
Thompson Sampling in the Adaptive Linear Scalarized
Multi Objective Multi Armed Bandit

Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick
Department of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Keywords: Multi-armed Bandit Problems, Multi-objective Optimization, Linear Scalarized Function, Scalarized Function
Set, Thompson Sampling Policy.

Abstract: In the stochastic multi-objective multi-armed bandit (MOMAB), arms generate a vector of stochastic normal
rewards, one per objective, instead of a single scalar reward. As a result, there is not only one optimal arm,
but there is a set of optimal arms (Pareto front) using Pareto dominance relation. The goal of an agent is to
find the Pareto front. To find the optimal arms, the agent can use linear scalarization function that transforms
a multi-objective problem into a single problem by summing the weighted objectives. Selecting the weights is
crucial, since different weights will result in selecting a different optimum arm from the Pareto front. Usually,
a predefined weights set is used and this can be computational inefficient when different weights will optimize
the same Pareto optimal arm and arms in the Pareto front are not identified. In this paper, we propose a
number of techniques that adapt the weights on the fly in order to ameliorate the performance of the scalarized
MOMAB. We use genetic and adaptive scalarization functions from multi-objective optimization to generate
new weights. We propose to use Thompson sampling policy to select frequently the weights that identify new
arms on the Pareto front. We experimentally show that Thompson sampling improves the performance of the
genetic and adaptive scalarization functions. All the proposed techniques improves the performance of the
standard scalarized MOMAB with a fixed set of weights.

1 INTRODUCTION

Multi-Objective Optimization (MOO) problem with
conflicting objectives is present everywhere in the
real-world. For instance, in shipping firm, the con-
flicting objectives could be consist of the shipping
time and the cost. At the same time, shorten shipping
time is needed in order to improve customer satisfac-
tion, while also reducing the number of used ships to
reduce the operating cost. It is obvious that adding
more ships will reduce the needed shipping time but
will increase the operating cost. The goal of the MOO
with conflicted objectives is to tradeoff the conflicting
objectives. The Multi-Objective Multi-Armed Ban-
dit (MOMAB) problem (Drugan and Nowe, 2013; S.
Q. Yahyaa and Manderick, 2014b) is the simplest ap-
proach to representing the MOO problem.

MOMAB problem is a sequential stochastic learn-
ing problem. At each time stept, an agent pulls one
arm i from an available set of armsA and receives a
reward vectorrrr i from the armi with D dimensions
(or objectives) as feedback signal. The reward vec-
tor is drawn from a probability distribution vector,

for example from a normal probability distribution
N(µµµi ,σσσ2

i), whereµµµi is the true mean vector andσσσ2
i is

the covariance matrix parameters of the armi. The
reward vectorrrr i that the agent receives from the arm
i is independent from all other arms and independent
from the past reward vectors of the selected armi.
Moreover, the mean vector of the armi hasindepen-
dent Ddistributions, i.e.σσσ2 is adiagonal covariance
matrix. We assume that the true mean vector and co-
variance matrix of each armi are unknown parame-
ters to the agent. Thus, by drawing each armi, the
agent maintains estimations of the true mean vector
and the diagonal covariance matrix (or the variance
vector) which are known aŝµµµi andσ̂σσ2

i , respectively.

The MOMAB problem has a set of Pareto optimal
arms (Pareto front)A∗, that are incomparable, i.e. can
not be classified using a designed partial order rela-
tions (Zitzler and et al., 2002). The agent has to fig-
ure out the optimal arms to minimize the total Pareto
loss of not pulling the optimal arms. At each time
stept, the Pareto loss (or Pareto regret) is the distance
between the set mean of Pareto optimal arms and the
mean of the selected arm (Drugan and Nowe, 2013).

55Yahyaa S., Drugan M. and Manderick B..
Thompson Sampling in the Adaptive Linear Scalarized Multi Objective Multi Armed Bandit.
DOI: 10.5220/0005184400550065
In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART-2015), pages 55-65
ISBN: 978-989-758-074-1
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

Thus, the total Pareto regret is the cumulative summa-
tion of the Pareto regret overt time steps.

The Pareto frontA∗ can be found for example,
by using linear scalarized function (f) (Eichfelder,
2008). Linear scalarized function is simple and in-
tuitive. Given a predefined set weightwww, the linear
scalarized functionf weighs each value of the mean
vector of an armi, converts the multi-objective space
to a single-objective one by summing the weighted
mean values and selects the optimal armi∗ that has
the maximum scalarized function. However, solving
a multi-objective optimization problem means find-
ing the Pareto frontA∗. Thus, we need various lin-
ear scalarized functionsFFF , each scalarized function
f s, f s ∈ FFF, s = 1, · · · ,S has a corresponding set of
weightwwws, to generate the variety of elements belong-
ing to the Pareto front. The predefined total weight
setWWW,WWW = {www1, · · · ,wwwS} is uniformly random spread
sampling in the weighted space (Das and Dennis,
1997). However, there is no guarantee that the to-
tal weight setWWW can find all the optimal arms in the
Pareto frontA∗. To improve the performance of the
linear scalarized function (S. Q. Yahyaa and Mander-
ick, 2014a) have used Knowledge Gradient (KG) pol-
icy (I. O. Ryzhov and Frazier, 2011) in the MOMAB
problem, resulting Linear Scalarized Knowledge Gra-
dient Function (LS-KG-F).

In this paper, we improve the performance of
the linear scalarized knowledge gradient function LS-
KG-F by introducing techniques from multi-objective
optimization that redefine the weights for the weight
set www. We either generate a new weight setwww by
using genetic operators that change the weights di-
rectly (Drugan, 2013) or adapt the weights by using
the arms in the Pareto front like in (J. Dubois-Lacoste
and Stutzle, 2011). We propose also the Thompson
sampling policy (Thompson, 1933) to select from the
total weight setWWW, the weight setwww that identifies a
larger set of optimal arms from the Pareto frontA∗.

The rest of the paper is organized as follows:
In Section 2 we introduce the multi-objective multi-
armed bandit problem. In Section 3 we present the
linear scalarized functions and the scalarized multi-
objective bandits algorithm. In Section 4 we intro-
duce algorithms to determine the weight set, the stan-
dard, the adaptive and the genetic algorithms. In
Section 5 we introduce the adaptive scalarized multi-
objective bandits algorithm that uses Thompson sam-
pling policy to select the appropriate weight set. In
Section 6, we describe the experiments set up fol-
lowed by experimental results. Finally, we conclude
and discuss future work.

2 MULTI OBJECTIVE MULTI
ARMED BANDITS PROBLEM

Let us consider the MOMABs problems with|A| ≥ 2
arms and withindependent Dobjectives per arm. At
each time stept, the agent selects one armi and
receives a reward vectorrrr i . The reward vectorrrr i
is drawn from a corresponding normal probability
distributionN(µµµi ,σσσ2

i) with unknown mean parameter
vectorµµµi , µµµi = [µ1

i , · · · ,µ
D
i]

T and unknown variance
parameter vectorσσσ2

i , σσσ2
i = [σ2,1

i , · · · ,σ2,D
i]T , whereT

is the transpose. Thus, by drawing each armi, the
agent maintains estimate of the mean parameter vec-
tor µ̂µµi and the variancêσσσ2

i parameter vector, and com-
putes the number of timesNi arm i is drawn. The
agent updates the estimated mean ˆµd

i , the estimated

varianceσ̂2,d
i of the selected armi in each objective

d,d ∈ D and the number of timesNi arm i has been
selected as follows (Powell, 2007):

Ni+1 = Ni +1 (1)

µ̂d
i+1 = (1−

1
Ni+1

) µ̂d
i +

1
Ni+1

rd
t+1 (2)

σ̂2,d
i+1 =

Ni+1−2
Ni+1−1

σ̂2,d
i +

1
Ni+1

(rd
t+1− µ̂d

i)
2 (3)

whereNi+1 is the updated number of times armi has
been selected, ˆµd

i+1 is the updated estimated mean,

andσ̂2,d
i+1 is the updated estimated variance of the arm

i in the objectived andrd
t+1 is the observed reward of

the armi in the objectived.
When the objectives are conflicting with one an-

other then the mean componentµd
i of arm i corre-

sponding with objectived, d ∈ D, can be better than
the componentµd

j of another armj but worse if we
compare the components for another objectived′:
µd

i > µd
j but µd′

i < µd′
j for objectivesd andd′, respec-

tively. The agent has a set of optimal arms (Pareto
front)A∗ which can be found by the Pareto dominance
relation (or Pareto partial order relation).

The Pareto dominance relationfinds the Pareto
frontA∗ directly in the multi-objective MO space (Zit-
zler and et al., 2002). It uses the following relations
between the mean vectors of two arms. We usei and
j to refer to the mean vector (estimated mean vector
or true mean vector) of armsi and j, respectively:

Arm i dominates or is better thanj, i ≻ j, if there
exists at least one objectived for which id ≻ jd and
for all other objectivesd′ we haveid

′
� jd

′
. Arm i is

incomparable withj, i ‖ j, if and only if there exists
at least one objectived for which id ≻ jd and there
exists another objectived′ for which id

′
≺ jd

′
. Arm i

is not dominated byj, j ⊁ i, if and only if there exists

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

56

at least one objectived for which jd ≺ id. This means
that eitheri ≻ j or i ‖ j.

Using the above relations, Pareto frontA∗,A∗ ⊂ A
be the set of arms that are not dominated by all other
arms. Moreover, the optimal arms inA∗ are incompa-
rable with each other.

In the MOMAB, the agent has to find the Pareto
front A∗, therefore, the performance measure is the
Pareto regret (Drugan and Nowe, 2013).The Pareto
regret measure(RPareto) measures the distance be-
tween a mean vector of an armi that is pulled at
time stept and the Pareto frontA∗. Pareto regret
RPareto is calculated by finding firstly the virtual dis-
tancedis∗. The virtual distancedis∗ is defined as
the minimum distance that is added to the mean
vector of the pulled armµµµt at time stept in each
objective to create a virtual mean vectorµµµ∗t , µµµ∗t =
µµµt + εεε∗ that is incomparable with all the arms in
Pareto setA∗, i.e. µµµ∗t ||µµµi ∀i∈A∗ . Whereεεε∗ is a vec-
tor, εεε∗ = [dis∗,1, · · · ,dis∗,D]T . Then, the Pareto regret
RPareto, RPareto = dis(µµµt ,µµµ∗t) = dis(εεε∗,000) is the dis-
tance between the mean vector of the virtual armµµµ∗t
and the mean vector of the pulled armµµµt at time step
t, wheredis, dis(µµµt ,µµµ∗t) = (∑D

d=1(µ
∗,d
t − µd

t)
2)(1/2) is

the Euclidean distance. Thus, the regret of the Pareto
front is 0 for optimal arms, i.e. the mean of the opti-
mal arm coincides itself.

3 THE SCALARIZED
MULTI-OBJECTIEVE BANDITS

Linear scalarization function converts the multi-
objective into single-objective optimization (Eich-
felder, 2008). However, solving a multi-objective op-
timization problem means finding the Pareto frontA∗.
Thus, we need a set of scalarized functionsFFF , FFF =
{ f 1, · · · , f s, · · · , f S} to generate a variety of elements
belonging to the Pareto frontA∗. Each scalarized
function f s, f s ∈ FFF has a corresponding predefined
set of weightwwws, wwws∈WWW, whereWWW = (www1, · · · ,wwwS).

The linear scalarization function assigns to each
value of the mean vector of an armi a weightwd

and the result is the sum of these weighted mean
values. Given a predefined set of weightswwws, wwws =
(w1, · · · ,wD) such that∑D

d=1wd = 1, the linear scalar-
ized across mean vector is:

f s(µµµi) = w1µ1
i + · · ·+wDµD

i (4)

where f s(µµµi) is a linear scalarized functions, s∈ S
over the mean vectorµµµi of the armi. After transform-
ing the multi-objective problem to a single-objective
problem, the linear scalarized functionf s selects the

arm i∗f s that has the maximum linear scalarized func-
tion value:

i∗f s = argmax
1≤i≤A

f s(µµµi)

The linear scalarization is very popular because of
its simplicity. However, it can not find all the optimal
arms in the Pareto frontA∗ (Das and Dennis, 1997).
To improve the performance of the linear scalar-
ized function, (S. Q. Yahyaa and Manderick, 2014b)
have extended Knowledge Gradient (KG) policy (I.
O. Ryzhov and Frazier, 2011) to the MOMAB prob-
lem, resulting linear scalarization function knowledge
gradient. (S. Q. Yahyaa and Manderick, 2014b) have
proposed two variants of linear scalarized KG, lin-
ear saclarized KG across arms (LS1-KG) and linear
saclarized KG across dimensions (LS2-KG). Since
LS1-KG performs better than LS2-KG, we will use
linear scalarized KG across arms LS1-KG.

The linear scalarized-KG across arms (LS1-
KG) converts the multi-objective estimated mean
µ̂µµi , µ̂µµi = [µ̂1

i , · · · , µ̂
D
i]

T and estimated variancêσσσ2
i , σ̂σσ2

i =

[σ̂2,1
i , · · · , σ̂2,D

i]T of each arm to one-objective, then
computes the corresponding bound (or term) ExpBi .
At each time stept, LS1-KG weighs both the esti-
mated mean vector̂µµµi and estimated variance vector
σ̂σσ2

i of each armi, converts the multi-objective vec-
tors to one-objective values by summing the elements
of each vector. Thus, we have one-objective multi-
armed bandits problem. The KG policy calculates
for each arm, a bound which depends on all avail-
able arms and selects the arm that has the maximum
estimated mean plus the bound. The LS1-KG is as
follows:

µ̃i = f s(µ̂µµi) = w1µ̂1
i + · · ·+wDµ̂D

i ∀i (5)

σ̃2
i = f s(σ̂σσ2

i) = w1σ̂2,1
i + · · ·+wDσ̂2,D

i ∀i (6)

˜̄σ2
i = σ̃2

i/Ni ∀i (7)

vi = ˜̄σi g



−|
µ̃i− max

j 6=i, j∈A
µ̃j

˜̄σi
|



 ∀i (8)

where f s is a linear scalarization function that has a
predefined set of weightwwws = (w1, · · · ,wD), µ̃i , and
σ̃2

i are the modified estimated mean, and the modi-
fied estimated variance of an armi, respectively which
are one-objective values and̄̃σi is the modified Root
Mean Square Error (RMSE) of an armi. The vi is
the KG index of an armi. The functiong(ζ), g(ζ) =
ζΦ(ζ) + φ(ζ), whereΦ, and φ are the cumulative
distribution, and the density of the standard normal
densityN(0,1), respectively. Linear scalarized-KG

Thompson�Sampling�in�the�Adaptive�Linear�Scalarized�Multi�Objective�Multi�Armed�Bandit

57

across arms selects the optimal armi∗LS1KG according
to:

i∗LS1KG = argmax
i=1,··· ,|A|

(µ̃i +ExpBi) (9)

= argmax
i=1,··· ,|A|

(µ̃i +(L− t)∗ |A|D∗ vi) (10)

where ExpBi is the bound of armi, |A| is the number
of arms,D is the number of objectives,L is the hori-
zon of an experiments, i.e. length of trajectories andt
is the current time step.

The algorithm. The pseudocode of the Scalarized
Multi-objectieve Multi-Armed Bandit (SMOMAB)
algorithm is given in Figure 1. The linear scalarized-
KG across arms LS1-KG function isf . The scalar-
ized function set isFFF =(f 1, · · · , f S), where each LS1-
KG function f s has a predefined weight set,wwws =
(w1,s, · · · ,wD,s) and the number of scalarized function
is |S|, |S|= D+1.

The algorithm in Figure 1 plays each arm for each
scalarized functions, Initial plays (step: 2)1. Ns is the
number of times the scalarized functions is pulled and
Ns

i is the number of times the armi under the scalar-
ized functions is pulled. (rrr i)

s is the reward of the
pulled armi under the scalarized functions which is
drawn from a normal distributionN(µµµ,σσσ2

r), whereµµµ is
the unknown true mean vector andσσσ2

r is the unknown
true variance vector of the reward.(µ̂µµi)

s and (σ̂σσi)
s

are the estimated mean and standard deviation vectors
of the armi under the scalarized functions, respec-
tively. After initial playing, the algorithm chooses
uniformly at random one of the scalarized function
s (step: 4). The algorithm determines the correspond-
ing weight setwwws such that∑D

d=1wd,s = 1 (step: 5).
The weight setwwws can be specified by using stan-
dard algorithm (Das and Dennis, 1997), adaptive al-
gorithm (J. Dubois-Lacoste and Stutzle, 2011), or ge-
netic algorithm (Drugan, 2013), we refer to Section 4
for more details. If the SMOMAB algorithm uses the
standard algorithm to set the weights, then the total
weight setWWW = (www1, · · · ,wwwS) is fixed until the end of
playingL steps. However, if the SMOMAB algorithm
uses the adaptive or the genetic algorithm, then the
total weight setWWW = (www1, · · · ,wwwS) will change at each
time step. The SMOMAB algorithm uses the prede-
fined total weight setWWW till the end of playingInitial
steps, then at each time step the adaptive and the ge-
netic algorithms generate new weights. The algorithm
selects the optimal arm(i∗)s that maximizes the LS1-
KG function (step: 6) and simulates the selected arm
(i∗)s to observe the reward vector(rrr i∗)

s (step: 7). The

1We uses to refer the scalarized functionf s that has a
predefined weight setwwws = (w1, · · · ,wd, · · · ,wD).

estimated mean vector(µ̂µµi∗)
s, estimated standard de-

viation vector(σ̂σσi∗)
s, and the numberNs

i∗ of the se-
lected arm and the number of the pulled scalarized
function Ns are updated (step: 8). Finally, the al-
gorithm computes the Pareto regret (step: 9). This
procedure is repeated until the end of playingL steps
which is the horizon of an experiment.

Note that, the algorithm in Figure 1 is an adapted
version of the scalarized MOMABs from (Drugan and
Nowe, 2013), but here the reward is drawn from nor-
mal distribution and the weight setwwws is determined.

1. Input: Horizon of an experiment L;number
of arms |A|;number of objectives D;number of
scalarized functions |S|= D+1;reward vector
rrr ∼ N(µµµ,σσσ2

r).

2. Initialize:Total Weight set WWW = (www1, · · ·,wwwD+1)
For each scalarized function s= 1 to S

Play: each arm i, Initial steps
Observe: (r i)

s

Update: Ns← Ns+1;Ns
i ← Ns

i +1;
(µ̂i)

s;(σ̂i)
s

End
3. Repeat
4. Select a function s uniformly at random
5. Compute the weight set ws← Weight
6. Select the optimal arm (i∗)s that maximizes

the scalarized function f s

7. Observe: reward vector (rrr i∗)
s,(rrr i∗)

s = ([r1
i∗ , · · ·, r

D
i∗]

T)s

8. Update: (µ̂µµi∗)
s;(σ̂σσi∗)

s;Ns
i∗ ← Ns

i∗ +1;Ns← Ns+1
9. Compute: Pareto regret
10. Until L

11. Output: Pareto regret

Figure 1: The scalarized multi-objective multi-armed bandit
(SMOMAB) algorithm.

4 ADAPTIVE WEIGHTS FOR
THE SCALARIZED MOMAB

In this section, we provide different algorithms to
identify the weight setwwws.

Fixed set of weights. The standard algo-
rithm (Das and Dennis, 1997) defines a fixed to-
tal weight setWWW, WWW = (www1, · · · ,wwws, · · · ,wwwS) that is
uniformly random spread sampling in the weighted
space. For example, the bi-objective multi-armed
bandit with number of scalarized function|S|. The
weightw1,s of the scalarized functions in the objec-
tive d, d = 1 is set to 1− s−1

|S|−1 and the weightw2,s of
the scalarized functions in the objectived, d = 2 is
set to 1−w1,s.

Note that, this algorithm performs a uniform sam-
pling in the weight space. However, there is no

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

58

guarantee that the resulting arms will give a uni-
form spread in the objective space. The weight set
wwws, wwws ∈WWW is sequentially ordered, therefore, when
the scalarized MOMAB algorithm (the algorithm in
Figure 1) is stopped prematurely, it will not have sam-
pled all the part of the weight space, possibly leaving
a part of the Pareto frontA∗ undiscovered.
Adaptive Direction. The adaptive algorithm from
(J. Dubois-Lacoste and Stutzle, 2011) takes into ac-
count the shape of the Pareto frontA∗ in order to
obtain a well-spread set of the non-dominated arms.
For a scalarized functions, this algorithm defines a
norm (Euclidean distance) to specify the largest gap
in the coverage of the Pareto frontA∗. The largest gap
is the gap between the maximum norm maxi∈A ||µ̂µµs

i ||
and the minimum norm mini∈A ||µ̂µµs

i || of the estimated
meanµ̂µµs

i of an armi, i ∈ A under the scalarized func-
tion s. For example, the bi-objective multi-armed
bandit with scalarized functions. The adaptive new
weight w1,s of the objectived, d = 1 is perpendic-
ular to the segment defined by the maximum arm
imax, imax = argmaxi∈A ||µ̂µµ

s
i || and the minimum arm

armimin, imin = argmini∈A ||µ̂µµ
s
i || in the objective space,

that is:

w1,s =
µ̂2,s

imax
− µ̂2,s

imin

µ̂2,s
imax
− µ̂2,s

imin
+ µ̂1,s

imin
− µ̂1,s

imax

whereµ̂2,s
imax

and µ̂2,s
imin

are the estimated mean of the
armsimax andimin in the objective 2 under scalarized
functions, respectively . And, ˆµ1,s

imax
andµ̂1,s

imin
are the

estimated mean of the armsimax andimin in the objec-
tive 1 under scalarized functions, respectively. The
new weightw2,s of the second objectived = 2 un-
der scalarized functions is set to 1−w1,s. Note that,
for number of objectivesD > 2, the weightw1 in the
objectived = 1 is calculated by using the estimated
mean of the objectivesd = 1 andd = 2. The weight
w2 in the objectived= 2 is calculated by using the es-
timated mean of the objectivesd = 2 andd = 3, and
so on. While the weightwD in the objectiveD is set
to 1− (w1+ · · ·+wD−1).

This algorithm defines new weights based on the
shape of the Pareto front. Therefore, if the shape of
the Pareto front is irregular, then the new weight will
not discover all the optimal arms in the Pareto front.
This operator adapt the weights of only two objectives
at the time.
Genetic Operators. The scalarized local search al-
gorithm (Drugan, 2013) generates new weights for
scalarized functions using real-coded genetic oper-
ators. The new weights are different from the parent-
ing weights, therefore, it could explore the parts of the
Pareto frontA∗ that are undiscovered.

The mutationoperator, mutates each weight of a
scalarization function independently using a normal
distribution. Therecombinationoperator generates a
new weightwww from two or more scalarized functions,
each scalarized function has a predefined weight set
wwws = (w1, · · · ,wD). The translation recombination
operator translates the main set of scalarized function
S with a normally distributed variable. Therotation
recombinationoperator, considers that the scalarized
functionsSare positioned on a S-dimensional hyper-
sphere. The generated new scalarized functions also
belongs to this hypersphere around the main scalar-
ized functionsS, that is rotated with a small normally
distributed angle. For more details, we refer to (Dru-
gan and Thierens, 2010).

Since the mutation operator is the easiest one to
implement, we will use it in our comparison. Given
the weight setwwws(t) of the scalarized functionsat time
stept, the mutated new set of weightwwws(t+1) at time
stept +1 is calculated as follows;

wwws(t +1) =wwws(t)+ III111

whereIII is a diagonal matrix of sizeD×D with nor-
mally distributed variables and 111 is a vector of size
D with 1 variables. After calculating the new weight
setwwws(t +1), we can either replace the old weight set
wwws(t) with the new weight set, i.e.wwws(t)←wwws(t +1)
(mutation) or at each time stept, we generate new set
of weight that is independent from the previous one
(mutation without replacement).

5 THOMPSON SAMPLING IN
THE SCALARIZED MOMAB
ALGORITHM

In this section, we design an algorithm that frequently
selects the appropriated scalarized function set of
weightswwws, wwws ∈WWW, where the total weight setWWW is
either determined by using standard algorithm, adap-
tive algorithm or genetic algorithm. The appropriate
scalarized function is the one that improves the per-
formance of the algorithm by identifying new Pareto
optimal arms.

In the Bernoulli one-objective, Multi-Armed Ban-
dits (MABs), the reward is a stochastic scalar value,
and there is only one optimal arm. The rewardr i , r i ∼
B(pi) for an armi is either 0, or 1 and generated from
a Bernoulli distributionB with unknown probability
of successpi . The goal of an agent is to minimize the
loss of not pulling the best armi∗ overL time steps.
The loss (or the total regret) isRL = Lp∗−∑L

t=1 pi(t),
where p∗ = maxi=1,··· ,A pi is the probability of suc-

Thompson�Sampling�in�the�Adaptive�Linear�Scalarized�Multi�Objective�Multi�Armed�Bandit

59

cess of the best armi∗, and pi is the probability of
success of the selected armi at time stept. To mini-
mize the total regret, at each time stept, the agent has
to trade-off between selecting the optimal armi∗ (ex-
ploitation) to minimize the regret2 and selecting one
of the non-optimal armi to increase the confidence in
the estimated probability of success ˆpi , p̂i = αi/(αi +βi)

of the armi (exploration). Whereαi is the number of
successes (the number of receiving reward equals 1)
andβi is the number of failures (the number of receiv-
ing reward equals 0) of the armi.
Thompson Sampling Policy. (Thompson, 1933) as-
signs to each armi, i ∈ A a random probability of
selectionPi to trade-off between exploration and ex-
ploitation. The random probability of selectionPi of
each armi is generated from Beta distribution, i.e.
Pi =Beta(αi ,βi), whereαi is the number of successes
andβi is the number of failures of the armi. The ran-
dom probability of selectionPi of an armi depends
on the performance of the arm i, i.e. the unknown
probability of successpi of the armi. It will be high
value if the armi has high probability of successpi
value. With Bayesian priors on the Bernoulli proba-
bility of successpi of each armi, Thompson sampling
assumes initially the number of successes,αi and the
number of failures,βi for each armi is 1. At each
time t, Thompson sampling samples the probability
of selectionPi for each armi, i ∈ A (the probability
that an armi is optimal) from Beta distribution, i.e.
Pi = Beta(αi ,βi). Beta distribution generates random
values, therefore, probably, at time stept, the optimal
arm i∗, i∗ = argmaxi∈A pi has high probability of se-
lectionPi∗ , while at time stept+1 the suboptimal arm
j, j ∈ A, j 6= i∗ has high probability of selectionPj .

Thompson sampling selects the optimal armi∗TS
that has the maximum probability of selectionPi∗TS

,
i.e. i∗TS= argmaxi∈APi and observes the rewardr i∗T S

.
If r i∗T S

= 1, then Thompson sampling updates the num-
ber of successesαi∗T S

= αi∗TS
+1 for the armi∗TS. As

a result, the estimated probability of success ˆpi∗TS
of

the armi∗TS will increase. Ifr i∗T S
= 0, then Thomp-

son sampling updated the number of failuresβi∗TS
=

βi∗TS
+1 for the armi∗. As a result, the estimated prob-

ability of success ˆpi∗TS
of the armi∗TS will decrease.

Since, Thompson sampling is very easy to imple-
ment, we will use it to select the scalarized function
s, s∈ S. We assume that each scalarized functions
has unknown probability of successps and when we
selects, we either receive reward 1 or 0. We call
the algorithm that uses Thompson sampling to select
the weight set ”Adaptive Scalarized Multi-Objective
Multi-Armed Bandit” (adaptive-SMOMAB). Note

2At each time stept, the regret equalsp∗− pi(t).

that, adaptive-SMOMAB uses Thompson sampling to
select the weight set, while scalarized multi-objective
multi-armed bandit (MOMAB) selects uniformly at
random one of the weight setwwws, wwws∈WWW.

The Adaptive-SMOMAB Algorithm. As in the case
of MABs, Thompson sampling uses random of beta
distribution Beta(αs,βs) to assign a probability of se-
lection Ps for each scalarized functions. Whereαs
is the number of successes of the scalarized function
s and βs is the number of failures of the scalarized
function s. We consider that each scalarized func-
tion s has unknown probability of successps and by
playing each scalarized functions, we can estimate
the corresponding probability of success. At each
time stept, we maintain valueVs(t) for each scalar-
ized functions, whereVs(t) = maxi∈A f s((µ̂µµi)

s) is the
value of the optimal armi∗, i∗ = argmaxi∈A f s((µ̂µµi)

s)
under scalarized functions and(µ̂µµi)

s is the estimated
mean vector of the armi under the scalarized func-
tion s. If we select the scalarized functions at time
stept and the value of this scalarized functionVs(t) is
greater or equal than the value at the previous selec-
tion, Vs(t) ≥Vs(t−1), then this scalarized functions
performs well because it has the ability to select the
same optimal arm or to select another optimal arm
that has higher value. Otherwise, the scalarized func-
tion sdoes not perform well.

The pseudocode of the adaptive-SMOMAB algorithm
is given in Figure 2. The linear scalarized-KG across
arms LS1-KG functionf is used to convert the multi-
objective to a single one. The number of scalarized
function is |S|, |S| = D+ 1, whereD is the number
of objectives. The horizon of an experiment isL
steps. The algorithm in Figure 2 plays each arm for
each scalarized functions, Initial plays. The scalar-
ized function set isFFF = (f 1, · · · , f |S|), each scalarized
functions has a corresponding predefined weight set,
wwws = (w1,s, · · · ,wD,s). Ns is the number of times the
scalarized functions is pulled andNs

i is the number
of times the armi under the scalarized functions is
pulled. (rrr i)

s is the reward vector of the pulled armi
under the scalarized functionswhich is drawn from a
normal distributionN(µµµ,σσσ2

r), whereµµµ is the true mean
vector andσσσ2

r is the true variance vector of the reward.
(µ̂µµi)

s and (σ̂σσi)
s are the estimated mean and standard

deviation vectors of the armi under the scalarized
functions, respectively.Vs, Vs = maxi∈A f s((µ̂µµi)

s) is
the value of each scalarized functions after playing
each armi Initial steps, wheref s((µ̂µµi)

s) is the value
of the LS-KG for the armi under scalarized function
s. The number of successesαs, and the number of
failuresβs for each scalarized functions are set to 1
as (Thompson, 1933), therefore, the estimated proba-
bility p̂s, p̂s = αs/(αs+βs) of success is 0.5. The prob-

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

60

1. Input: Horizon of an experiment L;number
of arms |A|;number of objectives D;number of
scalarized functions |S|= D+1;reward vector
rrr ∼ N(µµµ,σσσ2

r).

2. Initialize:Total wight set WWW = (www1, · · · ,wwwD+1)
For each scalarized function s= 1 to |S|

Play: each arm i, Initial steps
Observe: (rrr i)

s

Update: Ns← Ns+1;Ns
i ← Ns

i +1
(µ̂µµi)

s;(σ̂σσi)
s

Compute: Vs(t) = max
1≤ i≤ A

f s((µ̂̂µ̂µi)
s)

Set: αs = 1; βs = 1; p̂s = 0.5; Ps =
1
|S|

End

3. Repeat
4. For each scalarized function s= 1, · · · ,S
5. Sample Ps from Beta(αs,βs)
6. End for
7. s∗ = argmaxs Ps

8. Compute: the new weight set wwws∗ ← Weight
9. Select: the optimal arm i∗ that maximizes

scalarized function f s∗ that has
the new weight set wwws∗

10. Compute: Vs∗ (t) = max
1≤ i≤ A

f s∗((µ̂̂µ̂µi)
s∗)

11. If Vs∗ (t) ≥ Vs∗ (t−1)
12. αs∗ = αs∗ +1
13. Else
14. βs∗ = βs∗ +1
15. End
16. Vs∗ (t−1) ← Vs∗ (t)
17. Observe: reward vector (rrr i∗)

s∗ = ([r1
i∗ , · · ·, r

D
i∗]

T)s∗

18. Update: (µ̂µµi∗)
s∗; (σ̂σσi∗)

s∗;
Ns∗

i∗ ← Ns∗
i∗ +1; Ns∗ ← Ns∗ +1

19. Compute: Pareto regret

20. Until L

21. Output: Pareto regret

Figure 2: Adaptive Scalarized MOMAB.

ability of selectionPs each scalarized functions is 1
|S|

(step: 2).
After initial playing, the algorithm computes the

probability of selectionPs of each scalarized function
s, the probability of selectionPs is sampled from beta
distribution Beta(αs,βs)(step: 4). The algorithm se-
lects the optimal scalarized functions∗, the one that
has a max probability of success (step: 7). The al-
gorithm determines the weight setwwws∗ for the optimal
scalarized functions∗ (step: 8). The weight setwwws∗

is determined either by using adaptive algorithm, ge-
netic algorithm or standard algorithm, Section 4. The
algorithm selects the optimal armi∗ under the optimal
scalarized functions (step: 9) and computes the value
of the optimal scalarized functions∗ (step: 10) which
is the value of the optimal armi∗. If the valueVs∗(t)
of the optimal scalarized functions∗ at time stept, is

greater or equal than the value of the of the optimal
scalarized functions∗ at time stept−1, then the opti-
mal scalarized functions∗ performs well. The number
of successesαs∗ is increased. Other wise, the number
of failuresβs∗ is increased (steps: 11-15). Then, the
algorithm updates the valueVs∗ of the optimal scalar-
ized functions∗ (step: 16). The algorithm simulates
the optimal armi∗ of the optimal scalarized function
s∗, observes the corresponding reward vector(rrr i∗)

s∗

and updates the estimated mean vector(µ̂̂µ̂µi∗)
s∗ , the es-

timated standard deviation vector(σ̂̂σ̂σi∗)
s∗ of the arm

i∗ and updates the numberNs∗
i∗ of the selected arm

and the number of the pulled scalarized functionNs∗

(steps: 17-18). Finally, the algorithm computes the
Pareto regret (step: 19). This procedure is repeated
until the end of playingL steps.

Note that, if the adaptive-SMOMAB algorithm
uses the standard algorithm to set the weights, then
the total weight setWWW = (www1, · · · ,wwwS) is fixed un-
til the end of playingL steps. However, if the
adaptive-SMOMAB algorithm uses the adaptive or
the genetic algorithm, then the total weight setWWW =
(www1, · · · ,wwwS) will change at each time step. The
adaptive-SMOMAB algorithm uses a predefined to-
tal weight setWWW till the end of playingInitial steps,
then at each time step the adaptive and the genetic al-
gorithms generate new weights.

6 EXPERIMENTS

In this section, we firstly compare the performance of
the adaptive scalarized multi-objective, multi-armed
bandit (adaptive-SMOMAB) algorithm, the algorithm
in Figure 2 and the performance of the scalarized
multi-objective multi-armed bandit (SMOMAB) al-
gorithm, the algorithm in Figure 1. We use the
genetic, the adaptive, and the standard algorithms,
Section 4 to set the weight setwwws for each linear
scalarized knowledge gradient across arms (LS1-KG)
s. Secondly, we experimentally compare the stan-
dard, the adaptive and the genetic algorithms, using
the adaptive-SMOMAB algorithm. The performance
measures are:

1. The Pareto regret, Section 2 at each time stept
which is the average ofM experiments.

2. The cumulative Pareto regret, Section 2 at each
time stept which is the average ofM experiments.

The number of experimentsM is 1000. The hori-
zon of each experimentL is 1000. The reward vectors
rrr i of each armi are drawn from corresponding normal
distributionN(µµµi ,σσσ2

i,r) whereµµµi = [µ1
i , · · · ,µ

D
i]

T is the
true mean vector andσσσi,r = [σ1

i,r , · · · ,σD
i,r]

T is the true

Thompson�Sampling�in�the�Adaptive�Linear�Scalarized�Multi�Objective�Multi�Armed�Bandit

61

standard deviation vector of the reward of the armi.
The true means and the true standard deviations of
arms are unknown parameters to the agent. The LS1-
KG needs the estimated varianceσ̂σσ2

i for each armi,
therefore, each arm is played initially 2 times which
is the minimum number to estimate the variance.

At each time stept, the mutation operator mu-
tates the weight setwwws(t) of each scalarized function
s at time stept independently using a normal distri-
butionN(µ,σ2) to generate new weight setwwws(t +1),
we set the meanµ to 0 and the varianceσ2 to 0.05
as (Drugan, 2013). We can either replace the old
weight wwws(t) set with the new weight setwwws(t + 1),
i.e. wwws(t)←wwws(t +1) or at each time stept, we gen-
erate new set of weight that is independent from the
previous one. We compare the two different setting
and we find out that the replacement setting performs
better, therefore, we use this in our comparison.

6.1 Bi-Objective

Example 1. We used the same example in (Dru-
gan and Nowe, 2013) because it simple to understand
and contains non-convex mean vector set. The num-
ber of arms|A| equals 6, the number of objectivesD
equals 2. The standard deviation for arms in each
objective is 0.1. The true mean set vector is(µµµ1 =
[0.55,0.5]T, µµµ2 = [0.53,0.51]T, µµµ3 = [0.52,0.54]T,
µµµ4 = [0.5,0.57]T,µµµ5 = [0.51,0.51]T,µµµ6 = [0.5,0.5]T).
Note that, the Pareto front isA∗ = (a∗1,a

∗
2,a
∗
3,a
∗
4),

wherea∗i refers to the optimal armi∗. The subopti-
mal a5 is not dominated by the two optimal armsa∗1
anda∗4, buta∗2 anda∗3 dominatesa5 while a6 is domi-
nated by all the other mean vectors. Figure 3 shows a
set of 2-objective true mean with a non-convex set.

First, we compare the performance of the
SMOMAB and adaptive-SMOMAB algorithms. We
use either the standard algorithm, the adaptive algo-
rithm, or the genetic algorithm to set the weights.
Figure 4 gives the comparison of the SMOMAB and
adaptive-SMOMAB algorithms using the standard,
the adaptive, and the genetic algorithms. The stan-
dard deviationσd

i,r of reward for each armi in each
objectived is set to 0.1. The x-axis gives the time
step. The y-axis is the cumulative Pareto regret which
is the average ofM experiments at each time stept.
Figure 4 shows that the SMOMAB algorithm per-
forms better than the adaptive-SMOMAB algorithm
using the adaptive, and the genetic algorithms, since
the cumulative Pareto regret is decreased. While, the
adaptive-SMOMAB algorithm performs slightly bet-
ter than the SMOMAB algorithm using the standard
algorithm.

Second, we compare the performance of the stan-

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Objective
1

O
bj

ec
tiv

e 2

mean of optimal arm
mean of non optimal armµ

1
*

µ
2
*

µ
3
*

µ
4
*

µ
5

µ
6

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Objective
1

O
bj

ec
tiv

e 2

mean of optimal arm
mean of non optimal arm

µ
10
*

µ
1
*

µ
2
*

µ
3
*

µ
5
*

µ
6
*

µ
4
*

µ
7
*µ

8
*

µ
9
*

µ
13

µ
15

µ
16

µ
20

µ
19

µ
18

µ
12

µ
11

µ
14 µ

17

Figure 3: Non-convex and convex mean vector sets with
bi-objective. Upper figure shows a non-convex set with 6-
armed. Lower figure shows a convex set with 20-armed.

dard, the adaptive, and the genetic algorithms using
the adaptive-SMOMAB algorithm. Figure 5 gives the
cumulative Pareto regret. The x-axis is the time step.
The y-axis is the cumulative Pareto regret which is the
average ofM experiments at each time stept. Figure 5
shows that the standard algorithm is the best algo-
rithm and the adaptive algorithm is the worst one. The
mutation algorithm performs better than the adaptive
algorithm and slightly worse than the standard algo-
rithm.

In Example 1, the Pareto frontA∗ contains optimal
arms that are far from the non-optimal arms accord-
ing to the Euclidean distance and the number of the
optimal arms|A∗|, |A∗|= 4 is larger than the number
of the non-optimal arms which is equal 2. Therefore,
the SMOMAB algorithm almost performs better than
the adaptive-SMOMAB because it selects uniformly
at random one of the scalarized function. And, the
standard algorithm performs better than the adaptive
and the genetic algorithms because they generate new
weights that are nearest to each other to explore more
the optimal arms.

6.2 Triple-Objective

Example 2. With number of objectivesD equals
2, number of arms|A| equals 20 and convex
Pareto mean set,(µµµ1 = [.56, .491]T,µµµ2 = [.55,
.51]T ,µµµ3 = [.54, .527]T,µµµ4 = [.535, .535]T,µµµ5 =
[.525, .555]T,µµµ6 = [.523, .557]T,µµµ7 = [.515, .56]T,

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

62

0 50 100 150 200 250

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

x 10
−3

Time step

C
um

ul
at

iv
e

P
ar

et
o

R
eg

re
t

adaptive−SMOMAB
SMOMAB

a. Using the standard algorithm

0 200 400 600 800 1000
0

1

2

3

4

5

6

7
x 10

−3

Time step

C
um

ul
at

iv
e

P
ar

et
o

R
eg

re
t

adaptive−SMOMAB
SMOMAB

b. Using the adaptive algorithm

0 200 400 600 800 1000
0

1

2

3

4

5

6

7
x 10

−3

Time step

C
um

ul
at

iv
e

P
ar

et
o

R
eg

re
t

adaptive−SMOMAB
SMOMAB

c. Using the genetic algorithm

Figure 4: Performance comparison of the SMOMAB
algorithm with the adaptive-SMOMAB algorithm on 2-
objective, 6-armed problem. The weights are set using the
standard algorithm in figurea, using the adaptive algorithm
in figureb, and using the genetic algorithm in figurec.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7
x 10

−3

Time step

C
um

ul
at

iv
e

P
ar

et
o

R
eg

re
t

Standard
Adaptive
Mutation

Figure 5: Performance comparison of the standard, the
adaptive, and the genetic algorithms on 2-objective, 6-
armed problem using the adaptive-SMOMAB algorithm.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9
x 10

−3

Time step

C
um

ul
at

iv
e

P
ar

et
o

R
eg

re
t

adaptive−SMOMAB
SMOMAB

a. Using the adaptive algorithm

Figure 6: Performance comparison of the SMOMAB
algorithm with the adaptive-SMOMAB algorithm on 3-
objective, 20-armed problem. The weights are set using the
adaptive algorithm.

µµµ8 = [.505, .567]T,µµµ9 = [.5, .57]T ,µµµ10 = [.497,
.572]T ,µµµ11 = [.498, .567]T,µµµ12 = [.501, .56]T,µµµ13 =
[.505, .495]T,µµµ14 = [.508, .555]T,µµµ15 = [.51, .52]T ,
µµµ16 = [.515, .525]T,µµµ17 = [.52, .55]T ,µµµ18 =
[.53, .53]T,µµµ19 = [.54, .52]T ,µµµ20 = [.54, .51]T),
the standard deviation for arms in each objective is
set to 0.1. The Pareto frontA∗ contains 10 optimal
arms, A∗ = (a∗1,a

∗
2,a
∗
3,a
∗
4,a
∗
5,a
∗
6,a
∗
7,a
∗
8,a
∗
9,a
∗
10) (S.

Q. Yahyaa and Manderick, 2014c). Note that, the
number of the optimal arms|A∗|, |A∗| = 10 is equal
to the number of non-optimal arms and the optimal
arms are close to the non-optimal arm according
to the Euclidean distance. Figure 3 shows a set of
2-objective convex true mean vector set. We add
extra objective to Example 2, resulting in 3-objective,
20-armed bandit problem. The Pareto frontA∗ still
contains 10 optimal arms and the optimal arms are
closer to non-optimal arms compared to Example 2
according to the Euclidean distance.

First, we compare the performance of the
SMOMAB and adaptive-SMOMAB algorithms. We
use either the standard algorithm, the adaptive al-
gorithm, or the genetic algorithm to determine the
weight set. The adaptive-SMOMAB algorithm per-
forms better than the SMOMAB algorithm for the
standard, adaptive and genetic algorithms. Figure 6
gives the comparison of the SMOMAB and adaptive-
SMOMAB algorithms using the adaptive algorithm.
Figure 6 shows that the adaptive-SMOMAB algo-
rithm performs better than the SMOMAB algorithm
using the adaptive algorithm to set the weight set.

Second, we compare the performance of the stan-
dard, the adaptive, and the genetic algorithms using
the adaptive-SMOMAB algorithm. Figure 7 gives
the cumulative Pareto regret. Figure 7 shows that the
standard algorithm is the worst algorithm. The adap-
tive algorithm is the best one and performs slightly
better than the mutation algorithm. The mutation al-

Thompson�Sampling�in�the�Adaptive�Linear�Scalarized�Multi�Objective�Multi�Armed�Bandit

63

0 100 200 300 400 500
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
x 10

−3

Time step

C
um

ul
at

iv
e

P
ar

et
o

R
eg

re
t

Standard
Adaptive
Mutation

Figure 7: Performance comparison of the standard, the
adaptive, and the genetic algorithms on 3-objective, 20-
armed problem using the adaptive-SMOMAB algorithm.

gorithm performs better than the standard algorithm
and worse than the adaptive algorithm.

From the above experiment, we see that when
we increase the number of objectives, the adaptive-
SMOMAB algorithm performs better than the
SMOMAB algorithm. Also, we see that the adap-
tive and the genetic algorithms perform better than the
standard algorithm.

6.3 5-Objective

We add extra 2 objectives to Example 2, resulting
in 5-objective, 20-armed bandit problem, leaving the
Pareto frontA∗ unchanged. The optimal arms in the
Pareto frontA∗ are still closer to the non-optimal arms
according to the Euclidean distance. The standard de-
viation for arms in each objective is set to 0.01.

First, we compare the performance of the
SMOMAB and adaptive-SMOMAB algorithms. We
use either the standard algorithm, the adaptive algo-
rithm, or the genetic algorithm to set the weights. The
adaptive-SMOMAB algorithm performs better than
the SMOMAB algorithm for all the weight setting.
Figure 8 gives the comparison of the SMOMAB and
adaptive-SMOMAB algorithms using the standard al-
gorithm. Figure 8 shows that the adaptive-SMOMAB
algorithm performs better than the SMOMAB algo-
rithm using the standard algorithm.

Second, we compare the performance of the stan-
dard, the adaptive, and the genetic algorithms using
the adaptive-SMOMAB algorithm. Figure 9 gives
the cumulative Pareto regret. Figure 9 shows that the
standard algorithm is the worst algorithm and the mu-
tation algorithm is the best algorithm. The adaptive
algorithm performs better than the standard algorithm
and worse than the mutation algorithm.

From the above experiment, we see that when we
increase the number of objectives, i.e.D > 3 the per-
formance of the adaptive-SMOMAB algorithm is in-
creased. We also see the performance of the genetic

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9
x 10

−3

Time step

C
um

ul
at

iv
e

P
ar

et
o

R
eg

re
t

adaptive−SMOMAB
SMOMAB

a. Using the adaptive algorithm

Figure 8: Performance comparison of the SMOMAB
algorithm with the adaptive-SMOMAB algorithm on 5-
objective, 20-armed problem. The weights are set using the
adaptive algorithm.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

x 10
−3

Time step

C
um

ul
at

iv
e

P
ar

et
o

R
eg

re
t

Standard
Adaptive
Mutation

Figure 9: Performance comparison of the standard, the
adaptive, and the genetic algorithms on 5-objective, 20-
armed problem using the adaptive-SMOMAB algorithm.

and adaptive algorithms are increased, where the cu-
mulative Pareto regret is decreased.
Discussion. from the above experiments, we see
that with minimum number of objectivesD, D = 2,
the SMOMAB algorithm performs better than the
adaptive-SMOMAB algorithm. While, for number of
objectivesD, D > 2 larger than 2, the performance
of the adaptive-SMOMAB algorithm is better than
the performance of the SMOMAB algorithm. As the
number of objectives is increased, the performance of
the adaptive-SMOMAB algorithm increases. We also
see that, for small number of objectivesD, D = 2,
the standard algorithm performs better than the adap-
tive and the genetic algorithms using the adaptive-
SMOMAB algorithm. While as the number of ob-
jectives is increased, the adaptive and genetic algo-
rithms perform better than the standard algorithm us-
ing the adaptive-SMOMAB algorithm. Where, the
adaptive algorithm performs better than the genetic
algorithm for number of objectives equals 3 and the
genetic algorithm performs better than the adaptive
algorithm for number of objectives equals 5. The in-
tuition is that for small number of objectivesD, D= 2
and small number of arms|A|, |A|= 6, the small num-

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

64

ber of scalarized functionsS, |S|= D+1 was able to
identify almost all the optimal arm in the Pareto front
A∗. While, for large number of objectivesD, D ≥ 2
and large number of arms|A|, |A| = 20, the adaptive
and genetic algorithms generate new weights, and the
new weights explore all the optimal arms in the Pareto
front A∗. We also see that the figures have a flat per-
formance and this is because of the calculation of the
Pareto regret. Pareto regret adds minimum distance
(virtual distance) to the selected suboptimal arm to
create an optimal arm, therefore the added distance
will be the same if the suboptimal arms are close to
each other.

7 CONCLUSIONS

We presented multi-objective, multi-armed bandit
(MOMAB) problem and the regret measures in the
MOMAB. We presented the linear scalarized function
and the linear scalarized-KG that transform the multi-
objective problem into a single problem by summing
the weighted objectives to find the optimal arms. Usu-
ally, the scalarized multi-objective (SMOMAB) algo-
rithm selects uniformly at random the scalarized func-
tion s. We proposed to use techniques from the multi-
objective optimization in the SMOMAB algorithm to
adapt the weights online. We use the genetic opera-
tors to generate new weights in the proximity of the
current weight sets, and we adapt the weights to be
perpendicular on the set of Pareto optimal solutions.
We propose the adaptive scalarized multi-armed ban-
dit (adaptive-SMOMAB) algorithm that uses Thomp-
son sampling policy to select the scalarizeds. We
experimentally compared the SMOMAB algorithm
and the adaptive-SMOMAB algorithm using the pro-
posed algorithms: the fixed weights, the adaptive
weights, and the genetic weights. We conclude that
when the number of objectiveD is increasedD >
2, the adaptive-SMOMAB performs better than the
SMOMAB algorithm. The adaptive and the mutation
algorithms perform better than the standard algorithm
(fixed weights).

REFERENCES

Das, I. and Dennis, J. E. (1997). A closer look at drawbacks
of minimizing weighted sums of objectives for pareto
set generation in multicriteria optimization problems.
Structural Optimization, 14(1):63–69.

Drugan, M. (2013). Sets of interacting scalarization func-
tions in local search for multi-objective combinatorial
optimization problems. InIEEE Symposium Series on
Computational Intelligence (IEEE SSCI).

Drugan, M. and Nowe, A. (2013). Designing multi-
objective multi-armed bandits algorithms: A study. In
Proceedings of the International Joint Conference on
Neural Networks (IJCNN).

Drugan, M. and Thierens, D. (2010). Geometrical recombi-
nation operators for real-coded evolutionary mcmcs.
Evolutionary Computation, 18(2):157–198.

Eichfelder, G. (2008).Adaptive Scalarization Methods in
Multiobjective Optimization. Springer-Verlag Berlin
Heidelberg, 1st edition.

I. O. Ryzhov, W. P. and Frazier, P. (2011). The knowledge-
gradient policy for a general class of online learning
problems.Operation Research.

J. Dubois-Lacoste, M. L.-I. and Stutzle, T. (2011). Improv-
ing the anytime behavior of two-phase local search. In
Annals of Mathematics and Artificial Intelligence.

Powell, W. B. (2007). Approximate Dynamic Program-
ming: Solving the Curses of Dimensionality. John
Wiley and Sons, New York, USA, 1st edition.

S. Q. Yahyaa, M. D. and Manderick, B. (2014a). Empir-
ical exploration vs exploitation study in the scalar-
ized multi-objective multi-armed bandit problem. In
International Joint Conference on Neural Networks
(IJCNN).

S. Q. Yahyaa, M. D. and Manderick, B. (2014b). Knowl-
edge gradient for multi-objective multi-armed bandit
algorithms. InInternational Conference on Agents
and Artificial Intelligence (ICAART), France. Inter-
national Conference on Agents and Artificial Intelli-
gence (ICAART).

S. Q. Yahyaa, M. D. and Manderick, B. (2014c). Multi-
variate normal distribution based multi-armed bandits
pareto algorithm. Inthe European Conference on Ma-
chine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML/PKDD).

Thompson, W. R. (1933). On the likelihood that one un-
known probability exceeds another in view of the evi-
dence of two samples. InBiometrika.

Zitzler, E. and et al. (2002). Performance assessment
of multiobjective optimizers: An analysis and re-
view. IEEE Transactions on Evolutionary Computa-
tion, 7:117–132.

Thompson�Sampling�in�the�Adaptive�Linear�Scalarized�Multi�Objective�Multi�Armed�Bandit

65

