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Abstract: Many complex and high dimensional real-world classification problems require a carefully chosen set of fea-
tures, algorithms and hyperparameters to achieve the desired generalization performance. The choice of a
suitable feature representation has a great effect on the prediction performance. Manifold learning techniques
— like PCA, Isomap, Local Linear Embedding (LLE) or Autoencoders — are able to learn a better suitable
representation automatically. However, the performance of a manifold learner heavily depends on the dataset.
This paper presents a novel automatic optimization framework that incorporates multiple manifold learning
algorithms in a holistic classification pipeline together with feature selection and multiple classifiers with arbi-
trary hyperparameters. The highly combinatorial optimization problem is solved efficiently using evolutionary
algorithms. Additionally, a multi-pipeline classifier based on the optimization trajectory is presented. The
evaluation on several datasets shows that the proposed framework outperforms the Auto-WEKA framework
in terms of generalization and optimization speed in many cases.

1 INTRODUCTION of low-level data. An extensive overview of rep-

resentation learning can be found in (Bengio et al.,
2013). Manifold learning is one variant of learning

a simpler, low-dimensional representation from high-
dimensional data to circumvent the curse of dimen-
sionality (Jain et al., 2000). A great variety of such
algorithms has been introduced, but their individual

that perform well on a large amount of tasks. How- performance is highly dependent on the learning task

ever, in practice the development of a classification (see sechoh 3'3)'_ o ]
system with high accuracy demands requires a lot of ~ Automatic optimization frameworks are designed
expertise. Numerous challenges occur in real-world t0 help the developer of machine learning systems to
applications, like high-dimensional and noisy feature find an optimized combination of features, classifiers
data, too few training samples or suboptimal hyperpa- @nd hyperparameters. The main contribution of this
rameter$. Furthermore, there is no perfect machine Paper is the incorporation of a portfolio of manifold

learning algorithm that performs best on all datasets l€arning algorithms into a holistic, automatic opti-
which is also known as the no-free-lunch theorem Mmization framework together with feature selection,

(Wolpert, 1996). multiple classifiers and hyperparameter optimization.
The feature representation has been recognized a€\S the interplay between features, manifold learning,
crucial for the performance of any machine learn- Classifiers and hyperparameters is complex, suitable
ing algorithm. Many problems require the time- optimization a_nd vahdatlo_n methods_ are proposed_to
consuming development of task-specific features to prevent negative effects like overfitting. The goal is

achieve the desired accuracy. A recently evolving that all these challenges are handled automatically so
field is representation learning with the goal of au- that even non-experts are able to use the framework.

tomatic construction of better suitable features out  Additionally, the optimization trajectory is ex-
ploited for a multi-pipeline classifier as well as graph-

IHyperparameters control the learning algorithm itself — ical statistics to get deep insights into the classifica-
e.g. the number of hidden layers in a neural network. tion problem itself. We show that our framework is

The supervised classification task plays an important
role in applications in which a model from input data
to class labels should be learned using training data.
Several powerful classifiers have been established like
Support Vector Machines (SVM) or random forests
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able to outperform other popular optimization frame- rameter optimization. Their work is limited regarding

work such as Auto-WEKA (Thornton et al., 2013) the dimension reduction as only the linear Principal

in terms of classification accuracy and optimization Component Analysis (Jain et al., 2000) is considered

speed. and grid search turned out to be relatively slow and
ineffective for high-dimensional datasets.

2 AUTOMATIC OPTIMIZATION
FRAMEWORKS 3 REPRESENTATION LEARNING
WITH MANIFOLDS
The supervised classification task is defined as fol-
lows. A set of features or measurements is derived The field of representation learning studies the prop-

from the instances that should be classified mlbs- erties of good representations and algorithms for the
crete classe8 = {wy,wy,...,w}. These features are  automatic construction of better features. Manifold
aggregated to a feature vectore R% with di, di- learning is one form of automatic feature construc-

mensions. In order to train a classifier, a ground truth tion that is used for dimension reduction or visualiza-
training dataset has to be obtained. This training set istion of data. The concept of reducing the data dimen-
defined ad = {(x;,y;)} with 1 <i < minstance fea-  sionality appears to be the opposite of kernel meth-
ture vectors with corresponding class labgls C. ods that project into higher dimensional spaces to be
The goal is to find a classifier function or model that able to use linear classifiers. However, the usefulness
predicts the correct class labels of previously unseenof dimension reduction for machine learning is well
instance feature vectofgas{X) =y € C. reported, e.g. in (Kim et al., 2005) and (Fukumizu

Automatic machine learning-optimization meth- et al., 2004). Lower dimensional feature spaces also
ods try to find a suitable model functiofyass and circumvent the curse of dimensionality. Interestingly,
corresponding hyperparameters for a given problem some manifold learning algorithms use kernel meth-
defined by the training dataset The goal is the max-  ods internally (see section 3.2).
imization of the algorithm’s generalization for unseen
instances. 3.1 Manifold Learning Definition

The problem of hyperparameter optimization is
well discussed in many papers, e.g. in (Bengio, 2000), panifold learning describes a family of linear and
(Bergstra et al., 2011), (Bergstra and Bengio, 2012) poplinear dimensionality reduction algorithms that
to name a few. Usually, search-based approachesynayze the topological properties of the feature data
are used that evaluate different system configurationsgisripytion to build a transformation function that
and hyperparameters with the goal to optimize the empeds feature data into a low-dimensional space. In
classification accuracy. Usually methods like cross- 5rqerto use manifold learning for real-world applica-
validation are used to estimate the generalization of a(jons the following definition from (Van der Maaten
chosen algorithm (Jain etal., 2000). et al., 2009) is used. A set af D-dimensional data

Feature selection is one approach to dimension re-y,actors in form of an x D matrix X is given. The as-
duction with the strategy to remove irrelevant dimen- g, mption is that the datapointsin X lay on a mani-
sions to overcome disturbing effects due to the peak-fo|q with an intrinsic dimensionalitg, usuallyd < D
ing phenomenon (Jain et al., 2000). Some frame- yhich is embedded in thB-dimensional space. The
works, like (Huang and Wang, 2006), (Huang and manifold maybe non-Riemannian — it may be subdi-
Chang, 2007) and/berg and Wessberg, 2007), in- yided into several disconnected submanifolds. The
volve feature selection and hyperparameter optimiza- g4 is to find a feature transform function that em-

tion using evolutionary algorithms (see section 5.2).  peds sample vectors into the lower dimensional vector
Interestingly, there are only a few publications space using

about more holistic frameworks that contain all afore- g — ) d

. ; Xi = frans(Xi) € R (1)
mentioned components. The problem of combined o ) )
feature selection, classifier concept selection and hy-Without losing important information about the geo-
perparameter optimization is addressed in the Auto- Metrical structure and distribution.
WEKA framework (Thornton et al., 2013) using a )
Bayesian approach. Recently, presented in (Biirger3.2 Algorithms
et al., 2014), an optimization framework based on
heuristic grid search involves feature selection, di- There is a large number of mostly unsupervised tech-
mension reduction, multiple classifiers and hyperpa- niques (which do not make use of the labg)shat fit
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so that new instances can be embedded into the lower
dimensional feature space in a reasonable way. A di-
rect extension is available only for parametric meth-
ods (Van der Maaten et al., 2009), e.g. PCA and Au-
toencoders. For spectral methods, like LLE, Isomap
or Laplacian Eigenmaps, the Nystrom theorem (Ben-
gio et al., 2003) can be used for an extension. In the
following, the out-of-sample functiolf a manifold
learner refers to either the built-in extension or the
Nystrom extension method, depending on the avail-
ability.

And third, the intrinsic dimensionalitg of the
manifold is not known. In real-world classification
applications, an optimal target dimensionality has to
be estimated and depends on the dataset, the mani-
fold learning algorithm and the classifier. Note that
this target dimensionality is not limited to 2 or 3 as it

2 082
024 _og4 dt

is for visualization purposes.
(c) lonosphere, Autoencoder (d) lonosphere, Isomap

Figure 1: Projection into 3 dimensions of the australian and
ionosphere datasets (Bache and Lichman, 2013) using Au-

toencoders and Isomap. Representations (a) and (d) appea4 HOLISTIC CLASSIFICATION

to be more suitable for the classification tasks than the oth- PIPELINE
ers.

In order to include feature selection, manifold learn-
ing techniques and classifiers into one holistic frame-
work a classification pipeline structure with 4 ele-
ments is proposed which is depicted in figure 1. Gen-
erally, the processing works like the pipes and filters
pattern (Buschmann et al., 1996) while the pipeline
has two modes: the training mode in which the train-
ing dataseT is needed and the classification mode in
which new samples can be classified. The idea is that
the dimensionalities

din > dFeatSeIZ dFeatTransZ dLabel =1 (2)

of the feature vectors are typically decreasing while
they pass through the pipeline. The pipeline’s config-
uration® describes a set of important hyperparame-
When manifold learning should be used for classifi- t€rs Which have to be optimized for each learning task
cation applications there are three issues to consider (S€€ Section 5). The elements of the pipeline and their

First, many manifold learning algorithms have been contributions t are described in the following.

designed for artificial and noise-free data and fail ]

to produce reasonable models for real data (Van der4.1 Feature Scaling Element

Maaten et al., 2009). The performance of a spe-

cific method heavily depends on the dataset. Fig- The first element of the pipeline is the feature scaling

ure 1 shows some example projections with Autoen- element. Machine learning algorithms usually per-

coders (Hinton and Salakhutdinov, 2006) and Isomap form better when the numeric features have a normal-

(Tenenbaum et al., 2000) on two different datasets. ized value domain like e.d0, 1] which is used in this

The distributions of the projections and the usefulness framework. In training mode, the value ranges of each

for the classification task are fairly different. This component ofT are calculated. The minimum and

makes it necessary to select a suitable algorithm for maximum value of théth feature vector component

each task. are denoted asinVal andmaxVa|, respectively. In
Secondly, the out-of-sample extension is required classification mode, each component of new vectors

to the definition and are potentially usable for dimen-
sion reduction. An overview can be found in (Van der
Maaten et al., 2009) and (Ma and Fu, 2011). Ex-
amples of linear transforms are e.g. Principal Com-
ponent Analysis (PCA) or Linear Discriminant Anal-
ysis (LDA). Nonlinear techniques are e.g. Isomap,
Kernel-PCA or Local Linear Embedding (LLE). Par-
ticularly interesting are also Autoencoders, a special
form of neural networks that are also involved for the
training process in deep learning networks (Ngiam
et al., 2011). A list of manifold learning algorithms
with references can be found in the appendix.

3.3 Challenges for Classification
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Figure 2: Classifier concepts and corresponding hyperpesrgrids and ranges.

Table 1: Classification pipeline structure to classify negtances when the configuration is known.

Classifiers discrete parameter grid continuous parameter ranges
Naive Bayes - -
C-SVM linear kernel C:{10%,10°,1¢°} C:[10°2,107
C-SVM Gaussian kernel C:{102,10°,10°},y: {10410 1,10} | C:[102,10%,y: [10°°,1(7]
k nearest neighbors (kNN) k:{1,3,10}, metric: {Euclidean, Maha-| k: [1,20], metric: {Euclidean, Ma-
lan., Cityblock, Chebychev halan., Cityblock, Chebychév
Multifayer Perceptron (MLP) hidden layers{0, 1,2}, hidden layersJ0, 3],
neurons per layer2,5,10} neurons per layeif1,10]
Extreme Learning Machine (ELM)| neurons per layer10,20,50} neurons per layer1,100
Random Forest number trees{10,20,50} number treesf1,50]
is transformed using The out-of-sample function of a feature transform
g (see section 3.3) is crucial for the generalization per-
X| —minVal al TV :
X| 3) formance of the whole pipeline. Therefore, it has to

maxVaj - minval be included into the evaluation of the optimization
Note that this feature scaling doesn't require any hy- process and is described in section 5.1.

perparameters. In classification mode, the chosen feature trans-
form model freattrans IS trained using the training
4.2 Feature Selection Element datasef . New samples are embedded into the lower-

dimensional space using the out-of-sample function
The second element is the feature selection elementand passed to the last pipeline element.
which contains the first dimension reduction. It re-
moves irrelevant and noisy feature dimensions that 4.4 Classifier Element
could disturb any following algorithm. In training
mode, it selects a subSBfearsei€ P({1,2,...,din})\ 0 The last element is the classifier element which uses a
of features. Feature selection is a difficult problem as classifier functionfc|assifier € Sclassifiers The frame-
0(2%) possible combinations exist and it has a great work currently contains 7 “popular” multiclass ca-
impact on the classification performance. Therefore, pable classifier concepts which are listed in table
it is included into the pipeline configuratidh In 2. References to these concepts can be found e.g.
classification mode, the feature selection is performedin (Bishop and Nasrabadi, 2006) and (Huang et al.,
on vectors coming from the first element and the in- 2006). Each classifier can have an arbitrary number

put dimensionality is decreased fraif t0 dreatsel= of hyperparameters which are tuned during the opti-

|Sreatset- mization phase (see section 5). Note that each clas-
sifier conceptfciassitier as a different set of hyper-

4.3 Feature Transform Element parameterSparamd feiassitier) @and both, the classifier

and its hyperparameters, are included ifito
The third element is the feature transform element  In training mode, the chosen classifier is trained
which realizes the second dimension reduction with using the data processed by all previous pipeline ele-
manifold learning. The element contains a set of pos- ments while the labels stay the same as in the training
sible transformationSceartrans Currently we use a  SetT. In classification mode, the classifier classifies
set of 16 functions provided by (Van der Maaten, the incoming vectors.
2014) which are listed in the appendix. We also in-
clude the identity function (no transform) in the set
as for some tasks, no feature transform might lead to
the best solution. The choice of a methipdattrans€
SeatTrans@nd the corresponding target dimensionality
dreatTransiS included into the pipeline configuratién
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5 OPTIMIZATION OF THE | Thrain. | Tyatia |
PIPELINE CONFIGURATION ¥ —
. . ) . ) . . Learn feature | Transformation
The pipeline configuration finally contains all impor- transform ” frrans
tant hyperparameters, namely *—l *
0 = (Sreatset freatTrans OreatTrans | Tirain. | Thatia |
fCIassifier, &arams{ fCIassifier)) (4) * *
which have to be optimized for each learning task. claaifier [ Cpomer
First, a suitable evaluation metric has to be involved —

to estimate the predictive performance of a pipeline
configuration. Secondly, the highly combinatorial |
search problem to find the best configuration has to Figure 3: Evaluation of théth cross-validation set to es-

be solved. timate the generalization of the feature transform and the
classifier at the same time.

Evaluation |

5.1 Optimization Target Function
The basic idea is to code the classification pipeline
The evaluation metric of a configuratidhplays a configuration® (see equation 4) into a suitable ge-
central role as the generalization of the whole pipeline netic representation for the evolutionary operators in
needs to be evaluated. A common way to minimize ES strategies, namely random generation of individ-
the risk of overfitting isk-fold cross-validation (Jain  uals, selection, recombination and mutation. In ES
et al., 2000). The feature transform element with its parameters can conveniently be coded directly as real
out-of-sample function has a special role as the “intel- or integer number search spagt andzN with cor-
ligence” is potentially moved from the classifier to the responding value ranges. The mutation operator for
feature transform: A highly nonlinear feature trans- these types is defined as an additive Gaussian noise
form might work best with a simple, e.g. linear clas- With covariance matrixz. Additionally, a bit string
sifier. However, simply transforming the whole train- search spacB™ (binary mask) as well as a discrete
ing datasefl as a preprocessing step and performing Set search spad¥' to model categorical parameters
cross-validation afterwards never evaluates the gen-can be defined.
eralization of the out-of-sample function on unseen  The parameters for the ES strategies can be coded
data. Therefore, it is necessary to incorporate the fea-in the (u/p+A) notation. The number of individuals
ture transform into the validation process. that survive in each generation is denoteg.ds each
Each configuratio® is evaluated in the following ~ generatior\ children fromp parents are derived. The
way (see figure 3). First, the feature selection is per- evaluation metric based on cross-validation described
formed. The training seT is separated intlk = 5 in the previous section is used to determine the fit-
cross-validation tuples with disjoint training and val- ness of the individuals. One big advantage of ES al-
idation datasetq (Tyaini, Tvaiia))}. FOr each cross-  gorithms is that the calculation of the fitness values of
validation round 1< | < k the feature transform uses a population can easily be parallelized. These fitness
Tirain) to learn a model for feature transform. The Vvalues are needed for selection and recombination so
out-Of-sampIe function of the derived model is used that the fittest individuals survive and evolve. Two
to embedTiain | andTyaiig) into the new feature space  different optimization strategies are presented:
to obtain (Tirainy, Tvalias)- Finally, the classifier is
trained with Train) and the evaluation is done with 5.3  Evolutionary Grid Search
the predicted labels diaiid, -
The first algorithm is an evolutionary grid search
5.2 Evolution Strategies (EGS) that codes the feature subset, feature transform,
target dimensionalit@rearTransand classifier into the
Evolutionary optimization is well-suited to solve chromosome. The feature subset is coded as binary
high-dimensional and combinatorial optimization maskB% which is similar to e.g. (Huang and Wang,
problems. These algorithms imitate the biological 2006). The feature transform and classifier concept
key strategy of evolving species over many genera- are both coded as the set genotyde For the tar-
tions. Especially evolution strategies (ES) are suitable get dimensionality a factar € [0,1] is coded asR?
for the optimization of heterogeneous hyperparame- genotype. It determines the fraction of the number
ters (Beyer and Schwefel, 2002). of dimensions delivered by the feature selection that
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Feature subset Feature transform Dim. fraction Classifier Classifier hyperparameters
ECEEE W1 (-0 TR -]
\Ot = 0 5
6 =(41,2,4,6}, PCA, la-4] = SVM Gauss, {C =10,y=0.1} )

Figure 4: Exemplary coding schema of a pipeline conflgurrﬂltnr the CE strategy. The EGS coding schema is similar, but
no classifier hyperparameters are appended.

should be used as target dimensionality framework, the exponenibgio(X) is used for geno-
type coding.

dreatTrans= |0~ Oreatsel ; dreatTrans> 1. (5) 5.5 Multi-pipeline Classifier

The corresponding hyperparameters of the se-

lected classifier are optimized using grid search with All presented optimization methods lead to a result
the grids from the middle column in table 2. An ini- list of Nres configurationskR = {(8;,q;)}, 1 < j <

tial population of 250 random individuals is gener- NresWith a corresponding fitness;. The configu-
ated to start the ES with parametgrs= 50, p = 2 rations can be sorted by their fitnegsand, at first
andA = 100. A mutation probability oy = 0.3 is glance, the configuration with the highest fitness is
used for both feature subset bit flips and the discretethe most interesting result. However, this solution
set typeW to pick a random item. The algorithm ter- could be randomly picked and therefore quite “un-
minates when the improvement of the best fitness is usual” and also potentially overfitted to the training

less thare = 10~ after at least 3 generations. set, even though cross-validation is used.
The distribution of the toprconfigurations can be
5.4 Complete Evolutionary used to generate a multi-pipeline classifier. Multi-
Optimization classifier systems have the potential to improve the

generalization capabilities compared to a single clas-
sifier when the diversity of the different models is
large enough (Ranawana and Palade, 2006). A multi-
pipeline classifier is defined such that the topen-
figurations are used to set npipelines with the cor-
responding configuratioij. In classification mode,
all pipelines are classifying the input vector parallelly
and finally, the most frequent label of all predictions
is chosen (majority voting).

The second algorithm is the complete evolutionary
optimization (CE) which is based on the EGS strat-
egy but no grid search of the classifiers’ hyperparam-
eters has to be made as they are included into the
genomes. The problem with optimizing all parame-
ters of all classifiers in aingle evolutionary way is
that each classifier concept has its own set of inde-
pendent hyperparameters. To solve this, all hyperpa-
rameters with their corresponding types are appended
to the genome consecutively. The classifier selection
acts like a switch which “activates” the correspond- 6 EXPERIMENTS
ing hyperparameters while those from other classi-
fiers remain unused. However, all hyperparametersFor the evaluation of the presented framework 10
are evolved with the evolutionary operators in par- classification problems from the UCI database (Bache
allel. Figure 4 illustrates this coding and activation and Lichman, 2013) have been used with different di-
scheme. The advantage of this approach is that pa-mensionalities, number of samples and classes (see
rameters ranges can be continuous and allow a muchtable 2). In order to test the generalization capabil-
finer adaptation to the classification task. Further- ities the instances of all datasets have been divided
more, no exhaustive grid search is needed. The rightrandomly into 50% train and 50% test sets. The two
column in table 2 shows the hyperparameter rangesoptimization strategies EGS and CE are evaluated and
for the CE strategy that are used in the framework.  compared to @aselineclassifier which is an SVM

As the evolutionary search space is larger now, with a Gaussian kernel, using the full feature set, no
some parameters have to be changed compared tdeature transform and optimally grid-based tuned hy-
EGS. The initial population is changed to 500 individ- perparameters.
uals and the number of generated childreh t0200. The proposed evolutionary algorithms use random
For mutation of integer and floating point parameters components which may lead to non-reproducible re-
a variance o = 2 is used. In order to handle expo- sults and local maxima. In order to overcome this
nentially ranged real valued hyperparameters of the problem in the evaluations, all experiments have been
classifiers (e.g.C andy for the SVM) in the same repeated 5 times. In the following sections and tables
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Table 2: Dataset information. Note that the datasets are Table 4: Average optimization times for each dataset and
ordered by their dimensionality. the two strategies in minutes.

Dataset dim. samples | classes Dataset EGS CE

1 [ irs 4 150 3 1 6.42+ 0.47 6.65+ 0.95

2 pima-indians- | 8 768 2 2 85.53+ 38.63 115.31+ 35.76
diabetes 3 25.60+ 5.85 38.94+ 2.52

3 breast-cancer- | 9 683 2 4 129.88+ 17.79 229.18+ 44.99
wisconsin 5 13.69+ 2.07 20.51+ 3.49

4 contraceptive 9 1473 3 6 23.79+ 5.85 37.76+ 9.34

5 | glass 9 214 6 7 58.03+ 11.34 82.33+ 23.59

6 | statlogheart 13 270 2 8 75.93+ 12.35 137.55+ 23.30

7 | australian 14 690 2 9 12.58+ 2.34 17.48+ 2.21

8 | vehicle 18 846 4 10 8.67+ 1.23 11.56+ 1.33

9 | ionosphere 34 351 2 Average | 44.01+41.67 69.73+ 72.07

10 | sonar 60 208 2

Table 3: Average optimization cross-validation accuracy Utes to several hours. On average the optimization
and average improvements to baseline SVM of the differ- time is around 44 minutes for the EGS and around
ent strategies.

70 minutes for the CE strategy. This is an interest-

Dataset | Baseline | EGS CE ing observation as the CE strategy does not need ex-
1 94.67 98.67+ 0.00 | 98.67L 0.00 haustive grid search like EGS. On the other hand,
2 77.34 81.10+ 0.57 | 80.89+ 0.63 the search space for the continuous hyperparameter
3 97.07 98.24+ 0.00 | 98.30+ 0.13 ranges is much larger and thus more time is needed
4 2.84 55.12+ 0.35 | 54.34+ 0.89 for the evolution of good parameter values. Inter-
> 60.56 80.02+ 1.56 | 79.94+ 2.62 estingly, the optimization time is not correlated with

6 84.44 88.00+ 0.62 | 8/.4%4092 the dataset dimensionality, but depends on the feature
! 86.14 87.93+0.24 | 88.21£0.65 transforms and classifiers that are used as the training
8 79.46 80.51+ 0.79 | 82.68+ 1.07 " . : .

9 91.49 95.60L 0.74 | 95.95- 0.26 time of these is fairly different.

10 84.76 87.62+ 0.95 | 87.62+ 1.35 The distribution of the best configurations i
Average improve-| +4.40+5.41 | +4.52+5.32 can be analyzed to get insight into the classification
ment to baseline problem and its solutions. Figure 5 (a) visualizes an

exemplary result of the top-50 configurations of the
the averages and — if enough space is available — theCE strategy for the breast-cancer-wisconsin dataset as

standard deviations are presented and discussed. Cuf® 9raph. It shows the distribution of frequencies of

rently, the framework is implemented in Matlab using features, feature transforms, classifiers and the con-
the Parallel Computing Toolbox and is run on an Intel N€ctions between them with a different shading of
Xeon workstation with 6< 2.5Ghz. boxes and edges. The components and connections

which are included in the overall best configuration
are marked with an asterisk (*).

The feature distribution is especially useful to
measure the importance of single features. The large
variety of feature transforms in the best configurations
First, the optimization process on the training dataset indicates that the feature distribution contains a lower
is evaluated. The best cross-validation accuracies af-dimensional manifold which can be used for a better
ter the optimization with the EGS and CE strategy feature representation. Additionally, two rather sim-
can be found in table 3. Both strategies achieve sig- ple classifiers, namely the naive Bayes and the kNN
nificantly higher cross-validation accuracies than the classifier, appear as the most frequently chosen classi-
SVM baseline for all datasets. The differences are fiers. This shows the benefit of the feature transforms
small, but the CE strategy performs slightly better so that no complex classifier model is needed.
for 6 of 10 datasets with an average accuracy gain of  Figure 5 (b) shows a exemplary visualization of
+4.52% compared to the SVM baseline. This shows the distribution of dimensionalities which is helpful to
that the proposed pipeline structure and optimization analyze the intrinsic dimensionality of a classification
allows a high adaptation to the learning task compared problem. The aforementioned top-50 configurations
to a standard SVM. are analyzed with respect to the dimensionalities of

The optimization times per dataset are listed in ta- the feature selectiordgeaise) and the feature trans-
ble 4. The optimization times vary from a few min- form element@reaitrang. It can be seen that around 6

6.1 Evaluation of Optimization
Strategies
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Figure 5: Graphical analyses of the top-50 configuratiotritigion for the breast-cancer-wisconsin dataset udiegGE
strategy. Figure (a) shows the distribution of featureatuiee transforms and classifiers as a graph. Figure (b) stiwvs
distribution of the selected dimensionalities for the aliéint pipeline elements.

Table 5: Average accuracy results on test datasets in % diygeon different optimization strategies and a differemtiver
of top-n multi-pipeline configurations compared to baseline SVM Antb-WEKA with a time budget of 24 hours.

Dataset Baseline EGS CE Auto-WEKA
Top-1 Top-10 | Top-20 | Top-1 Top-10 | Top-20

s 100.00 94.67 94.40 94.93 96.00 96.80 97.60 92.27

2 76.82 74.79 74.95 75.31 75.83 75.47 75.42 75.83

3 95.89 96.89 96.66 96.66 95.89 96.48 96.36 96.72

4 53.20 55.59 57.55 57.80 55.84 56.76 57.47 57.17

5 66.67 66.67 70.48 71.05 72.38 72.95 74.10 74.86

6 83.70 82.96 83.70 83.26 82.07 83.26 82.52 83.70

7 84.88 86.16 85.64 85.87 85.41 85.29 85.17 85.29

8 80.81 77.87 79.72 79.34 80.43 82.80 82.89 81.18

9 94.29 94.40 95.89 96.57 93.37 96.57 96.69 96.11

10 79.61 82.33 85.24 85.44 81.36 87.57 87.77 85.63

Average difference -0.35 +0.83 +1.04 +0.27 +1.81 +2.01 +1.29+ 4.32

to baseline +250 | £330 | +£334 | £2.64 | £341 | +3.64

of the 9 input dimensions are relevant for the feature can be observed in many cases that the performance
selection while the remaining data appears to be on aincreases when more pipelines are used. The high-
2 or 3dimensional manifold. This consecutive dimen- est average difference compared to the baseline is
sion reduction is very typical for most of the datasets achieved with the fusion of the top-20 pipelines of

that have been investigated. the CE strategy with-2.01% . However, the specific
benefit of a certain strategy and a certain number of
6.2 Generalization on Test Datasets pipelines depends on the dataset.

Furthermore, the results have been compared to
The results of the proposed framework on the test the Auto-WEKA framework (see section 2) with
datasets can be found in table 5. First, the results ofa time budget of 24 hours and 5 repetitions for
the best single configurations (top-1 columns) of the each dataset. The average accuracies beat the top-
EGS and CE strategies are considered. The averagd pipelines of the EGS and CE strategy in 6 of 10
differences compared to the baseline show that thecases which shows that the classifier systems of the
configurations derived with the CE strategy slightly Auto-WEKA framework are less overfitted. When
outperform the ones from the EGS strategy. How- the multi-pipeline classifiers are compared, the solu-
ever, the difference is marginal and in many cases, tions of Auto-WEKA only perform better or equal in
even the baseline SVM performs better. The high ac- 2 cases.
curacy gains during training are not reached for the
test datasets which indicates that pipelines tend to be
overfitted even though cross-validation is used.

The multi-pipeline classifiers (see section 5.5) 7 CONCLUSIONS

with the top-10 and top-20 pipelines show a much
better generalization on the test data than the top-1In this work, a holistic classification pipeline frame-
pipeline alone. Especially configurations of the CE work with feature selection, multiple manifold learn-
strategy profit from the multi-pipeline classifier. It ing techniques, multiple classifiers and hyperparam-
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APPENDIX

List of manifold learning methods that are used in the
framework, including references and abbreviations:

Principal Component Analysis (PCA) (Pearson,
1901), Kernel-PCA with polynomial and Gaussian
kernel (Scholkopf et al., 1998), Denoising Autoen-
coder (Hinton and Salakhutdinov, 2006), Local Lin-
ear Embedding (LLE) (Donoho and Grimes, 2003),
Isomap (Tenenbaum et al., 2000), Manifold Chart-
ing (Brand, 2002), Laplacian Eigenmaps (Belkin and
Niyogi, 2001), Linear Local Tangent Space Align-
ment algorithm (LLTSA) (Zhang et al., 2007), Lo-
cality Preserving Projection (LPP) (Niyogi, 2004),
Neighborhood Preserving Embedding (NPE) (He
et al., 2005), Factor Analysis (Spearman, 1904),
Linear Discriminant Analysis (LDA) (Fisher, 1936),
Maximally Collapsing Metric Learning (MCML)
(Globerson and Roweis, 2005), Neighborhood Com-
ponents Analysis (NCA) (Goldberger et al., 2004),
Large-Margin Nearest Neighbor (LMNN) (Wein-
berger and Saul, 2009).



