
ZiZo: Modeling, Simulation and Verification of Reconfigurable
Real-time Control Tasks Sharing Adaptive Resources

Application to the Medical Project BROS

Mohamed Oussama Ben Salem1,2, Olfa Mosbahi1,4, Mohamed Khalgui1,4 and Georg Frey3
1LISI laboratory, INSAT, University of Carthage, Tunis, Tunisia

2Polytechnic School of Tunisia, University of Carthage, Tunis, Tunisia
3Saarland University, Chair of Automation, Saarbrücken, Germany

4eHealth Technologies Consortium, eHTC, Tunis, Tunisia

Keywords: Distributed Control System, Reconfiguration, Shared Resource, Simulation, Verification, Model Checking,
Computer-assisted Surgery.

Abstract: This research paper deals with the modeling, simulation and model checking of reconfigurable discrete-
event control systems to be distributed on networked devices. A system is composed of software tasks with
shared resources to control physical processes. A reconfiguration scenario is assumed to be a run-time
automatic operation that modifies the system’s structure by adding or removing tasks or resources according
to user requirements in order to adapt the whole architecture to its environment. Nevertheless, a
reconfiguration can bring the system to a blocking problem that is sometimes unsafe, or violates real-time
properties. We define new Petri Nets-based modeling solutions for both tasks and resources to meet these
constraints. These solutions are applied to a real case study named Browser-based Reconfigurable
Orthopedic Surgery (abbrev. BROS) to illustrate the paper’s contribution. A new Petri Nets-based editor
and random-simulator named ZiZo is developed to model and simulate the BROS reconfigurable
architecture. It is based also on the model checker SESA to apply an exhaustive CTL-based formal
verification of this architecture to ensure safe reconfiguration scenarios of tasks and resources.

1 INTRODUCTION

Robotics is a field that is expanding every day.
Robots have left the controlled environment of
factories and warehouses they were initially
designed for, and are making their way into the
highly dynamic and unconstrained world of humans.
The excellent geometric accuracy of robots,
associated with their ability to integrate several
different sources of information, has led to their
natural implementation in medicine, more
specifically in surgery. The field of robotic surgery
is relatively new. The first clinical application of a
robot was performed to a neurosurgery in 1985
(Kwoh et al., 1988). Since then, many research
centers around the world have developed a multitude
of robotic surgical products, tackling new areas such
as orthopedics, radiology, urology, cardiothoracic
and ophthalmology (Cleary and Nguyen, 2001;
Wang et al., 2006; Gomes, 2011). The more the field
grows, the more demanding become the end-users.

Increasing safety constraints and growing expected
flexibility pushed developers to focus on designing
robots that are able to fit their environment and
shifting users requirements under functional and
temporal constraints. This is what we call
reconfiguration.

It is in this context that BROS project is being
taken. BROS is a reconfigurable robotic platform
dedicated to the treatment of elbow's supracondylar
fracture. It is capable of running under several
operating modes to meet the surgeon's requirements
and well-defined constraints. Given the criticality of
such a system, checking the safety of BROS
becomes crucial. Thus, before starting the
implementation, we choose to model the whole
system using Reconfigurable Timed Net
Condition/Event Systems (R-TNCES) (Zhang et al.,
2013), a new formalism extending Petri nets and
useful to model such adaptive control systems.
Nevertheless, when designing BROS, we face the
issue of concurrent access to shared resources, such
as the patient's arm and the browser, an image

20
Ben Salem M., Mosbahi O., Khalgui M. and Frey G..
ZiZo: Modeling, Simulation and Verification of Reconfigurable Real-time Control Tasks Sharing Adaptive Resources - Application to the Medical Project
BROS.
DOI: 10.5220/0005181600200031
In Proceedings of the International Conference on Health Informatics (HEALTHINF-2015), pages 20-31
ISBN: 978-989-758-068-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

guidance system. We choose, then, to use a PCP-
based new solution for R-TNCES to model
reconfigurable shared resources (Salem et al., 2014).

The reconfiguration feature of BROS can bring
the latter to a blocking problem that is sometimes
unsafe or does not respect real-time properties. We
opt, then, for the use of a tool to model and simulate
the whole BROS architecture, and, then, apply on it
several CTL formulas to check whether the system
respects its functional and temporal constraints.
However, no one in our community worked on such
a tool. Thus, the authors in this paper present a new
tool, baptized ZiZo, a R-TNCES modeling and
random-simulating software.

The current paper is organized as follows: the
next section describes useful preliminaries for the
reader to understand our contribution. Section 3
introduces the BROS as project. We expose, in
Section 4, the modeling and verification of our
robotic platform. Section 5 presents the new tool
ZiZo, before finishing the paper in Section 6 with a
conclusion and an exposition of our future works.

2 BACKGROUND

We start, in this section, by presenting the
formalisms TNCES (Hanisch et al., 1997) and R-
TNCES (Zhang et al., 2013), which extend Petri nets
for the modeling of adaptive control systems, and
the existing tools to model them. We expose,
thereafter, two well-known protocols, PIP and PCP,
and a PCP-based solution for the management of
resource sharing in R-TNCES.

2.1 Modeling Formalisms and Tools

We introduce in this section two formalisms
extending Petri nets and which are useful to model
distributed reconfigurable control systems. We
provide, then, an overview of the existing tools to
model Petri Nets.

2.1.1 Timed Net Condition/Event System

A Timed Net Condition/Event System (TNCES)
(Hanisch et al., 1997) has a modular structure which
may be basic or composite. A basic TNCES is an
elementary module extending Petri nets by
proposing the new concepts of event and condition
signals. A composite TNCES can be composed of
basic/composite interconnected modules in a
hierarchical form. A TNCES, as shown in Figure 1,

is formalized as a tuple in (Zhang et al., 2013) as
follows:

TNCES = {PTN; CN; WCN; I; WI; EN; em} (1)
where: (i) PTN = (P; T; F; K; WF) is a classic
Place/Transition Net, (ii) CN ⊆ (P × T) is a set of
condition arcs, (iii) WCN: CN → N+ defines a
weight for each condition arc, (iv) I ⊆ (P × T) is a
set of inhibitor arcs, (v) WI: I → N+ defines a weight
for each inhibitor arc, (vi) EN ⊆ (T × T) is a set of
event arcs free of circles, (vii) em : T → {∨,∧} is an
event mode for every transition (i.e. if ∧ then the
corresponding events have to occur simultaneously
before the transition firing, else if ∨ then one of
them is enough).

Time intervals are assigned to the pre-transition
flow arcs, which imposes time constrains to the
firing of the transition. They are formalized as
follows:

DC={DR, DL, D0} (2)
where: (i) DR is a set of delay time that represents
the set of minimum times that the token should
spend at a particular place before the transition can
be fired, (ii) DL is the final set of limitation time that
defines the maximum time that a place may hold a
token (if all the other conditions for transition firing
are met), (iii) D0 is the initial set of the clocks
associated with the places.

Figure 1: Example of a TNCES.

2.1.2 Reconfigurable Timed Net
Condition/Event System

An R-TNCES, as defined in (Zhang et al., 2013), is
a structure RTN =(B, R), where R is the control
module consisting of a set of reconfiguration
functions R = {r1,...,rm} and B is the behavior
module that is a union of multi TNCESs, represented
as

B =(P, T, F, W, CN, EN, DC, V, Z) (3)
where: (i) P (respectively, T) is a superset of places
(respectively, transitions), (ii) F ⊆ ∪ (P × T) (T ×
P) is a superset of flow arcs, (iii) W: (P × T) ∪ (T ×
P) →{0, 1} maps a weight to a flow arc, W(x, y) > 0
if (x, y) ∈ F, and W(x, y)=0 otherwise, where x, y ∈
P ∪ T, (iv) CN ⊆ (P × T) (respectively, EN ⊆ (T ×

ZiZo:�Modeling,�Simulation�and�Verification�of�Reconfigurable�Real-time�Control�Tasks�Sharing�Adaptive�Resources�-
Application�to�the�Medical�Project�BROS

21

T)) is a superset of condition signals (respectively,
event signals), (v) DC: F ∩ (P × T) → {[l1,
h1],...,[l|F ∩ (P × T)|, h|F ∩ (P × T)|]} is a superset of time
constraints on output arcs, where ∀ i ∈ [1, |F∩(P ×
T)|], li, hi ∈ N, and li < hi , (vi) V : T ∨ ∧→{ , } maps
an event-processing mode (AND or OR) for every
transition, (vii) Z0 = (M0, D0), where M0: P → {0, 1}
is the initial marking and D0: P →{0} is the initial
clock position.

2.1.3 Existing Tools

Several tools already exist to model and/or simulate
Petri nets and their extensions. For example, CPN
tools is a software for editing, simulating and
analyzing Colored Petri Nets. It features a fast
simulator that efficiently handles both untimed and
timed nets. Full and partial state spaces can be
generated and analyzed, and a standard state space
report contains information such as boundedness
properties and liveness properties (Ratzer et al.,
2003). Petri.NET is another tool which allows
modeling, simulation and real-time implementation
of static and dynamic Petri nets. The results of a
Petri net model simulation are presented to the user
in the form of a token game and in the graphical
form showing diagrams of a state vector (Genter et
al., 2007). Nevertheless, neither CPN tools nor
Petri.NET can support R-TNCES with their
condition and event signals. The VisualVerification
(ViVe) toolset is a tool chain for automatic
verification of distributed control systems. It allows
creation and modification of model components in
modelling language of Net Condition/Event Systems
(NCES) (Suender et al., 2011). But, it does not deal
with the notion of time in NCES and the
reconfiguration feature they may have. The TNCES-
Editor, developed at the Martin Luther University
Halle-Wittenberg, allows the graphical modeling of
all NCES based subtypes, including R-TNCES
(Dubinin et al., 2006). To support interpretation and
reachable state analysis, the TNCES-Editor offers an
optional labeling of transitions. The whole net
structure including the labels will be stored in a
special file format (*.pnt) which can be used as an
import file for the model-checker SESA. However,
TNCES-Editor doesn't feature the simulation of a
built R-TNCES, nor highlights the reconfiguration
aspect of a DRCS.

2.2 Resource Sharing Protocols

This section presents the two protocols PIP and PCP.

It introduced, then, the specification and modeling of
the PCP-based solution for dynamic resource
sharing in R-TNCES.

2.2.1 Priority Inheritance Protocol

Priority Inheritance Protocol (PIP) in real-time
computing is a solution to avoid the problems of
priority inversion. As introduced in (Sha et al.,
1990), the basic PIP prevents any blocking of higher
priority tasks by lower ones. In fact, if a lower
priority task blocks a higher one, then it should
execute its critical section with the priority level of
the higher priority task that it blocks. In this case, we
say that the lower priority task inherits the priority of
the higher priority task. In PIP, the maximum
blocking time (due to a lower priority task) is equal
to the length of one critical section and the blocking
can occur at most one time for each lock.

A PIP operation is summed up in (Sha et al.,
1990) as follows: Let us assume a system to be
composed of a set of tasks {T1,...,Tn} such that (i) Ti
and Tk share a resource R (i ∈ (1,n) and k ∈ (1,n)),
(ii) Priority of Ti is lower than Tk's. Then, if Tk is
blocked on a semaphore that corresponds to a
resource in use by Ti, then Ti immediately inherits
the priority of Tk in order to unblock it as soon as
possible.

2.2.2 Priority Ceiling Protocol

The Priority Ceiling Protocol (PCP) (Goodenough
and Sha, 1988) in real-time computing is a
synchronization protocol for shared resources to
avoid unbounded priority inversion and mutual
deadlock due to wrong nesting of critical sections. In
this protocol, each resource R is assigned a priority
ceiling Cl(R), which is equal to the highest priority
of the tasks that may lock it. A task can acquire a
resource only if the resource is free and has a higher
priority than the priority ceiling of the rest resources
in lock by other tasks.

Let us assume a system to be composed of the
tasks T1, T2, T3 and T4 (having respectively the
increasing priorities 1, 2, 3 and 4) and two resources
R and Q: R can be used by T1 and T2 and Q by T1
and T4. Then, Cl(R)=2 and Cl(Q)=4. Thus, T2 is
blocked if it tries to block R which is free when Q is
locked. PCP brought improvements from PIP since
it gives guarantees that there is no deadlock and each
task in blocked at most the duration of one critical
section. However, there is a downside when using
PCP; there is more run-time overhead than PIP.

HEALTHINF�2015�-�International�Conference�on�Health�Informatics

22

2.2.3 PCP-based Solution for Resource
Sharing in R-TNCES

We aim in this section to check the safety of each
reconfiguration scenario by enriching the
Reconfigurable Timed Net Condition/Event System
(R-TNCES) with the PCP protocol. We propose,
then, to use new patterns introduced in (Salem et al.,
2014) to model reconfigurable discrete event
systems according to R-TNCES by using PCP. This
contribution is original since R-TNCES is an
original formalism for reconfigurable systems, but
lacks of useful mechanisms to manage
reconfigurable shared resources.

a. Formalization
We present in this section the formalization of
Distributed Reconfigurable Control Systems
(DRCS) sharing resources.

DRCS: The authors in (Salem et al., 2014) assume a
DRCS D to be composed of n1 networked
reconfigurable sub-systems sharing n2 resources.
They extend the formalization of DRCS in (Zhang et
al., 2013) by adding the new set of resources as
follows:

D = (∑R-TNCES, ϖ, ∑M, ∑R) (4)
where: (i) ∑R-TNCES is a set of n1 R-TNCES, (ii)
ϖ a virtual coordinator handling ∑M, a set of
Judgment Matrices, (iii) ∑R, a set of n2 shared
resources.

Shared Resources: On the basis of PCP's definition
and the flexibility expected from the DRCS, a
resource R is defined as follows :

R = (Rec, S, Cl) (5)
where: (i) Rec (Reconfiguration) indicates whether
R is added to the system / Rec ∈ {added, !added},
(ii) S indicates the state of R / S ∈ {free, hold by a
taski}, (iii) Cl is used for the ceiling of R.

Control Tasks: Based on the expected
reconfiguration of the system, the authors in (Salem
et al., 2014) defines a task T by:

T = (Rec, S) (6)
where: (i) Rec (Reconfiguration) indicates whether T
is added to the system / R ∈ { added, !added }, (ii) S
indicates the state of T / S ∈ { idle, execute, wait,
P(Ri), V(Ri) } and P(Ri) means locking Ri and V(Ri)
unlocking it.

b. Modeling
The authors in (Salem et al., 2014) proposes new
solutions to introduce PCP in R-TNCES to avoid
any blocking problem after reconfiguration
scenarios. An R-TNCES model is proposed for each
resource of ∑R and task of ∑R-TNCES.

Shared Resources: Each shared resource is
modeled by a R-TNCES as shown in Figure 2. The
latter is composed of three TNCES modeling the
resource's reconfiguration (Rec), state (S) and
ceiling (Cl). Here is the modeling of a resource R:

Figure 2: A shared resource's modeling.

ZiZo:�Modeling,�Simulation�and�Verification�of�Reconfigurable�Real-time�Control�Tasks�Sharing�Adaptive�Resources�-
Application�to�the�Medical�Project�BROS

23

Figure 3: A task's modeling.

Control Tasks: The authors in [6] model each task
T by an R-TNCES to be composed of two TNCESs
as shown in Figure 3: the first one is illustrating its
reconfiguration (Rec), the second its state (S).

3 BROS AS AN ORIGINAL
PROJECT

We present in this section the project's motivations
and BROS's architecture and operating modes. We
expose, thereafter, the problem that may be faced
during running of the platform.

3.1 Motivations

Supracondylar fractures of the humerus (or SCH) are
a common pediatric elbow injury. They account for
18% of all pediatric fractures and 75% of all elbow
fractures ((Brubacher and Dodds, 2008; Cheng et al.,
1999; Landin and Danielsson, 1986). They mainly
occur during the first decade of life and are more
common among boys (Landin, 1983).

The current treatment of SCH fracture may
actually lead to many complications. The
neurological ones consist in damages caused to the
median nerve during the reduction of the fracture or
during the open procedure. For example, there were
in (Gosens and Bongers, 2003) 23 nerve injuries in
189 patients with closed reduction and percutaneous
pinning. 10 of them (9 ulnar nerves and one median
nerve) were caused by the reduction of the fracture
or the percutaneous pinning. The study in (Gosens
and Bongers, 2003) also reports some vascular
complications, mostly consisting in the disruption of
the brachial artery. Some of them happened during
the surgical intervention. Others complications may

also occur, like an inadequate reduction (Baumann’s
angle >10°) of the fracture revealed when reviewing
the postoperative X-ray. Repeated percutaneous
pinning after satisfactory reduction was performed.
All those complications are principally caused by the
"blind" pinning the surgeons perform (Flynn, 1993;
Flynn et al., 1974). Even though they are usually
using an image intensifier, the medical staff can't
guess in advance the trajectory the pin will follow.
Images are actually taken once the pin is inserted,
which may cause the previously mentioned
complications.

Other inconvenient of the current treatment
technique is the recurrent medical staff exposure to
radiations when using the fluoroscopic C-arm
(Livyatan et al., 2002; Clein, 1954). These X-ray
Radiations are harmful, and fluoroscopic
examinations usually involve higher radiation doses
than simple radiography.

Considering these constraints and issues, a new
project, baptized BROS, has been launched to
remedy these problems. This work is carried out
within a MOBIDOC PhD of the PASRI program,
EU-funded and administered by ANPR in Tunisia.

3.2 Architecture

BROS is a robotic platform dedicated to humeral
supracondylar fracture treatment. It is able to reduce
fractures, block the arm and fix the elbow bone's
fragments by pinning. It also offers a navigation
function to follow the pins' progression into the
fractured elbow.

BROS is composed of a Browser (BW), a
Control Unit (UC), a Middleware (MW), 2 Pining
Robotic Arms (P-BROS1 and P-BROS2) and 2
Blocking and Reducing arms (B-BROS1 and B-
BROS2). The said components are detailed
hereafter.

a. Browser
The browser, which is a Medtronics's product and
called FluoroNav, is a combination of specialized
surgical hardware and image guidance software
designed for use with a StealthStation Treatment
Guidance System. Together, these products enable a
surgeon to track the position of a surgical instrument
in the operating room and continuously update this
position within one or more still-frame fluoroscopic
images.

b. Control Unit
The Control Unit (CU) ensures the smooth running

HEALTHINF�2015�-�International�Conference�on�Health�Informatics

24

of the surgery and its functional safety. It asks the
supracondylar fracture's type to the middleware, and
then computes, according to it, the different
coordinates necessary to specify the robotic arms'
behaviors concerning the fracture's reduction,
blocking the arm and performing pinning. The
surgeon monitors the intervention progress thanks to
a dashboard installed on the CU.

c. Middleware
The middleware (MW) is a mediator between the
CU and the BW. It is an intelligent component that
provides several features of real-time monitoring
and decision making. The middleware contains
several modules: (i) an image processing module to
determine the fracture's type, (ii) a database
containing a range of supracondylar fracture images
classified according to their type, (iii) a learning
module to enrich the database with new images
acquired during each intervention, (iv) a controller,
(v) a verification module, (vi) a communication
module with the CU.

d. Pining Robotic Arms
The two pining robotic arms, P-BROS1 and P-
BROS2, insert two parallel Kirschner wires
according to Judet technique (Judet, 1953) to fix the
fractured elbow's fragments. To insure an optimal
postoperative stability, BROS respects the formula ܵ = ஻஽ > 0.22, where S is the stability threshold, B
the distance separating the two wires and D the
humeral palette's width (Smida et al., 2007).

e. Blocking and Reducing Robotic Arms
B-BROS1 blocks the arm at the humerus to prepare
it to the fracture reduction. B-BROS2 performs then
a closed reduction to the fractured elbow before
blocking it once the reduction is properly completed.

3.3 Reconfiguration and Operating
Modes

Reconfiguration is an important feature of BROS. It
is designed to be able to operate in different modes.
The surgeon can actually decide to manually do a
task if BROS does not succeed to automatically
perform it, whether it is facture reduction, blocking
the arm or pinning the elbow. Thus, five different
operating modes are designed and detailed below.

Automatic Mode (AM): The whole surgery is
performed by BROS. The surgeon oversees the
operation running.

Semi-Automatic Mode (SAM): The surgeon
reduces the fracture. BROS performs the remaining
tasks.

Degraded Mode for Pinning (DMP): BROS only
realizes the pinning. It's to the surgeon to insure the
rest of the intervention.

Degraded Mode for Blocking (DMB): BROS only
blocks the fractured limb. The remaining tasks are
manually done by the surgeon.

Basic Mode (BM): The whole intervention is
manually performed. BROS provides navigation
function using the middleware that checks in real-
time the smooth running of the operation.

Table 2 summarizes the operating modes
description.

Table 2: BROS's operating modes.

 Reduction Blocking Pinning Unblocking

A
M

Robotized Robotized Robotized Robotized

S
A
M

Manual Robotized Robotized Robotized

D
M
P

Manual Manual Robotized Robotized

D
M
B

Manual Robotized Manual Robotized

B
M

Manual Manual Manual Manual

3.4 Shared Resources and Issues

BROS is a distributed system composed of several
entities: the browser, the control unit, the
middleware, the two blocking and reducing arms
and the two pinning arms. The said entities may be
represented by several sharing resource processes.
The most relevant resources in our system are the
browser and the patient's arm. The first is solicited
by the robotic arms, the MW and the surgeon (when
a manual reduction or pining is performed) to update
the image on the screen. As to the fractured arm, it
may be used by whether the surgeon or the robotic
arms.

Applying a reconfiguration scenario on BROS by
switching from one operating mode to another may
actually lead to a deadlock because of concurrent
access to shared resources and which is usually
unsafe. This is what happens for example when
switching from AM to SAM. To illustrate this

ZiZo:�Modeling,�Simulation�and�Verification�of�Reconfigurable�Real-time�Control�Tasks�Sharing�Adaptive�Resources�-
Application�to�the�Medical�Project�BROS

25

situation, we represent B-BROS1, B-BROS2 and the
surgeon by three processes with increasing priorities
(B-BROS1 < B-BROS2 < the surgeon). This is due
to the fact that human intervention takes precedence
over the robotic one, and B-BROS2 has one more
function than B-BROS1, which is the fracture
reduction.

As illustrated in Figure 4, B-BROS1 starts by
locking the patient's arm to block it and frees it once
the blocking is achieved (P(A) and V(A)
respectively stand for locking and freeing the
fractured limb). B-BROS2 locks it to reduce the
fracture, and then locks the browser (P(BW) and
V(BW) respectively stand for locking and freeing
the browser) time to update the image displayed on
the screen. Once the blocking is done, B-BROS2
frees the browser. The two robotic arms will
successively use the patient's arm to unlock it at the
end of the intervention.

Figure 4: Behaviour of B-BROS1 and B-BROS2 in AM.

When the surgeons judges the fracture reduction
performed by B-BROS2 as unsatisfying, he can
decide to manually do it, and, thus, switches the
system from AM to SAM. However, when trying to
use the patient's arm, he finds it already locked by B-
BROS2 and a deadlock occurs as illustrated in
Figure 5.

Figure 5: Behavior of the surgeon, B-BROS1 and B-
BROS2 in SAM.

This kind of problem due to concurrent access to
shared resources after a reconfiguration scenario was
treated and solved in a recently accepted work
(Salem et al., 2014). The solution is to apply PCP to
synchronize sharing resources. Thus, the deadlock in
the system is avoided as illustrated in Figure 6.

Figure 6: Behavior of the surgeon, B-BROS1 and B-
BROS2 in SAM when using PCP.

We see, according to this example, that problems
may be faced in reconfigurable control systems, and
in this case with BROS, when dealing with
concurrent processes that share resources. Thus, we
propose to use the contribution made in (Salem et
al., 2014) and presented in section 2.2.3 to model
and verify reconfigurable tasks and resources to
check the safety of any reconfiguration scenario that
may be applied on the system.

4 MODELING AND
VERIFICATION OF BROS

Since R-TNCES is a useful formalism to model
reconfigurable systems, we aim in this section to
define BROS's modeling in order to check the
system's safety after any reconfiguration scenario.

4.1 Modeling

We continue, in this section, by modeling the BROS
using R-TNCES and tasks and shared resources'
modeling we previously proposed (in section 2.2.3).
Let's remember that, as mentioned in section 3.4, the
Surgeon has a higher priority than B-BROS2
(priority(Surgeon)=3 and priority(B-BROS2)=2) and
B-BROS2 takes precedence over B-BROS1 whose
priority equals to 1. The patient's arm (A) is shared
by the three processes, whereas the browser (BW) is
shared by B-BROS2 and the Surgeon in this case.
Thus, Cl(A)=Cl(BW)=priority(Surgeon)=3. We start
by modeling the three tasks as following in Figure 7.

We model in Figure 8 the two shared resources
BW and A whose ceilings are equal to 3. Let's
remember that BW is shared by two processes
(Surgeon and B-BROS2), whilst A is shared by the
three.

HEALTHINF�2015�-�International�Conference�on�Health�Informatics

26

Figure 7: The Surgeon, BROS-1 and BROS2 modeling.

Figure 8: The arm and the browser modeling.

4.2 Verification

Once the R-TNCES model of the DRCS is enriched
with PCP, the next step is to verify whether the
models meet users’ requirements. This means that
any reconfiguration scenario dealing with
adding/removal of resources does not lead to a
blocking situation. Model-checking is a technique
for automatically verifying the correctness properties
of finite-state systems. Model checking for TNCES
and R-TNCES is based on their reachability graphs.

SESA (Starke and Roch, 2002) is an effective
software environment for the analysis of TNCES,
which computes the set of reachable states exactly.
Typical properties which can be verified are
boundedness of places, liveness of transitions, and
reachability of states. In addition, temporal/
functional properties based on Computation Tree
Logic (CTL) specified by users can be checked
manually. Thus, we check, in this section, the safety
of the PCP-based solution to model the concurrent
access to reconfigurable shared resources. First, the

ZiZo:�Modeling,�Simulation�and�Verification�of�Reconfigurable�Real-time�Control�Tasks�Sharing�Adaptive�Resources�-
Application�to�the�Medical�Project�BROS

27

following e-CTL formula is applied to check the
deadlock-freeness of the system's modeling:

AG EX TRUE (7)

This formula is proven to be true by SESA as
shown in the screenshot in Figure 9, so there is no
deadlocks in our R-TNCES.

Figure 9: Verification of deadlock-freedom.

We also check the safety property by checking if a
given resource may be simultaneously locked by two
different tasks. The following CTL formula is
checked:

EF p14 AND p15 (8)

where: (i) p14 is the place translating that the
resource A is locked by the Surgeon, (ii) p15 means
that B-BROS2 locks A. This formula is proven to be
false as illustrated in Figure 10.

Figure 10: Verification of the concurrency issue on
the patient's arm.

5 NEW ENVIRONMENT: ZIZO

We present in this section the new tool ZiZo and its
usefulness in certifying distributed reconfigurable
control systems. BROS is the case study.

5.1 Motivations and Originality

ZiZo is a R-TNCES modeling and random-
simulating tool written in C# programming language
for the Windows platform and developed in LISI
laboratory of INSAT and eHTC (Tunisia). Its
originality consists in featuring the simulation of a
built R-TNCES and highlighting the reconfiguration
aspect of a DRCS, which are not offered in any other
Petri Nets editor. The main window of ZiZo GUI
shown in Figure 11 comprises five dockable frames:
Menu Bar, Model Arborescence, Place Properties,
the Document Explorer and the Debug Window.

ZiZo is capable of:
 creating several modules within the same

model;
 interconnecting modules by input/output

condition and event signals;
 randomly simulating the created model to

detect any eventual deadlock;
 storing the created model in a special file

format (*.pnt);
 loading a created model to edit it and/or

simulate it;
 exporting the model to the model-checker

SESA.
Since R-TNCES is the more expressive

formalism to model adaptive systems because it

Figure 11: The main window of ZiZo.

HEALTHINF�2015�-�International�Conference�on�Health�Informatics

28

addresses all the reconfiguration forms, our
community lacks an environment to edit, simulate
and check models based on this formalism. The
original features of ZiZo are:

 an optimal modeling of reconfigurable
distributed real-time tasks sharing adaptive
resources;

 simulation of distributed R-TNCES models;
 allows to easily call the model checker SESA

for the verification of CTL-based properties.

5.2 Certification of BROS

The purpose of this section is to certify the safety of
BROS by checking whether a deadlock may happen
at runtime and proving the nonexistence of several
potential issues.

a. Simulation
Several researches worked on designing tools to
simulate Petri nets-based subtypes. Nevertheless, no
one in our community worked on simulating the
notion of time and the reconfiguration aspect in Petri
nets which are featured by R-TNCES. This makes
ZiZo the unique tool offering the ability to model
and simulate such formalism. Thus, using ZiZo, we
model the whole architecture of BROS with its
different modules (UC, MW, BW, B-BROS1, B-
BROS2, P-BROS1, P-BROS2 and the surgeon) and
shared resources. We obtain an R-TNCES model of
186 places and 283 transitions. Upon definition of
the model, ZiZo can simulate it. Simulation can be
tracked by selection of a token game. Once
simulation is finished, a report is displayed at the
debug window.

The obtained report displayed in Figure 12
proves that, after exploring 3057 places by ZiZo, our
system is deadlock-free.

Figure 12: BROS's simulation report.

b. Verification
After proving in Section 4.2 the non-existence of
problems related to concurrent access on BROS's
reconfigurable shared resources, we do in this
section an exhaustive CTL-based verification to
check the existence of several problems that may be
faced at BROS's runtime. Thus, we apply several
CTL formulas on the model of the whole BROS

system, built using ZiZo and then exported to SESA.
Simultaneous Blocking and Pinning: Pinning in
the patient's arm while moving it by unblocking it
may lead to dramatic consequences. We check, then,
whether this two actions may be simultaneously
performed by applying the following formula to
BROS's model:

EF p23 AND p43 (9)
where: (i) p23 translates unblocking the arm, (ii) p43
pinning it. The formula is found to be false.
Timeout Issue: We check that the whole surgical
intervention does not last more than a given definite
time. We apply, then, formula 10:

EF [0,301] p23 (10)
This formula is also proven to be false.
Intervention Sequence: We have to be sure that
BROS complies with the specified logic by
performing in order the following actions: reduction,
blocking, pinning 1, pinning 2 and unblocking. We
apply, therefore, the following CTL formula:

AGA t18 X AFE t25 X AFE t40 X AFE t74 X
AFE t111 X TRUE (11)

where t18, t25, t40, t74 and t111 are respectively the
transitions leading to the places translating
reduction, blocking, pinning 1, pinning 2 and
unblocking. The formula is proved to be true.

6 CONCLUSION AND
PERSPECTIVES

Our work consisted, through this paper, in checking
the safety of the surgical robotic system BROS,
mainly after different scenarios of addition, removal
or update of adaptive shared resources. BROS is a
flexible system since it may run under different
operating modes: it is reconfigurable. Whence, we
chose to model BROS using R-TNCES, the most
suitable formalism to model distributed
reconfigurable control systems. The concurrent
access to shared resources issues were resolved
thanks to the PCP-based solution. We simulated
BROS's model using our new tool ZiZo to prove the
deadlock-freedom and, then, applied several CTL
formulas on it which revealed the nonexistence of
several issues in BROS. We can now certify that
BROS is a safe platform and does not run any risk
after any reconfiguration scenario. The next step is
to proceed to the real implementation of BROS,
using an ABB product, the robotic arm IRB 120
(MIKAELSSON and CURTIS, 2009).

ZiZo:�Modeling,�Simulation�and�Verification�of�Reconfigurable�Real-time�Control�Tasks�Sharing�Adaptive�Resources�-
Application�to�the�Medical�Project�BROS

29

ACKNOWLEDGEMENTS

This research work is carried out within a
MOBIDOC PhD thesis of the PASRI program, EU-
funded and administered by ANPR (Tunisia). The
BROS national project is a collaboration between
Tunis Children Hospital of Béchir Hamza (Tunis),
eHTC and INSAT (LISI Laboratory) in Tunisia. We
thank the medical staff, Prof.Dr.med. Mahmoud
SMIDA (Head of Child and Adolescent Orthopedics
Service) and Dr.med. Zied JLALIA, for their fruitful
collaboration and continuous medical support.

REFERENCES

Kwoh, Y. S., Hou, J., Jonckheere, E. A., and Hayati, S.
(1988). A robot with improved absolute positioning
accuracy for ct guided stereotactic brain surgery.
Biomedical Engineering, IEEE Transactions on,
35(2):153–160.

Cleary, K. and Nguyen, C. (2001). State of the art in
surgical robotics: clinical applications and technology
challenges. Computer Aided Surgery, 6(6):312–328.

Wang, Y., Butner, S. E., and Darzi, A. (2006). The devel-
oping market for medical robotics. PROCEEDINGS-
IEEE, 94(9):1763.

Gomes, P. (2011). Surgical robotics: Reviewing the past,
analysing the present, imagining the future. Robotics
and Computer-Integrated Manufacturing, 27(2):261–
266.

Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., and Al-
Ahmari, A. M. (2013). R-tnces: A novel formalism for
reconfigurable discrete event control systems. Systems,
Man, and Cybernetics: Systems, IEEE Transactions
on, 43(4):757–772.

Salem, M. O. B., Mosbahi, O., and Khalgui, M. (2014).
Pcp-based solution for resource sharing in
reconfigurable timed net condition/event systems. In
ADECS 2014, Proceedings of the 1st International
Workshop on Petri Nets for Adaptive Discrete-Event
Control Systems, co-located with 35th International
Conference on Application and Theory of Petri Nets
and Concurrency (Petri Nets 2014), Tunis, Tunisia,
June 24, 2014., pages 52–67.

Hanisch, H.-M., Thieme, J., Luder, A., and Wienhold, O.
(1997). Modeling of plc behavior by means of timed
net condition/event systems. In Emerging Technolo-
gies and Factory Automation Proceedings, 1997.
ETFA ’97., 1997 6th International Conference on,
pages 391–396.

Ratzer, A. V., Wells, L., Lassen, H. M., Laursen, M.,
Qvortrup, J. F., Stissing, M. S., Westergaard, M.,
Christensen, S., and Jensen, K. (2003). Cpn tools for
editing, simulating, and analysing coloured petri nets.
In Applications and Theory of Petri Nets 2003, pages
450–462. Springer.

Genter, G., Bogdan, S., Kovacic, Z., and Grubisic, I.
(2007). Software tool for modeling, simulation and
real-time implementation of petri net-based
supervisors. In Control Applications, 2007. CCA 2007.
IEEE International Conference on, pages 664–669.
IEEE.

Suender, C., Vyatkin, V., and Zoitl, A. (2011). Formal
validation of downtimeless system evolution in
embedded automation controllers. ACM Transactions
on Embedded Control Systems.

Dubinin, V., Hanisch, H., and Karras, S. Building of
reachability graph extractions using a graph rewriting
system. In proceedings of the 7th International
Conference of Science and Technology, NITis 2006.

Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990). Priority
inheritance protocols: An approach to real-time
synchronization. Computers, IEEE Transactions on,
39(9):1175–1185.

Goodenough, J. B. and Sha, L. (1988). The priority ceiling
protocol: A method for minimizing the blocking of
high priority Ada tasks, volume 8. ACM.

Brubacher, J. W. and Dodds, S. D. (2008). Pediatric
supracondylar fractures of the distal humerus. Current
reviews in musculoskeletal medicine, 1(3-4):190–196.

Cheng, J. C., Ng, B., Ying, S., and Lam, P. (1999). A 10-
year study of the changes in the pattern and treatment
of 6,493 fractures. Journal of Pediatric Orthopaedics,
19(3):344–350.

Landin, L. A. and Danielsson, L. G. (1986). Elbow
fractures in children: an epidemiological analysis of
589 cases. Acta Orthopaedica, 57(4):309–312.

Landin, L. A. (1983). Fracture patterns in children:
Analysis of 8,682 fractures with special reference to
incidence, etiology and secular changes in a swedish
urban population 1950-1979. Acta Orthopaedica,
54(S202):3–109.

Gosens, T. and Bongers, K. J. (2003). Neurovascular
complications and functional outcome in displaced
supracondylar fractures of the humerus in children.
Injury, 34(4):267–273.

Flynn, J. C. (1993). Displaced supracondylar fracture of
the humerus in children: Technique of closed
reduction and percutaneous pinning. Operative
Techniques in Orthopaedics, 3(2):121–127.

Flynn, J. C., Matthews, J. G., Benoit, R. L., et al. (1974).
Blind pinning of displaced supracondylar fractures of
the humerus in children. J Bone Joint Surg Am,
56(2):263–72.

Livyatan, H., Yaniv, Z., and Joskowicz, L. (2002). Robus
automatic c-arm calibration for fluoroscopy-based
navigation: a practical approach. In Medical Image
Computing and Computer-Assisted InterventionMIC-
CAI 2002, pages 60–68. Springer.

Clein, N. W. (1954). How safe is x-ray and fluoroscopy
for the patient andthe doctor? The Journal of
pediatrics, 45(3):310–315.

Judet, J. (1953). Traitement des fractures sus-condyliennes
transversales de l'humérus chez l'enfant. Rev Chir
Orthop, 39:199–212.

HEALTHINF�2015�-�International�Conference�on�Health�Informatics

30

Smida, M., Smaoui, H., Ben Jlila, T., Saeid, W., Safi, H.,
Ammar, C., Jalel, C., and Ben Ghachem, M. (2007).
Un index de stabilité pour l'embrochage percutané
latéral parallèle des fractures supracondyliennes du
coude chez l'enfant. Revue de Chirurgie Orthopédique
et Réparatrice de l’Appareil Moteur, 93(4):404.

Starke, P. H. and Roch, S. (2002). Analysing signal-net
systems. Professoren des Inst. für Informatik.

MIKAELSSON, P. and CURTIS, M. (2009). Portrait-
robot d’un petit prodige: Abb présente son nouveau
robot irb 120 et son armoire de commande irc5
compact. Revue ABB, (4):39–41.

ZiZo:�Modeling,�Simulation�and�Verification�of�Reconfigurable�Real-time�Control�Tasks�Sharing�Adaptive�Resources�-
Application�to�the�Medical�Project�BROS

31

