;ke = iiz.g-m\i\)((ﬁ +ExpB) )
= argmax(ff+ (L—t)«|ADx*v)  (10)
=1, Al

where ExpBis the bound of arni, |A| is the number
of arms,D is the number of objectives, is the hori-
zon of an experiments, i.e. length of trajectories ind
is the current time step.

Thealgorithm. The pseudocode of the Scalarized
Multi-objectieve Multi-Armed Bandit (SMOMAB)
algorithm is given in Figure 1. The linear scalarized-
KG across arms LS1-KG function i&  The scalar-
ized function set if = (f1,---, fS), where each LS1-
KG function f* has a predefined weight set® =
(whS, ... wP:S) and the number of scalarized function
is|9],|Sf=D+1.

The algorithm in Figure 1 plays each arm for each
scalarized functios, Initial plays (step: 2). NSis the
number of times the scalarized functisis pulled and
N? is the number of times the ariunder the scalar-
ized functions is pulled. (r;)® is the reward of the
pulled armi under the scalarized functiawhich is
drawn from a normal distributioN (i, 62), wheret is
the unknown true mean vector aaflis the unknown
true variance vector of the rewardf)s and (G;)®

are the estimated mean and standard deviation vectorsb.

of the armi under the scalarized functia) respec-
tively. After initial playing, the algorithm chooses
uniformly at random one of the scalarized function

s(step: 4). The algorithm determines the correspond-

ing weight semw® such thatyD_, w®s = 1 (step: 5).
The weight semw® can be specified by using stan-

dard algorithm (Das and Dennis, 1997), adaptive al-
gorithm (J. Dubois-Lacoste and Stutzle, 2011), or ge-

netic algorithm (Drugan, 2013), we refer to Section 4
for more details. If the SMOMAB algorithm uses the

standard algorithm to set the weights, then the total

weight seW = (w!,--- w®) is fixed until the end of
playingL steps. However, if the SMOMAB algorithm

uses the adaptive or the genetic algorithm, then the

total weight seW = (w', - -- ,w) will change at each
time step. The SMOMAB algorithm uses the prede-
fined total weight séW till the end of playinginitial

steps, then at each time step the adaptive and the ge
netic algorithms generate new weights. The algorithm

selects the optimal arifi*)° that maximizes the LS1-

KG function (step: 6) and simulates the selected arm

(i*)® to observe the reward vect(-)® (step: 7). The

1we uses to refer the scalarized functioff that has a
predefined weight sev® = (w!,--- . wd, ... .wP).
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estimated mean vectdfi. )5, estimated standard de-
viation vector(Gi-)°, and the numbeN? of the se-
lected arm and the number of the pulled scalarized
function NS are updated (step: 8). Finally, the al-
gorithm computes the Pareto regret (step: 9). This
procedure is repeated until the end of playingteps
which is the horizon of an experiment.

Note that, the algorithm in Figure 1 is an adapted
version of the scalarized MOMABSs from (Drugan and
Nowe, 2013), but here the reward is drawn from nor-
mal distribution and the weight sef is determined.

1. Input: Horizon of an experinent L;nunber
of arms |A|; nunber of objectives D;nunber of
scal arized functions |S=D+1;reward vector
r~ N(ll,O'rz).

2. Initialize:Total Wight set W= (w! .. wPtl)
For each scalarized function s=1to S
Play: each armi, Initial steps

Cbserve: (rj)®

Update: NS« N°+1;N°« N°+1,

(R (6)°
End

Repeat
Select a function suniformy at random
Conpute the weight set w®«+ Weight
Select the optimal arm (i*)° that maxinizes
the scal arized function f*
7. Qbserve: reward vector (ry.)s, (ri)S=([r},---,r2]")®
8. Update: ({.)5 (6i)% NS < N3 +1; NS« NS+1
9. Conpute: Pareto regret
Until L

© 0 k~w

11. CQutput: Pareto regret

Figure 1: The scalarized multi-objective multi-armed kand
(SMOMAB) algorithm.

4 ADAPTIVE WEIGHTSFOR
THE SCALARIZED MOMAB

In this section, we provide different algorithms to
identify the weight sew®.

Fixed set of weights. The standard algo-
rithm (Das and Dennis, 1997) defines a fixed to-
tal weight setW, W = (w!,--- \w5,--- W) that is
uniformly random spread sampling in the weighted
space. For example, the bi-objective multi-armed
bandit with number of scalarized functidf|. The
weightw!S of the scalarized functiosin the objec-
tived,d=1is setto - ‘gill and the weightv>S of
the scalarized functior in the objectived, d = 2 is
set to 1— whs,

Note that, this algorithm performs a uniform sam-
pling in the weight space. However, there is no
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guarantee that the resulting arms will give a uni-

The mutationoperator, mutates each weight of a

form spread in the objective space. The weight set scalarization function independently using a normal

ws Ws € W is sequentially ordered, therefore, when
the scalarized MOMAB algorithm (the algorithm in
Figure 1) is stopped prematurely, it will not have sam-
pled all the part of the weight space, possibly leaving
a part of the Pareto from{* undiscovered.

Adaptive Direction. The adaptive algorithm from

(J. Dubois-Lacoste and Stutzle, 2011) takes into ac-

count the shape of the Pareto froit in order to

obtain a well-spread set of the non-dominated arms.

For a scalarized functios, this algorithm defines a

distribution. Therecombinatioroperator generates a
new weighw from two or more scalarized functions,
each scalarized function has a predefined weight set
ws = (Wl --- wP). The translation recombination
operator translates the main set of scalarized function
Swith a normally distributed variable. Thetation
recombinatioroperator, considers that the scalarized
functionsS are positioned on a S-dimensional hyper-
sphere. The generated new scalarized fundiialso
belongs to this hypersphere around the main scalar-

norm (Euclidean distance) to specify the largest gap ized functionsS, that is rotated with a small normally

in the coverage of the Pareto frokit. The largest gap
is the gap between the maximum norm max [x’||
and the minimum norm mijga ||| of the estimated
meanfx’ of an armi, i € A under the scalarized func-
tion s. For example, the bi-objective multi-armed
bandit with scalarized functioa. The adaptive new
weight whS of the objectived, d = 1 is perpendic-
ular to the segment defined by the maximum arm
imaxs imax = argmaxc |/ff|| and the minimum arm
armimin, imin = argminc, ||| in the objective space,
that is:

n2,S  ~2S
Wl"s _ l‘Jimax imin
T A2s ~2.S ~ls  w~ls
l‘limax_Mimin—i_l‘j‘imin uimax

where|® andi’° are the estimated mean of the
armsimax andimin IN the objective 2 under scalarized

functions, respectively . Andpilr“;zX and A-l’sn are the
estimated mean of the armgyx andimin in the objec-
tive 1 under scalarized functios) respectively. The
new weightw?s of the second objectivd = 2 un-
der scalarized functioais set to - wS. Note that,
for number of objective® > 2, the weighw! in the
objectived = 1 is calculated by using the estimated
mean of the objectived = 1 andd = 2. The weight
w? in the objectived = 2 is calculated by using the es-
timated mean of the objectivels= 2 andd = 3, and
so on. While the weight® in the objectiveD is set
to1—(Wh+---+wP 1)

distributed angle. For more details, we refer to (Dru-
gan and Thierens, 2010).

Since the mutation operator is the easiest one to
implement, we will use it in our comparison. Given
the weight sew®(t) of the scalarized functiosat time
stept, the mutated new set of weight(t + 1) at time
stept + 1 is calculated as follows;

wWi(t+1) =w(t)+11

wherel is a diagonal matrix of siz® x D with nor-
mally distributed variables antl 5 a vector of size

D with 1 variables. After calculating the new weight
setwS(t + 1), we can either replace the old weight set
wWS(t) with the new weight set, i.ewS(t) < wS(t + 1)
(mutation) or at each time stépwe generate new set
of weight that is independent from the previous one
(mutation without replacement).

5 THOMPSON SAMPLING IN
THE SCALARIZED MOMAB
ALGORITHM

In this section, we design an algorithm that frequently
selects the appropriated scalarized function set of
weightsw®, w® € W, where the total weight sV is
either determined by using standard algorithm, adap-
tive algorithm or genetic algorithm. The appropriate

This algorithm defines new weights based on the scalarized function is the one that improves the per-
shape of the Pareto front. Therefore, if the shape of formance of the algorithm by identifying new Pareto

the Pareto front is irregular, then the new weight will

not discover all the optimal arms in the Pareto front.
This operator adapt the weights of only two objectives
at the time.

Genetic Operators. The scalarized local search al-

gorithm (Drugan, 2013) generates new weights for
scalarized functiors using real-coded genetic oper-

optimal arms.

In the Bernoulli one-objective, Multi-Armed Ban-
dits (MABSs), the reward is a stochastic scalar value,
and there is only one optimal arm. The reward; ~
B(pi) for an armi is either 0, or 1 and generated from
a Bernoulli distributionB with unknown probability
of succesg;. The goal of an agent is to minimize the

ators. The new weights are different from the parent- loss of not pulling the best ariiii overL time steps.

ing weights, therefore, it could explore the parts of the
Pareto fronA* that are undiscovered.

The loss (or the total regret)R. = Lp* — S+, pi(t),
where p* = max—1.. opi is the probability of suc-
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cess of the best artii, and p; is the probability of
success of the selected arrat time stegd. To mini-
mize the total regret, at each time stethe agent has
to trade-off between selecting the optimal a@rnfex-
ploitation) to minimize the regrétand selecting one
of the non-optimal armto increase the confidence in
the estimated probability of success fi = % /(i +8)

of the armi (exploration). Where; is the number of

successes (the number of receiving reward equals 1)

andp; is the number of failures (the number of receiv-
ing reward equals 0) of the arm
Thompson Sampling Policy. (Thompson, 1933) as-
signs to each arm, i € A a random probability of
selectionk to trade-off between exploration and ex-
ploitation. The random probability of selectiéh of
each armi is generated from Beta distribution, i.e.
P =Betdqj, Bi), whereq; is the number of successes
andp; is the number of failures of the armThe ran-
dom probability of selectio, of an armi depends
on the performance of the arm i.e. the unknown
probability of succesg; of the armi. It will be high
value if the armi has high probability of success
value. With Bayesian priors on the Bernoulli proba-
bility of succesg; of each arm, Thompson sampling
assumes initially the number of successgsand the
number of failuresf; for each arm is 1. At each
time t, Thompson sampling samples the probability
of selectionP, for each armi, i € A (the probability
that an armi is optimal) from Beta distribution, i.e.
P = Betdai, ). Beta distribution generates random
values, therefore, probably, at time stethe optimal
armi*, i* = argmax., pi has high probability of se-
lectionP:+, while at time step+ 1 the suboptimal arm
i, J €A, j#i* has high probability of selectiof.
Thompson sampling selects the optimal &ifrg
that has the maximum probability of selectiﬁ’@s,
l.e. ifg=argmay., P and observes the rewargd .
If reg=1, then Thompson sampling updates the num-
ber of successes;x . = a;: _+ 1 for the armi;g As
a result, the estimated probability of SUCCPRS, of
the armitg will increase. Ifri-_ = 0, then Thomp-
son sampling updated the number of failu[:'igss =
Bi?s‘L 1forthe arm*. As aresult, the estimated prob-
ability of succesg;: _ of the armiz g will decrease.
Since, Thompson sampling is very easy to imple-
ment, we will use it to select the scalarized function
s, s€ S. We assume that each scalarized funcgon
has unknown probability of succeps and when we
selects, we either receive reward 1 or 0. We call

that, adaptive-SMOMAB uses Thompson sampling to
select the weight set, while scalarized multi-objective
multi-armed bandit (MOMAB) selects uniformly at
random one of the weight sef, w* ¢ W.

The AdaptiveeSMOMAB Algorithm. As in the case

of MABs, Thompson sampling uses random of beta
distribution Betdas, Bs) to assign a probability of se-
lection P for each scalarized function Whereas

is the number of successes of the scalarized function
s and f3s is the number of failures of the scalarized
functions. We consider that each scalarized func-
tion s has unknown probability of succeps and by
playing each scalarized functis) we can estimate
the corresponding probability of success. At each
time stept, we maintain valud/s(t) for each scalar-
ized functions, whereVs(t) = maxea f3(()°) is the
value of the optimal arnii*, i* = argmax_a f5(([%)3)
under scalarized functiomand (f )® is the estimated
mean vector of the armunder the scalarized func-
tion s. If we select the scalarized functiamat time
stept and the value of this scalarized functidit) is
greater or equal than the value at the previous selec-
tion, Vs(t) > Vs(t — 1), then this scalarized function
performs well because it has the ability to select the
same optimal arm or to select another optimal arm
that has higher value. Otherwise, the scalarized func-
tion sdoes not perform well.

The pseudocode of the adaptive-SMOMAB algorithm
is given in Figure 2. The linear scalarized-KG across
arms LS1-KG functiorf is used to convert the multi-
objective to a single one. The number of scalarized
function is|S], |S| = D+ 1, whereD is the number

of objectives. The horizon of an experimentlis
steps. The algorithm in Figure 2 plays each arm for
each scalarized functios) Initial plays. The scalar-
ized function set if = (f1,---, f|9), each scalarized
functions has a corresponding predefined weight set,
ws = (whS ... wPS). NS is the number of times the
scalarized functiors is pulled andN? is the number

of times the arm under the scalarized functianis
pulled. (r;)s is the reward vector of the pulled arm
under the scalarized functi@which is drawn from a
normal distributiorN(i, 67), wheretis the true mean
vector ana? is the true variance vector of the reward.
(%)% and (G;)° are the estimated mean and standard
deviation vectors of the armunder the scalarized
functions, respectively.Vs, Vs = maxea f5(([1)%) is

the value of each scalarized functierafter playing
each armi Initial steps, wherdS((f)®) is the value

the algorithm that uses Thompson sampling to selectof the LS-KG for the arm under scalarized function

the weight set "Adaptive Scalarized Multi-Objective
Multi-Armed Bandit” (adaptive-SMOMAB). Note

2At each time step, the regret equalp* — pj(t).
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s. The number of successes, and the number of
failuresf3s for each scalarized functiomare set to 1
as (Thompson, 1933), therefore, the estimated proba-
bility Ps, Ps = 9s/(as+8s) Of success is B. The prob-
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1. Input: Horizon of an experinent L;nunber
of arms |A|; nunber of objectives D;nunber of
scal arized functions |§ =D+ 1 reward vector
r~ N(uorz)

2. Initialize:Total wight set W= (w! .- wP+l)
For each scalarized function s=1to |
Play: each armi, Initial steps
Gbserve: (rj)®
Update: NS« NS+1 NP« N°+1
()% (6:)° e
Conmpute: Vs(t) lgm&xA f3((f)3)
Set: as=1 Bs=1 Ps=05 Ps=%
End

|

Repeat
For each scalarized function s=1,---
Sanpl e Ps from Beta(as,Bs)
End for
st =argmax Ps
Conput e: the new wei ght set wS < Weight
Sel ect: the optimal armi* that maxim zes
scalarized function f$ that has
the new weight set w®
F o S ((f1)S
Conput e: Vg(t)flsméxA 5 ((P)*)
If Ve(t) > Vs(t-1)
dg = dg +1
El se
Bs =PBs +1
15. End
. Observe: reward vector (ri.)¥ =([rt,---,rP]")*
18. Update: (f.)%; (Gi)°;
NS < NS +1; NS« N¥+1
Conpute: Pareto regret

©CONOO AW

10.

11.
12.
13.
14.

19.

20. Until L

21. Qutput: Pareto regret

Figure 2: Adaptive Scalarized MOMAB.

ability of selectionPs each scalarized functiais %

(step: 2).

After initial playing, the algorithm computes the
probability of selectiorPs of each scalarized function
s, the probability of selectioRs is sampled from beta
distribution Bet&as, Bs)(step: 4). The algorithm se-
lects the optimal scalarized functiah, the one that
has a max probability of success (step: 7). The al-
gorithm determines the weight st for the optimal
scalarized functiors* (step: 8). The weight sat®
is determined either by using adaptive algorithm, ge-
netic algorithm or standard algorithm, Section 4. The
algorithm selects the optimal aiifhunder the optimal
scalarized functios (step: 9) and computes the value
of the optimal scalarized functiasi (step: 10) which
is the value of the optimal ariiri. If the valueVs: (t)
of the optimal scalarized functicsi at time stef, is

greater or equal than the value of the of the optimal
scalarized functios* at time stef — 1, then the opti-
mal scalarized functios performs well. The number
of successess: is increased. Other wise, the number
of failuress is increased (steps: 11-15). Then, the
algorithm updates the valiyg: of the optimal scalar-
ized functions* (step: 16). The algorithm simulates
the optimal armi* of the optimal scalarized function
s*, observes the corresponding reward vector)s
and updates the estimated mean ve(fipy* , the es-
timated standard deviation vect@;i:)$ of the arm

i* and updates the numbat of the selected arm
and the number of the pulled scalarized functi¢h
(steps: 17-18). Finally, the algorithm computes the
Pareto regret (step: 19). This procedure is repeated
until the end of playind. steps.

Note that, if the adaptive-SMOMAB algorithm
uses the standard algorithm to set the weights, then
the total weight seW = (W' --- wS) is fixed un-
til the end of playingL steps. However, if the
adaptive-SMOMAB algorithm uses the adaptive or
the genetic algorithm, then the total weight ¥ét=
(w,--. . w®) will change at each time step. The
adaptive-SMOMAB algorithm uses a predefined to-
tal weight seW till the end of playinglnitial steps,
then at each time step the adaptive and the genetic al-
gorithms generate new weights.

6 EXPERIMENTS

In this section, we firstly compare the performance of
the adaptive scalarized multi-objective, multi-armed
bandit (adaptive-SMOMAB) algorithm, the algorithm
in Figure 2 and the performance of the scalarized
multi-objective multi-armed bandit (SMOMAB) al-
gorithm, the algorithm in Figure 1. We use the
genetic, the adaptive, and the standard algorithms,
Section 4 to set the weight s&f for each linear
scalarized knowledge gradient across arms (LS1-KG)
s. Secondly, we experimentally compare the stan-
dard, the adaptive and the genetic algorithms, using
the adaptive-SMOMAB algorithm. The performance
measures are:

1. The Pareto regret, Section 2 at each time step
which is the average d¥l experiments.

2. The cumulative Pareto regret, Section 2 at each
time stet which is the average &fl experiments.
The number of experimenid is 1000. The hori-

zon of each experimehtis 1000. The reward vectors

r; of each arni are drawn from corresponding normal

distributionN (i, 67, ) wherep = [, -, pP]T is the

true mean vector angi ; = [a{,,--- ,0}]" is the true
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standard deviation vector of the reward of the arm
The true means and the true standard deviations of
arms are unknown parameters to the agent. The LS1-
KG needs the estimated variangg for each armi,
therefore, each arm is played initially 2 times which
is the minimum number to estimate the variance.

At each time steq, the mutation operator mu-
tates the weight savS(t) of each scalarized function
s at time stept independently using a normal distri-
butionN(, 0%) to generate new weight sef(t + 1),
we set the meap to 0 and the variance? to 0.05
as (Drugan, 2013). We can either replace the old
weightws(t) set with the new weight sat®(t + 1),
i.e. wS(t) < w(t + 1) or at each time stepp we gen-
erate new set of weight that is independent from the
previous one. We compare the two different setting
and we find out that the replacement setting performs
better, therefore, we use this in our comparison.

6.1 Bi-Objective

Example 1. We used the same example in (Dru-
gan and Nowe, 2013) because it simple to understand
and contains non-convex mean vector set. The num-
ber of armsA| equals 6, the number of objectivBs
equals 2. The standard deviation for arms in each
objective is 01. The true mean set vector (g =
[0.55,0.5]", wp = [0.53/0.5]", u3 = [0.52,0.54]T,
M =[0.5,0.57]", us = [0.51,0.51] 7, gy =[0.5,0.5] ).
Note that, the Pareto front i&* = (aj,a},a5,a}),
wherea& refers to the optimal arrit. The subopti-
mal as is not dominated by the two optimal arra$
andaj, buta; andaj dominatesas while ag is domi-
nated by all the other mean vectors. Figure 3 shows a
set of 2-objective true mean with a non-convex set.

First, we compare the performance of the
SMOMAB and adaptive-SMOMAB algorithms. We
use either the standard algorithm, the adaptive algo-
rithm, or the genetic algorithm to set the weights.
Figure 4 gives the comparison of the SMOMAB and
adaptive-SMOMAB algorithms using the standard,
the adaptive, and the genetic algorithms. The stan-
dard deviationo?, of reward for each armin each
objectived is set to 01. The x-axis gives the time
step. The y-axis is the cumulative Pareto regret which
is the average o experiments at each time step
Figure 4 shows that the SMOMAB algorithm per-
forms better than the adaptive-SMOMAB algorithm
using the adaptive, and the genetic algorithms, since
the cumulative Pareto regret is decreased. While, the
adaptive-SMOMAB algorithm performs slightly bet-
ter than the SMOMAB algorithm using the standard
algorithm.

Second, we compare the performance of the stan-
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Figure 3: Non-convex and convex mean vector sets with
bi-objective.. Upper figure shows a non-convex set with 6-
armed. Lower figure shows a convex set with 20-armed.

dard, the adaptive, and the genetic algorithms using
the adaptive-SMOMAB algorithm. Figure 5 gives the
cumulative Pareto regret. The x-axis is the time step.
The y-axis is the cumulative Pareto regret which is the
average oM experiments at each time steg-igure 5
shows that the standard algorithm is the best algo-
rithm and the adaptive algorithm is the worst one. The
mutation algorithm performs better than the adaptive
algorithm and slightly worse than the standard algo-
rithm.

In Example 1, the Pareto froAt contains optimal
arms that are far from the non-optimal arms accord-
ing to the Euclidean distance and the number of the
optimal armgA*|, |A*| = 4 is larger than the number
of the non-optimal arms which is equal 2. Therefore,
the SMOMARB algorithm almost performs better than
the adaptive-SMOMAB because it selects uniformly
at random one of the scalarized function. And, the
standard algorithm performs better than the adaptive
and the genetic algorithms because they generate new
weights that are nearest to each other to explore more
the optimal arms.

6.2 Triple-Objective

Example 2. With number of objectiveD equals
2, number of arms|A| equals 20 and convex
Pareto mean set,(ly = [.56,.4917 1, = [.55,
51T, w3 = [54,.527", ) = [.535.535T,u5 =
[525,.555 ug = [.523.557]",u7 = [.515.56]",
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Figure 4: Performance comparison of the SMOMAB
algorithm with the adaptive-SMOMAB algorithm on 2-
objective, 6-armed problem. The weights are set using the
standard algorithm in figura, using the adaptive algorithm

in figureb, and using the genetic algorithm in figure
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Figure 5: Performance comparison of the standard, the
adaptive, and the genetic algorithms on 2-objective, 6-
armed problem using the adaptive-SMOMAB algorithm.
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Figure 6: Performance comparison of the SMOMAB
algorithm with the adaptive-SMOMAB algorithm on 3-
objective, 20-armed problem. The weights are set using the
adaptive algorithm.

s = [.505.567",u9 = [.5,.57]", o = [.497,
5727 1y = [.498 567", o = [.501,.56)T, 3 =
[505,.495T w4 = [.508 5597, s = [.51,.52]T,

M6 [515.528 7 = [52.55" s =
(53,53 T, mo = [54,.52T .m0 = [.54,.517),

the standard deviation for arms in each objective is
set to 01. The Pareto fronf\* contains 10 optimal
arms, A" = (ai,a5, &, a, a5, &, 3,85,) (S.

Q. Yahyaa and Manderick, 2014c). Note that, the
number of the optimal armig\*|, |A*| = 10 is equal

to the number of non-optimal arms and the optimal
arms are close to the non-optimal arm according
to the Euclidean distance. Figure 3 shows a set of
2-objective convex true mean vector set. We add
extra objective to Example 2, resulting in 3-objective,
20-armed bandit problem. The Pareto frekit still
contains 10 optimal arms and the optimal arms are
closer to non-optimal arms compared to Example 2
according to the Euclidean distance.

First, we compare the performance of the
SMOMAB and adaptive-SMOMAB algorithms. We
use either the standard algorithm, the adaptive al-
gorithm, or the genetic algorithm to determine the
weight set. The adaptive-SMOMAB algorithm per-
forms better than the SMOMAB algorithm for the
standard, adaptive and genetic algorithms. Figure 6
gives the comparison of the SMOMAB and adaptive-
SMOMAB algorithms using the adaptive algorithm.
Figure 6 shows that the adaptive-SMOMAB algo-
rithm performs better than the SMOMAB algorithm
using the adaptive algorithm to set the weight set.

Second, we compare the performance of the stan-
dard, the adaptive, and the genetic algorithms using
the adaptive-SMOMAB algorithm. Figure 7 gives
the cumulative Pareto regret. Figure 7 shows that the
standard algorithm is the worst algorithm. The adap-
tive algorithm is the best one and performs slightly
better than the mutation algorithm. The mutation al-
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Figure 7: Performance comparison of the standard, the a. Using the adaptive algorithm
adaptive, and the genetic algorithms on 3-objective, 20-

armed problem using the adaptive-SMOMAB algorithm. Kigure 8: Performance comparison of the SMOMAB

algorithm with the adaptive-SMOMAB algorithm on 5-

. . objective, 20-armed problem. The weights are set using the
gorithm performs better than the standard algorithm agaptive algorithm.

and worse than the adaptive algorithm.

From the above experiment, we see that when xa0°
we increase the number of objectives, the adaptive-
SMOMAB algorithm performs better than the
SMOMAB algorithm. Also, we see that the adap-
tive and the genetic algorithms perform better than the
standard algorithm.

N

ey

P S0 e 0n S n 0 e ntn Gn S= S m nen Om SO
.

Cumulative Pareto Regret

PN w s oo

6.3 5-Objective
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We add extra 2 objectives to Example 2, resulting Timester
in 5-objective, 20-armed bandit problem, leaving the Figure 9: Performance comparison of the standard, the
Pareto frontA* unchanged. The optimal arms in the adaptive, and the genetic algorithms on 5-objective, 20-
Pareto fronf\* are still closer to the non-optimal arms ~ @med problem using the adaptive-SMOMAB algorithm.
according to the Euclidean distance. The standard de-
viation for arms in each objective is set t®Q. and adaptive algorithms are increased, where the cu-
First, we compare the performance of the mulative Pareto regretis decreased.
SMOMAB and adaptive-SMOMAB algorithms. We  Discussion. from the above experiments, we see
use either the standard algorithm, the adaptive algo-that with minimum number of objective3, D = 2,
rithm, or the genetic algorithm to set the weights. The the SMOMAB algorithm performs better than the
adaptive-SMOMAB algorithm performs better than adaptive-SMOMAB algorithm. While, for number of
the SMOMAB algorithm for all the weight setting.  objectivesD, D > 2 larger than 2, the performance
Figure 8 gives the comparison of the SMOMAB and of the adaptive-SMOMAB algorithm is better than
adaptive-SMOMAB algorithms using the standard al- the performance of the SMOMAB algorithm. As the
gorithm. Figure 8 shows that the adaptive-SMOMAB  number of objectives is increased, the performance of
algorithm performs better than the SMOMAB algo- the adaptive-SMOMAB algorithm increases. We also
rithm using the standard algorithm. see that, for small number of objectivs D = 2,
Second, we compare the performance of the stan-the standard algorithm performs better than the adap-
dard, the adaptive, and the genetic algorithms usingtive and the genetic algorithms using the adaptive-
the adaptive-SMOMAB algorithm. Figure 9 gives SMOMAB algorithm. While as the number of ob-
the cumulative Pareto regret. Figure 9 shows that thejectives is increased, the adaptive and genetic algo-
standard algorithm is the worst algorithm and the mu- rithms perform better than the standard algorithm us-
tation algorithm is the best algorithm. The adaptive ing the adaptive-SMOMAB algorithm. Where, the
algorithm performs better than the standard algorithm adaptive algorithm performs better than the genetic

and worse than the mutation algorithm. algorithm for number of objectives equals 3 and the
From the above experiment, we see that when we genetic algorithm performs better than the adaptive
increase the number of objectives, 2> 3 the per- algorithm for number of objectives equals 5. The in-

formance of the adaptive-SMOMAB algorithm is in-  tuition is that for small number of objectivés D = 2
creased. We also see the performance of the genetiand small number of arm4\, |A| = 6, the small num-
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ber of scalarized functiorS |S| = D+ 1 was able to Drugan, M. and Nowe, A. (2013). Designing multi-
identify almost all the optimal arm in the Pareto front objective multi-armed bandits algorithms: A study. In
A*. While, for large number of objective3, D > 2 Proceedings of the International Joint Conference on
and large number of arm4\|, |A| = 20, the adaptive Neural Networks (LJCNN) . .
and genetic algorithms generate new weights, and theDr‘Jg%g'ﬂg/'r'l %n%g::)errse?:r' i'aﬁzggggaisgmﬁgr'gﬁ r?ﬁ;;“gs"
new weights explore all the optimal arms in the Pareto Evolutiorrl)ary Computatiq-r&8(2)-157—198 y :
front A", We alsq see that the figures have a flat per- Eichfelder, G. (2008).Adaptive Scalarization Methods in
formance and this is because of the calculation of the

) ' Multiobjective Optimization Springer-Verlag Berlin
Pareto regret. Pareto regret adds minimum distance Heidelberg, 1st edition.

(virtual distance) to the selected suboptimal arm to | o Ryzhov, W. P. and Frazier, P. (2011). The knowledge-

create an optimal arm, therefore the added distance gradient policy for a general class of online learning

will be the same if the suboptimal arms are close to problems.Operation Research

each other. J. Dubois-Lacoste, M. L.-I. and Stutzle, T. (2011). Improv-
ing the anytime behavior of two-phase local search. In
Annals of Mathematics and Artificial Intelligence

Powell, W. B. (2007). Approximate Dynamic Program-

7 CONCLUSIONS ming: Solving the Curses of DimensionalityJohn

Wiley and Sons, New York, USA, 1st edition.

We presented multi-objective, multi-armed bandit s q. vahyaa, M. D. and Manderick, B. (2014a). Empir-

(MOMAB) problem and the regret measures in the ical exploration vs exploitation study in the scalar-
MOMAB. We presented the linear scalarized function ized multi-objective multi-armed bandit problem. In
and the linear scalarized-KG that transform the multi- International Joint Conference on Neural Networks
objective problem into a single problem by summing (IJCNN)

the weighted objectives to find the optimal arms. Usu- S Q- Yahyaa, M. D. and Manderick, B. (2014b). Knowl-

ally, the scalarized multi-objective (SMOMAB) algo- edge.gradient for multi.-objective multi-armed bandit
' algorithms.  Ininternational Conference on Agents

rithm selects uniformly at random the scalarized func- and Artificial Intelligence (ICAART)France. Inter-
tion's. We proposed to use techniques from the multi- national Conference on Agents and Artificial Intelli-
objective optimization in the SMOMAB algorithm to gence (ICAART).

adapt the weights online. We use the genetic opera-s. Q. Yahyaa, M. D. and Manderick, B. (2014c). Multi-
tors to generate new weights in the proximity of the variate normal distribution based multi-armed bandits
current weight sets, and we adapt the weights to be ~ pareto algorithm. Ithe European Conference on Ma-
perpendicular on the set of Pareto optimal solutions. chine Learning and Principles and Practice of Knowl-

We propose the adaptive scalarized multi-armed ban-_~ €dge Discovery in Databases (ECML/PKDD)

dit (adaptive-SMOMAB) algorithm that uses Thomp- 110mpson, W. R. (1933). On the likelihood that one un-

son sampling policy to select the scalarized We known probability exceed_s another in view of the evi-
. : dence of two samples. Biometrika

experlmentally compared the SMOMAB. algorithm Zitzler, E. and et al. (2002). Performance assessment

and the adaptive-SMOMAB algorithm using the pro- of multiobjective optimizers: An analysis and re-

posed algorithms: the fixed weights, the adaptive view. |IEEE Transactions on Evolutionary Computa-

weights, and the genetic weights. We conclude that tion, 7:117-132.

when the number of objectiv® is increased >

2, the adaptive-SMOMAB performs better than the

SMOMARB algorithm. The adaptive and the mutation

algorithms perform better than the standard algorithm

(fixed weights).
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