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Learning discriminative mid-level patches has gained popularity in recent years since they can be applied to

various computer vision topics and achieve better performance. However, state-of-the-art learning methods
require a lot of training time, especially when the problem scale becomes much larger. In this paper we
propose a simple but fast and effective way, the Fast Exemplar Clustering(FEC), to mine discriminative mid-
level patches with only class labels provided. We verified our results on the task of scene classification and it
took us only one day to train the model on the MIT Indoor 67 dataset using an Core i5 quad-core computer
with Matlab. The results of our experiments revealed that the mid-level patches discovered by our method
were semantically meaningful and achieved competitive accuracy compared to the state-of-the-art techniques.
In addition, we created a new scene classification dataset named Outdoor Sight 20 which contains outdoor
views of 20 famous tourist attractions to test our model.

1 INTRODUCTION

In the last few years, discovery of discriminative
mid-level patches has become increasingly popular in
computer vision. It has been successfully applied to
problems like object detection (Li et al., 2013) (Rios-
Cabrera and Tuytelaars, 2013), scene classification
(Juneja et al., 2013) (Sun and Ponce, 2013), motion
detection (Wang et al., 2013) and video classification
(Jain et al., 2013) (Tang et al., 2013). Its popular-
ity can be attributed to part classifiers’ representative-
ness: types of patches that occur frequently in the vi-
sual world, and discriminativeness: types of patches
that are different enough from other types. In partic-
ular, (Doersch et al., 2012) and (Felzenszwalb et al.,
2010) have shown the benefits of desired patches act-
ing as visual words. (Mittelman et al., 2013)

Recent works have focused on learning discrim-
inative mid-level patches via a max-margin frame-
work including variants of SVMs like exemplar SVM
(Juneja et al., 2013) and miSVM (Li et al., 2013). To
achieve broad coverage and better purity, thousands
of training rounds are required. Moreover, in each
round the classifiers/detectors are learned in an itera-
tive manner. Thus, the computational complexity of
using a standard procedure that involves hard negative
mining for a huge amount of classifiers would be sur-
prisingly high. It leaves us a major challenge: a sim-
ple, efficient and effective method is yet to be found.

In this paper, we proposed a fast algorithm
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to discover discriminative mid-level patches. To
achieve this, we developed the Fast Exemplar Clus-
tering(FEC) based on the idea of k-means algorithm.
FEC works extremely fast with dramatically reduced
computation. As a comparison, the MIT 67 indoor
scene classification problem in section 5 spent us only
one day to train on an ordinary Core-i5 computer,
while the commonly used methods today would take
several days on a cluster (Singh et al., 2012).

The reason why FEC is so efficient is that, firstly
it only requires spatial information of feature vectors
and classifiers are trained using their distance measure
rather than iteratively solving a time consuming opti-
mization problem. Secondly our method uses only lo-
cal information instead of global information. When
the number of patches increases, the training time of
SVM based methods for each round may increase
sharply while for our method the time consumption
will rise slowly in an O(logN) manner with the help
of data structures like R-tree.

The biggest challenge of FEC is the risk of over-
fitting. However, we managed to solve it by using
a properly designed evaluation function described in
section 3.3 together with a large validation set. Our
experiments showed that the patches discovered by
FEC were both discriminative and representative. In
summary, the contributions of this paper are:

1. A novel algorithm for efficiently and effectively
detecting discriminative image parts is developed,
which demonstrated promising performance in
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Figure 1: Visual elements extracted from classes (a) greenhouse (b) inside subway (c) church inside (d) video store (e) closet
(f) library of MIT Indoor 67 dataset and (g) (h) Big Ben (i) (j) Mount Rushmore of our Outdoor Sight 20 dataset.

the task of part-based scene classification. Be-
sides, our approach can be seamlessly integrated
into bag of visual words models to improve the
results of multiple computer vision problems.

2. A rich training dataset for outdoor scene detec-
tion and classification (Outdoor Sight 20) is built.
To our best knowledge, this is the first dataset
designed for discovering meaningful mid-level
patches of outdoor scenes with good in-class con-
sistency. Our dataset consists of images covering
20 famous tourist attractions around the world.

In the experiments, we evaluated our novel FEC
method on the public benchmark: MIT Indoor
67 dataset, and the newly created Outdoor Sight
20 dataset, achieving extremely efficient perfor-
mance(about 20x faster) while maintaining close to
state-of-the-art accuracy.

Some of our results are shown in figure 1. (a)-
(f) are discriminative visual elements extracted from
MIT Indoor 67, while (g)-(j) come from our Outdoor
Sight 20. As is shown in the figure, our method not
only captures discriminative and representative visual
elements from training data with only class labels
provided, it also discovers and distinguishes differ-
ent visual elements of the same concept, like (g)&(h),
which is naturally capable of recognizing different
scenes.

2 RELATED WORK

The practice of using parts to represent images has
been adopted for quite a long time (Agarwal et al.,
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2004). Since parts are considered more semantically
meaningful compared to some low level features, the
introduction of image descriptor generated by algo-
rithms like ScSPM (Yang et al., 2009), LLC (Shabou
and LeBorgne, 2012) and IFV (Perronnin et al., 2010)
presented the promising future of parts. The idea
of training classifiers discriminatively improved the
performance of object detection (Felzenszwalb et al.,
2010). However, the discovery of parts are still
heavily relied on the training data. Some used the
bounding box information on which several assump-
tions between the parts and the ground truth were
based (Felzenszwalb et al., 2008), while others relied
on partial correspondence (Maji and Shakhnarovich,
2013) to generate meaningful patches.

It was not until recent years that the issue of dis-
covering discriminative mid-level patches automati-
cally with little or no supervision was raised. Patch
discovery using geometric information showed that
such method has the ability to learn and extract
semantically meaningful visual elements for image
classification (Doersch et al., 2012) (Shen et al., 2013)
(Lee et al., 2013). Unsupervised learning of patches
which are frequent and discriminative in an iterative
manner boosted the performance of object detection
(Singh et al., 2012). (Juneja et al., 2013) summarized
a simple and general framework to mine discrimina-
tive patches using exemplar SVM (Malisiewicz et al.,
2011) and showed that this framework was efficient
in scene classification in combination with the use of
bag-of-parts and bag-of-visual-words models.

Recent works on discriminative mid-level patches
can be categorized into two groups. One is to ap-
ply this method to other computer vision problems



like video representation (Jain et al., 2013), 2D-3D
alignment (Aubry et al., 2014), movement prediction
(Walker et al., 2014) (Lim et al., 2013) or learning
image attributes (Sandeep et al., 2014) (Lee et al.,
2013). The other is to collect Internet images to en-
rich the visual database of discriminative mid-level
patches (Li et al., 2013) (Chen et al., 2013). In these
works the most widely used types of classifiers are
mainly variants of SVM. They can achieve satisfac-
tory accuracy but the huge time consumption really
becomes a factor that must be considered if we want
to apply this technique to large scale computer vision
problems.(Jia et al., 2013)(Jia et al., )

3 DISCOVERING
DISCRIMINATIVE PATCHES:
DESIGNED FOR SPEED

Since our purpose is to speed up the training proce-
dure of the model, we designed it to run very fast
from sketch. We followed the idea that discriminative
patches would be learned and discovered in a frame-
work which had three stages: seeding, expansion and
selection (Juneja et al., 2013). Generally speaking, to
discover discriminative patches and the correspond-
ing classifiers that are able to recognize them, we first
need to get a bunch of seed patches from the given
images. Since the number of patches is enormous, a
selection procedure is carried out. They will then be
used to train classifiers using our FEC method. Sub-
sequently the classifiers will be ranked using a evalu-
ation function to test whether they are discriminative
and representative enough. Those who have top rank-
ings will be kept and used to represent images in the
way described in section 4.

3.1 Patch Selection and Feature
Extraction

The commonly used ways in patch selection con-
sist of two categories. One is to include all possible
patches in an image or randomly select some (Singh
et al., 2012), the other is to use some techniques
like saliency detection (Li et al., 2013) or superpixels
(Juneja et al., 2013) to reasonably remove the patches
that are unlikely to contain meaningful information to
reduce the problem scale and speed up the training
procedure. Patch selection is an essential and indis-
pensable part for a method which aims to run very
fast as the training time can be reduced significantly
with little impact on the results.

In our method, we introduced a very light-weight
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Figure 2: Images and their ’canny’ edges, (a) original image
(b) patches with few edges (c) patches with too many edges
(d) patches with modest number of edges.

way by detecting the number of edges in a patch. The
rationale is that we believe the most important fea-
ture that human uses to identify different objects and
scenes is shape. Edge detection is able to discover
the shapes of objects in patches while the number of
edges inside a patch somehow suggests the impor-
tance of the patch. Intuitively thinking, a patch con-
taining few edges may be a part of the background
which lacks discriminativeness, while a patch con-
taining a lot of edges may involve too much details
which lacks representativeness. As a result, to en-
sure our patch selection procedure are able to choose
patches that are meaningful, we shall select those with
neither too many edges nor too few edges. Figure 2
shows how this works. (a) presents the initial train-
ing image from MIT Indoor 67 and its edges de-
tected using Canny method (Canny, 1986). (b) and
(c) are some patches with too few or too many edges.
(d) shows the patches with modest number of edges,
which contain only one or two objects and their spa-
tial relationship. Even though edge detection is rather
simple, it is very efficient and effective to find the
patches that we need.

In our experiment, we selected patches with sizes
of 80*80, 120%120, 180*180, 270%270. To avoid
duplicates, very similar patches with close feature
vectors(i.e. the city-block distance is smaller than a
threshold 6 = 0.01) from the same image were re-
moved. Then the percentage of the area covered by
edges in each patch was calculated and 60 patches
with medium number of edges among all the patches
were kept for each image. We used the HOG feature
(Dalal and Triggs, 2005) to represent each patch.
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3.2 Classifier Training

The training procedure of the classifiers is the most
time consuming section in discriminative part based
techniques. Traditional approaches use SVM variants
like exemplar SVM (Malisiewicz et al., 2011) and
miSVM (Andrews et al., 2002). For example, Juneja
introduced the exemplar SVM and the outcome was
satisfactory in terms of classification results (Juneja
et al., 2013). In each round, one patch from a cer-
tain class is a positive input, while all patches from
other classes (Doersch et al., 2012) are used as nega-
tive inputs. After the SVM is trained, it is used to find
the top best patches whose scores are highest among
the current class. These patches are added into the
positive input and the SVM is trained iteratively for
several times. It is undeniable that these methods are
able to mine discriminative part classifiers eventually.
However, the total number of trained SVMs during
the training procedure can reach millions and will take
lots of time.

We managed to solve this problem by using a
fast yet efficient type of classifier instead. We call it
fast exemplar clustering(FEC). It follows the idea that
each patch will be given a chance to see whether it is
able to become a cluster (Juneja et al., 2013). Each
cluster will then be tested to see if it is discriminative
and representative among all the clusters.

The training procedure is shown in figure 3(b) and
algorithm 1. Each exemplar cluster will be trained
only twice. For a specific patch, it is treated to be
a cluster center at first. Then the 10 closest patches
whose class labels are the same as the initial patch
will be added to the cluster. The cluster center is re-
calculated using the mean value of these points, fol-
lowed by adding the next 10 closest and non-duplicate
patches with the same class label into the cluster.
Each cluster C; is represented by a clustering center
P; and a radius r; which is equal to the largest dis-
tance between the cluster center and the patches in-
side the cluster. A classifier can then be built from
the resultant cluster. The center and the radius form
an Euclidean ball which naturally divide the feature
space into two parts, the inner part of the cluster and
the outer part. The purpose of training is to transform
the initial patch which is specific and particular to a
visual concept which is generalized and meaningful.

Since we use the distance measure of feature vec-
tors to form a cluster, the biggest challenge is the risk
of over-fitting. The reason why we train only twice in
clustering is that we want the clusters to be both gen-
eralized and diverse at the same time to help get rid
of over-fitting. Generalization means that the clus-
ter can represent not only the initial patch itself but

56

Figure 3: Illustration of training procedure: (a) initial patch
and its HOG representation (b) illustration of cluster expan-
sion using FEC (c) example of patches added in first round
of training (d) example of patches added in second round of
training.

also the patches that are visually similar to the ini-
tial patch. Generalization ensures that the patch cho-
sen is identical and common. We want the clusters to
be diverse since we still do not know which cluster
can really represent a discriminative visual concept.
If we are able to keep the diversity of the clusters, we
will have more chances of obtaining the best classifier
when ranking and filtering them in section 3.3.

We did several experiments to decide the optimal
number of training rounds, in which two results are
really revealing. In one experiment we clustered un-
til the center converges, while in the other we simply
did not cluster at all, i.e., we used the initial patch as
the center directly with fixed radius for all clusters. It
turned out both of them worked poorly. We looked
into the results and found that the first way resulted
in a lot of same classifiers which lack diversity, while
the latter way resulted in serious over-fitting since one
classifier is built merely on one data point. Good gen-
eralization and broad coverage are the key to find high
quality classifiers.

3.3 Classifier Selection

Though we have obtained a bunch of classifiers C =
{C;} centered at P = {P;} with radius of r = {r;} in



Algorithm 1: Build exemplar cluster from a patch.

function BUILDCLUSTER(patch)
cluster + []
fori=1—2do
euclidean(patch, patchesInSameClass)
add 10 closest patches — cluster
patch < mean(cluster)
end for
center < mean(cluster)
radius < max(euclidean(center,cluster))
return < center,radius >
end function

the training procedure, the number of classifiers is still
enormous and most of them are neither representative
nor discriminative. To test whether a classifier C; is
good enough, we try to find all the patches inside the
Euclidean ball centered at P; with radius r;, and com-
pare the class labels of these patches with the class
label of the classifier. Denote n; to be the number
of patches inside the ball and p; to be the number of
patches inside the ball with the same class label as
the classifier’s. Then the accuracy of each classifier is
pi/ni.

However, if we use the accuracy as the only eval-
uation, it is very likely that the classifiers will only
recognize features from very few images. It may lead
to the absence of representativeness. To overcome
this, we count the number of true positive patches
that each image contributed and calculate the vari-
ance 67 of these numbers. A smaller 67 indicates
that the true positive patches come from more train-
ing images, which suggests that the classifier is more
representative than others with higher 67 values. The
scoring function is then formulated as

Pi
F(C;) ==lo
(€)= osl 5
M, N are scaling constants to normalize the intensity

of the two parts. The argument M, N are calculated by

argmmMNZVjCeC(%_lOg(( ey v 1% Ac

tually according to our expenment results, the actual
value of M, N doesn’t have much impact on the results
as long as it roughly balance the two parts.

Figure 4 shows the best classifier selected using
different evaluation. (a) shows the result of evaluat-
ing with accuracy rate only. The five nearest patches
come from 3 different images. Even though they are
visually consistent, they did not reveal the nature that
really makes ’computer room’ different from other
classes. (b) shows the top classifier evaluated us-
ing our evaluation function. The five nearest patches
come from 5 different images. The resultant classifier
is more representative.

+1). (1)
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Figure 4: Evaluation comparison of classifier trained on
class ’computer room’: (a) evaluate using only accuracy
rate (b) evaluate using function (1) in section 3.3.
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In addition to evaluating the classifiers on the
training set, we introduced a large validation set to
be used in the same fashion described above. A num-
ber of classifiers with top rankings will be chosen as
discriminative classifiers. Figure 1 shows the results.

4 IMAGE REPRESENTATION
AND CLASSIFICATION

Since it is very hard to judge whether a patch clas-
sifier is good or not, we need to test our classifiers
using a traditional computer vision task. In our exper-
iment we introduced scene classification to compare
our results with others to show that patch classifiers
discovered in our method are meaningful and useful.

For the task of scene classification, we need to first
represent each image as a vector. We followed the
idea of "bag-of-parts’(BoP) (Juneja et al., 2013) and
used the discriminative classifiers learned in section
3 to generate the mid-level descriptor for each image
in a spatial pyramid manner (Lazebnik et al., 2006)
using 1 x 1 and 2 x 2 grids. In practice, patches are
extracted using a sliding window and each patch to-
gether with its flipped mirror is evaluated using the
part classifiers. As a result, each image is represented
by a n x 5 x m dimensional vector, in which m repre-
sents the number of classifiers kept for each class in
section 3.3 and 7 is the total number of classes.

Scene classification accuracy could be further im-
proved if BoP representation is used in combini-
tion with Bag of Words(BoW) models like Locality-
constrained Linear Coding(LLC) BoW (Shabou and
LeBorgne, 2012) or Improved Fisher Vectors (IFV)
(Perronnin et al., 2010). However, to make sure our
comparison is on an even base, we presented our re-
sults using only the BoP representation. We tested the
union representations though in section 5 as a refer-
ence.

One-vs-rest classifiers are trained to classify the
scenes. Linear SVM is used for BoP representation
and linear encoding. For the IFV encoding, Hellinger
kernel is used.
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S EXPERIMENTS AND RESULTS

The framework of FEC is simple and runs extremely
fast. It is not surprising that people will question the
effectiveness and correctness of these classifiers and
the corresponding image descriptor generated in sec-
tion 4. In order to test the classifiers we obtained, we
focused on the task of scene classification using two
datasets. One is the MIT Indoor 67 dataset (Quattoni
and Torralba, 2009), the other is the Outdoor Sight 20
that we created.

MIT Indoor 67 consists of 5 main scene cate-
gories, including store, home, public places, leisure
and working place. Each category contains several
specific classes, making a total of 67 classes. This
dataset is quite challenging thus widely used in scene
classification problems.

Outdoor Sight 20 is a dataset we created which
consists of outdoor views of 20 famous tourist attrac-
tions around the world such as Big Ben, The Eif-
fel Tower and The Great Wall of China. To test the
ability of distinguishing different scenes, a 21st class
which contains images of non-tourist attractions is in-
troduced. Part of the sample images are shown in fig-
ure 5. We built this dataset since we wanted to test our
models on both indoor and outdoor scenes. As a com-
plementary of the MIT Indoor 67 dataset, it is specif-
ically designed to include only outdoor images, most
of which are photos taken from different angles with
various lighting conditions while some are sketches or
drawings. Among all the images, the majority have a
good within-class consistency since they are portray-
als of the same object while some are even difficult
for human to classify due to a lot of shared character-
istics, like (g) and (f) of figure 5.

In our experiment on MIT Indoor 67 dataset, we
draw 100 random images from each class. They are
partitioned into training set containing 80 images and
test set from the remaining 20 images. The training
set is further split equally into two parts to be used as
training part and validation part, each with 40 images.
50 classifiers for each class are kept to recognize the
visual words.

To test the discriminatively trained mid-level
patches, we compared our results (FEC+BoP) with
ROI (Quattoni and Torralba, 2009), MM-scene (Zhu
et al,, 2010), DPM (Pandey and Lazebnik, 2011),
CENTRIST (Wu and Rehg, 2011), Object Bank (Li
et al., 2010), RBoW (Parizi et al., 2012), Patches
(Singh et al., 2012), Hybrid-Parts (Zheng et al., 2012)
, LPR (Sadeghi and Tappen, 2012), exemplar SVM
+ BoP (Juneja et al., 2013) and IVC (Li et al.,
2013). The results are shown in table 1. Even though
our method did not achieve highest accuracy rate, it
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Table 1: Test results on MIT Indoor 67 dataset.

Method Accuracy (%)
ROI 26.05
MM-scene 28.00
DPM 30.04
CENTRIST 36.90
Object Bank 37.60
RBoW 37.93
Patches 38.10
Hybrid-Parts 39.80
LPR 44.84
IVC(miSVM) 47.60
Exemplar SVM + BoP 46.10
FEC+BoP(Ours) 40.30

Table 2: Test results on Outdoor Sight 20 dataset. Compar-
ison between accuracy rate and training time for part classi-
fier is presented.

Method Acc. (%) | Time(~)
Exemplar SVM + BoP 85.75 5 days
FEC+BoP(Ours) 79.25 7 hours

should be clarified that we did not mean to produce
best scene classification result. We presented these
numbers to show that the patches we obtained in the
way described in section 3 are indeed meaningful and
could be used as discriminative classifiers in various
computer vision problems.

We compared the training time required to ob-
tain discriminative mid-level patches with exemplar
SVM (Malisiewicz et al., 2011) and ours. On an ordi-
nary Quad-core i5-3570 computer with 16GB RAM
installed using Matlab 2013b, the exemplar SVM
took around 3 weeks to train while ours took only 1
day(20x faster). This is an impressive result as the ac-
curacy rate did not show an enormous drop compared
to the exemplar SVM + BoP method.

As is mentioned in section 4, the accuracy rate
could be further improved if BoP representation is
used in combination with BoW features. In our exper-
iment, the FEC + BoP + LLC and FEC + BoP + IFV
achieved the accuracy rate of 49.55% and 53.81% re-
spectively using parameters introduced in (Chatfield
etal., 2011).

As for our Outdoor Sight 20 dataset, we followed
the exact same procedure as MIT Indoor 67 dataset on
the same computers with the same number of images
used in training, testing and validation for each class.
We compared our results with exemplar SVM + BoP
(Juneja et al., 2013) in table 2 to show that our FEC
could train discriminative mid-level patches as well as
the exemplar SVM with much less time.
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Figure 5: Sample images of Outdoor Sight 20 dataset of classes (a) Big Ben (b) Buckingham Palace (c) Mount Rushmore (d)
Notre Dame (e) Parthenon (f) St. Paul’s Cathedral (g) St. Peter’s Basilica (h) Sydney Opera House (i) The Eiffel Tower (j)
The Great Wall of China. The rest are: The Brandenburg Gate, The Colosseum, The Golden Gate Bridge, The Kremlin, The
Leaning Tower of Pisa, The Pyramids of Giza, The Statue of Liberty, The Taj Mahal, The White House, Tower Bridge with
an additional class of none attraction images.
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Figure 6: Classifiers trained on classes: (a) airport inside (b) auditorium (c) bakery (d) bar (e) bowling (f) church inside (g)
classroom (h) computer room (i) hair salon (j) staircase (k) subway (j) wine cellar of MIT Indoor 67 dataset. The left four
patches of each part show how this classifier is trained and the three images on the right show their detections on the testing
image.
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6 CONCLUSION

In this paper we proposed a novel approach to learn
discriminative mid-level patches from training data
with only class labels provided. The motivation lies
in that current discriminative patch learning methods
are too time-consuming and can hardly be applied
to complicated computer vision problems with larger
dataset. We proposed the FEC algorithm to train part
classifiers. Under proper validation settings and ap-
propriately designed evaluation function, we obtained
classifiers whose accuracy could compete with state-
of-the-art SVM based classifiers. We tested our clas-
sifiers on scene classification using MIT Indoor 67
and our Outdoor Sight 20. Both results revealed they
were as good as classifiers generated by the contem-
porary methods. Our classifiers could be further ap-
plied to other computer vision problems like scene
classification, video classification, object detection,
2D-3D matching.

REFERENCES

Agarwal, S., Awan, A., and Roth, D. (2004). Learning to
detect objects in images via a sparse, part-based repre-
sentation. Pattern Analysis and Machine Intelligence
(PAMI), 2004 IEEE Transactions on, 26(11):1475-
1490.

Andrews, S., Tsochantaridis, 1., and Hofmann, T. (2002).
Support vector machines for multiple-instance learn-
ing. In NIPS, pages 561-568.

Aubry, M., Maturana, D., Efros, A. A., Russell, B. C., and
Sivic, J. (2014). Seeing 3d chairs: exemplar part-
based 2d-3d alignment using a large dataset of cad
models. In CVPR, 2014 IEEE Conference on. IEEE.

Canny, J. (1986). A computational approach to edge detec-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (6):679—698.

Chatfield, K., Lempitsky, V. S., Vedaldi, A., and Zisserman,
A. (2011). The devil is in the details: an evaluation of
recent feature encoding methods. pages 1-12.

Chen, X., Shrivastava, A., and Gupta, A. (2013). Neil: Ex-
tracting visual knowledge from web data. In ICCV,
2013 IEEE International Conference on, pages 1409—
1416. IEEE.

Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In CVPR, 2005 IEEE
Conference on, volume 1, pages 886—893. IEEE.

Doersch, C., Singh, S., Gupta, A., Sivic, J., and Efros, A. A.
(2012). What makes paris look like paris? ACM
Transactions on Graphics (TOG), 31(4):101.

Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008).
A discriminatively trained, multiscale, deformable
part model. In CVPR, 2008 IEEE Conference on,
pages 1-8. IEEE.

60

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and
Ramanan, D. (2010). Object detection with discrim-
inatively trained part-based models. Pattern Analysis
and Machine Intelligence (PAMI), 2010 IEEE Trans-
actions on, 32(9):1627-1645.

Jain, A., Gupta, A., Rodriguez, M., and Davis, L. S. (2013).
Representing videos using mid-level discriminative
patches. In CVPR, 2013 IEEE Conference on, pages
2571-2578. IEEE.

Jia, X., Yang, H., Lin, A., Chan, K.-P., and Patras, I. Struc-
tured semi-supervised forest for facial landmarks lo-
calization with face mask reasoning. In BMVC, 2014
IEEE International Conference on. IEEE.

Jia, X., Zhu, X., Lin, A., and Chan, K. P. (2013). Face
alignment using structured random regressors com-
bined with statistical shape model fitting. In 28th
International Conference on Image and Vision Com-
puting New Zealand, IVCNZ 2013, Wellington, New
Zealand, November 27-29, 2013, pages 424-429.

Juneja, M., Vedaldi, A., Jawahar, C., and Zisserman, A.
(2013). Blocks that shout: Distinctive parts for scene
classification. In CVPR, 2013 IEEE Conference on,
pages 923-930. IEEE.

Lazebnik, S.; Schmid, C., and Ponce, J. (2006). Beyond
bags of features: Spatial pyramid matching for recog-
nizing natural scene categories. In CVPR, 2006 IEEE
Conference on, volume 2, pages 2169-2178. IEEE.

Lee, Y. J., Efros, A. A., and Hebert, M. (2013). Style-aware
mid-level representation for discovering visual con-
nections in space and time. In ICCV, 2013 IEEE In-
ternational Conference on, pages 1857-1864. IEEE.

Li, L.-J., Su, H., Fei-Fei, L., and Xing, E. P. (2010). Ob-
ject bank: A high-level image representation for scene
classification & semantic feature sparsification. In
Advances in neural information processing systems,
pages 1378-1386.

Li, Q., Wu, J., and Tu, Z. (2013). Harvesting mid-level
visual concepts from large-scale internet images. In
CVPR, 2013 IEEE Conference on, pages 851-858.
IEEE.

Lim, J. J., Zitnick, C. L., and Dollar, P. (2013). Sketch to-
kens: A learned mid-level representation for contour
and object detection. In Computer Vision and Pat-
tern Recognition (CVPR), 2013 IEEE Conference on,
pages 3158-3165. IEEE.

Maji, S. and Shakhnarovich, G. (2013). Part discovery from
partial correspondence. In CVPR, 2013 IEEE Confer-
ence on, pages 931-938. IEEE.

Malisiewicz, T., Gupta, A., and Efros, A. A. (2011). En-
semble of exemplar-svms for object detection and be-
yond. In ECCV, 2011 IEEE International Conference
on, pages 89-96. IEEE.

Mittelman, R., Lee, H., Kuipers, B., and Savarese, S.
(2013). Weakly supervised learning of mid-level fea-
tures with beta-bernoulli process restricted boltzmann
machines. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 476—483.

Pandey, M. and Lazebnik, S. (2011). Scene recognition
and weakly supervised object localization with de-



formable part-based models. In ECCV, 2011 IEEE In-
ternational Conference on, pages 1307-1314. IEEE.

Parizi, S. N., Oberlin, J. G., and Felzenszwalb, P. F. (2012).
Reconfigurable models for scene recognition. In
CVPR, 2012 IEEE Conference on, pages 2775-2782.
IEEE.

Perronnin, F., Liu, Y., Sanchez, J., and Poirier, H. (2010).
Large-scale image retrieval with compressed fisher
vectors. In CVPR, 2010 IEEE Conference on, pages
3384-3391. IEEE.

Quattoni, A. and Torralba, A. (2009). Recognizing indoor
scenes. In CVPR, 2009 IEEE Conference on. IEEE.

Rios-Cabrera, R. and Tuytelaars, T. (2013). Discrimina-
tively trained templates for 3d object detection: A real
time scalable approach. In Computer Vision (ICCV),
2013 IEEE International Conference on, pages 2048—
2055. IEEE.

Sadeghi, F. and Tappen, M. F. (2012). Latent pyramidal
regions for recognizing scenes. In ECCV, 2012 IEEE
Conference on, pages 228-241. Springer.

Sandeep, R. N., Verma, Y., and Jawahar, C. (2014). Relative
parts: Distinctive parts for learning relative attributes.
In CVPR, 2014 IEEE Conference on. IEEE.

Shabou, A. and LeBorgne, H. (2012). Locality-constrained
and spatially regularized coding for scene categoriza-
tion. In CVPR, 2012 IEEE Conference on, pages
3618-3625. IEEE.

Shen, L., Wang, S., Sun, G., Jiang, S., and Huang, Q.
(2013). Multi-level discriminative dictionary learning
towards hierarchical visual categorization. In Com-
puter Vision and Pattern Recognition (CVPR), 2013
IEEFE Conference on, pages 383-390. IEEE.

Singh, S., Gupta, A., and Efros, A. A. (2012). Unsuper-
vised discovery of mid-level discriminative patches.
In ECCV, 2012 IEEE Conference on, pages 73-86.
Springer.

Sun, J. and Ponce, J. (2013). Learning discriminative part
detectors for image classification and cosegmentation.
In Computer Vision (ICCV), 2013 IEEE International
Conference on, pages 3400-3407. IEEE.

Tang, K., Sukthankar, R., Yagnik, J., and Fei-Fei, L. (2013).
Discriminative segment annotation in weakly labeled
video. In Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on, pages 2483—
2490. IEEE.

Walker, J., Gupta, A., and Hebert, M. (2014). Patch to
the future: Unsupervised visual prediction. In CVPR,
2014 IEEE Conference on. IEEE.

Wang, L., Qiao, Y., and Tang, X. (2013). Motionlets: Mid-
level 3d parts for human motion recognition. In Com-
puter Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 2674-2681. IEEE.

Wau, J. and Rehg, J. M. (2011). Centrist: A visual descriptor
for scene categorization. Pattern Analysis and Ma-
chine Intelligence (PAMI), 2011 IEEE Transactions
on, 33(8):1489-1501.

Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Linear
spatial pyramid matching using sparse coding for im-
age classification. In CVPR, 2009 IEEE Conference
on, pages 1794-1801. IEEE.

Fast Discovery of Discriminative Mid-level Patches

Zheng, Y., Jiang, Y.-G., and Xue, X. (2012). Learning hy-
brid part filters for scene recognition. In ECCV, 2012
IEEE Conference on, pages 172—185. Springer.

Zhu, J., Li, L.-J., Fei-Fei, L., and Xing, E. P. (2010).
Large margin learning of upstream scene understand-
ing models. In Advances in Neural Information Pro-
cessing Systems, pages 2586-2594.

61



