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Abstract: Computation tree logic (CTL) is known to be one of the most useful temporal logics for verifying concurrent
systems by model checking technologies. However, CTL is not sufficient for handling inconsistency-tolerant
and probabilistic accounts of concurrent systems. In this paper, a paraconsistent (or inconsistency-tolerant)
probabilistic computation tree logic (PpCTL) is derived from an existing probabilistic computation tree logic
(pCTL) by adding a paraconsistent negation connective. A theorem for embedding PpCTL into pCTL is
proven, which indicates that we can reuse existing pCTL-based model checking algorithms. Some illustrative
examples involving the use of PpCTL are also presented.

1 INTRODUCTION it has no operators that can represent paraconsistency
and probability. Thus, the aim of this paper is to con-
The verification of open, large, randomized, and struct a paraconsistent and probabilistic extension of
stochastic concurrent systems is gaining increasingCTL. To achieve this aim, a new logiparaconsis-
importance in the fields of computer science and en- tent probabilistic CTL(PpCTL), is introduced. To
gineering. On one hand, verifying open and large construct PpCTL, the existing useful CTL-variants,
concurrent systems, such as web application sys-namely paraconsistent CTL(PCTL) (Kamide and
tems, requires the handling of inconsistency-tolerant Kaneiwa, 2010; Kaneiwa and Kamide, 2011) and
(or paraconsistent) reasoning because inconsisten{probabilistic CTL(pCTL) (Aziz et al., 1995; Bianco
cies often appear and are inevitable in such systemsand de Alfaro, 1995), are combined on the basis of
(Chen and Wu, 2006). On the other hand, verify- a theorem for embedding PpCTL into pCTL. Some
ing randomized and stochastic concurrent systems,illustrative examples describing &0QL injectionat-
such as fault-tolerant communication systems over tack detection algorithm (Sonoda et al., 2011) that in-
unreliable channels, requires the handling of proba- volves the use of PpCTL are also presented in this
bilistic reasoning because useful notions of reliabil- paper to highlight the virtues of combining paracon-
ity for such systems require probabilistic characteri- sistency (in PCTL) and probability (in pCTL).
zation (Bianco and de Alfaro, 1995). Thus, handling Integrating useful reasoning mechanisms is re-
both inconsistency-tolerant and probabilistic reason- garded as combining and extending some useful non-
ing by an appropriate logic is a requirement for veri- classical logics such asmodal logics Combining
fying such complex concurrent systems. and extending useful non-classical logics are also
Computation tree logi€CTL) (Clarke and Emer-  known to be a very important issue in mathematical
son, 1981) is widely accepted as one of the most logic (see e.g., (Carnielli et al., 2008)). This paper
useful temporal logics for verifying concurrent sys- is thus also intended to give a solution for this is-
tems bymodel checkingechnologies (Clarke et al., sue, combining and extending the following useful
1999). CTL-based model checking algorithms are non-classical logicstemporal logi¢ paraconsistent
known to be more efficient than model-checking algo- (or inconsistency-tolerant) logi@ndprobabilistic (or
rithms based on other temporal logics suclhirzsar- probability) logic. The proposed embedding-based
time temporal logiqLTL) (Pnueli, 1977). However, = method is not so technically innovative, but gives a
CTL is not sufficient for handling paraconsistent and new simple and useful combination mechanisms for
probabilistic accounts of concurrent systems becausethese logics. By combining and extending these log-
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ics, we can integrate the existing two application areas valid. The paraconsistent logic-based laiBB is
concerning PCTL and pCTL, respectively. thus inconsistency-tolerant. In the classical logic, the

PCTL, which was introduced and studied by formula~s(x)As(x)—d(x) s valid for any disease,
Kamide and Kaneiwa in (Kamide and Kaneiwa, and hence the non-paraconsistent formulation based
2010; Kaneiwa and Kamide, 2011), is a paracon- On classical logic is regarded as inappropriate to the
sistent extension of CTL. To appropriately formal- @pplication of this medical database. Apart from such
ize inconsistency-tolerant reasoning, PCTL is based @ medical database, large and open concurrent sys-
onNelson’s four-valued paraconsistent logi (Al- tems also require the handling of paraconsistent sce-
mukdad and Nelson, 1984: Nelson, 1949), which harios because inconsistencies often appear and are
includes a paraconsistent negation connective. Theinevitable in these systems. This is a reason why we
paraconsistent negation connective in PCTL entails Ne€d to combine PCTL and pCTL.

the property ofparaconsistency Roughly, a satis- pCTL, which was introduced and studied by Aziz
faction relationk= is considered to be paraconsistent etal. in (Aziz et al., 1995) and Bianco and de Al-
with respect to a negation connectivdf the follow- faro in (Bianco and de Alfaro, 1995), is a proba-
ing condition holds3a, 3, not{M,s|= (a A~a)—f], bilistic extension of CTL. To appropriately formal-
wheres is the state of a Kripke structuid. In con- ize probabilistic reasoning, pCTL usegpgobabilis-

trast to PCTL, classical logic has no paraconsistencytic or probability operatorP-x, where the formula
because the formula of the forfa A ~a)—f is valid of the form R.xa is intended to read “the probabil-
in classical logic. ity of a holding in the future evolution of the system

Paraconsistent logigsncluding PCTL, are known IS at leas.” In'(Bianco and de Alfaro, 1995), pCTL
to be more appropriate for inconsistency-tolerant and @nd its extension, pCT.were introduced for verify-
uncertain reasoning than other non-classical logics g the properties of reliability and the performance
(Priest and Routley, 1982; Wansing, 1993; Kamide Of the systems modeled jiscrete Markov chains
and Wansing, 2012). For example, the follow- pCTL and pCTL can appropriately express quantita-

ing scenario is undesirable(s(x) A ~s(x))—d(x) tive bo.u.nds on thg probability of system evolutions.
is valid for any symptons and diseasal, where In add|t|_o_n, in (Bianco and_de Alfa_ro, 1995), the
~s(x) implies that "a persorx does not have a complexities of model-checking algorithms for pCTL
symptoms’ and d(x) implies that "a persox suf- and pCTL were clarified. In (Aziz et al., 1995),
fers from a diseasd.” An inconsistent scenario ex- Model-checking algorithms for the extensions of the
pressed asielancholig john) A ~melancholidjohn) abovementioned settings of pCTL and pCTere

will inevitably occur because melancholia is an un- Proposed for verifying probabilistic nondeterministic
certain concept and the fact "John has melancho- concurrent systems, in which the probabilistic behav-
lia” may be determined to be true or false by differ- i0r coexists with nonde_te_rmlmsm. The_se algorithms
ent pathologists with different perspectives. In this Were also shown to exhibit polynomial-time complex-
case, the undesirable formulamelancholidjohn) A ity depending on the size of the systems.
~melancholig john))—cancefjohn) is valid in The main difference between the pCTL settings
classical logic (i.e., an inconsistency has an undesir-by Aziz et al. (Aziz et al., 1995) and Bianco and de
able consequence), whereas it is not valid in para- Alfaro (Bianco and de Alfaro, 1995) is the setting of
consistent logics (i.e., these logics are inconsistency-the probability measuresn the probabilistic Kripke
tolerant). structuresof pCTL. In the present paper, PpCTL is

We now give a detailed explanation about the use- constructed on the basis of a “probability-measure-
fulness of paraconsistent reasoning. We assume adndependent” translation of PpCTL into pCTL. By
large medical databasdDB of symptoms and dis- this tra}nslanon, athc_eorequrembeddlr_lg PpCTL into
eases. We can also assume 8B is inconsistent  PCTL is proven, which entails the relative decidabil-
in the sense that there is a symptom predicix ?ty oprCTI__Wit_h respectto pCTL, i.e_., the qlec_idabil-
such thatvs(x),s(x) € MDB. This assumption is re- ity of pCTL implies that of I?p_CTL. This factlndlca'_[gs
garded as very realistic, because symptom is an un_t.hat we can reuse th_e existing p_CTL-based verifica-
certain concept, which is difficult to determine by any tion algorithms by Aziz et al. (Aziz et al., 1995) and
diagnosis. It may be determined to be true or false by Bianco and de Alfaro (Bianco and de Alfaro, 1995)
different doctors with different perspectives. Then, The structure of this paper is as follows. In Sec-
the databas&IDB does not derive arbitrary disease tion 2, the new logic PpCTL, which is an extension of
d(x), which means “a persoxsuffers form a disease  both PCTL and pCTL, is introduced on the basis of
d”, since paraconsistentlogics ensures the fact that fora paraconsistent probabilistic Kripke structureith
some formulast andp, the formula~a Aa—is not two types of satisfaction relations. Some remarks on

286



Combining Paraconsistency and Probability in CTL

PpCTL are also provided in this section. In Section 3, Definition 2.2. A paraconsistent probabilistic Kripke
a theorem for embedding PpCTL into pCTL is proven structurgppk-structurdor short) is a structurdS, S,
using a new translation function. As a corollary of R, s, L,L™) such that

this embedding theorem, a relative decidability the-
orem for PpCTL, wherein the decidability of pCTL
implies that of PpCTL, is obtained. Note that the

proposed translation is regarded as a modified exten- 3.

sion of the existing translation, which was used by
Gurevich (Gurevich, 1977), Rautenberg (Rautenberg,
1979), and Vorob’ev (Vorob’ev, 1952) to embhbiel-
son’s three-valued constructive logiglmukdad and
Nelson, 1984; Nelson, 1949) infositive intuition-
istic logic. In Section 4, some illustrative examples
for describing the SQL injection attack detection al-
gorithm proposed by Sonoda et al. (Sonoda et al.,
2011) are presented on the basis of the use of PpCT
formulas. In Section 5, this paper is concluded and
some related works are addressed.

2 LOGICS

Formulasof PpCTL are constructed from countably
many atomic formulas;» (implication) A (conjunc-
tion), v (disjunction),~ (classical negation)y (para-
consistent negation),R (less than or equal proba-
bility), P>x (greater than or equal probability),-£
(less than probability), B (greater than probability),

X (next), G (globally), F (eventually), U (until), R (re-
lease), A (all computation paths) and E (some compu-
tation path). The symbols X, G, F, U and R are called
temporal operatorsand the symbols A and E are
called path quantifiers The symbols Py, P>y, P<x
and R.x are calledprobabilistic operatorsor proba-
bility operators A formula P-xa is intended to read
“the probability ofa is at leask.” The symbol ATOM

is used to denote the set of atomic formulas. An ex-
pressionA = B is used to denote the syntactical iden-
tity betweenA andB. An expressiom <« 3 is used to
representa—p) A (B—0a).

Definition 2.1. Formulasa are defined by the follow-
ing grammar, assuming @ ATOM and xe€ [0, 1]:

ar=pla—alaAalava|—a|~d |
P<x0 | P>xa | P<xa | P.xa | AX @ |
EXa | AGa | EGo | AFa | EFa |
A(aUa) | E(aUa) | A(aRa) | E(aRa).

Note that pairs of symbols like AG and EU are in-
divisible, and that the symbols,}6,F.U and R can-
not occur without being preceded by an A or an
Similarly, every A or E must have one of X, G, F,
U and R to accompany it. It is remarked that all the

connectives displayed above are required to obtain a

theorem for embedding PpCTL into pCTL.

1. Sisthe set of states,
2. Sis aset of initial states andySC S,

R is a binary relation on S which satisfies the con-
dition: Vs S3s' € S[(s,s) € R,

4. 1k is a certain probability measure (or probability

distribution) concerning € S: a set of paths be-
ginning at s is mapped into a real numbef(h 1],

5. LT and L~ are mappings from S to the power set

of a nonempty subséfl of ATOM.
A pathin a ppk-structure is an infinite sequence of

|_StatesJi= o, S1, ;... suchthat/i >0[(s,s+1) €R].
The symbol)s is used to denote the set of all paths
beginning at s.

Some remarks on the ppk-structure defined above

are given as follows.

1. The definition ofls is not precisely and explicitly
given in this paper since the proposed translation
from PpCTL into pCTL is independent of the set-
ting of s.

2. There are many possibilities for defining a proba-
bility measurgus. Some typical examples of prob-
ability measures are addressed as follows.

(a) In (Bianco and de Alfaro, 1995), two probabil-
ity measuresyd andpg, calledminimal proba-
bility andmaximal probabilityrespectively, are
adopted in pCTL.

(b) In (Aziz et al., 1995), a probability measure
K concerning somdiscrete Markov processes
and discrete generalized Markov processss
adopted in pCTL.

3. The probability measuregd and pg used in
(Bianco and de Alfaro, 1995) are defined on
a Borel o-algebraBs (C 29%) as follows: for
any A € Bs, Y (D) = sup n(A) andpg (A) =
inf psn(A) wherepsy, with a strategyy concern-
ing nondeterminism is a unique probability mea-
sure onBs.

4. The probability measurg® used in (Aziz et al.,
1995) is defined as a mapping frofif into [0, 1]
where(® is a Borel sigma field, which is the class
of subsets of the set of all infinite state sequences
starting as.

E Definition 2.3 (PpCTL). Let AT be a nonempty sub-
" set of ATOM. Satisfaction relationg=" and =~ on
a ppk-structure M= (S %, R, s, L™, L) are defined
inductively as follows (s represents a state in S):

1. for any pe AT, M,s=" piff peL*(s),

287



ICAART 2015 - International Conference on Agents and Artificial Intelligence

N

~No U N w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.
24,
25.

288

. for any xe [0,1], M,s =T

. for any xe [0,1], M,s =+

. M,;sET a;—ayiff M,sE=" oy implies MsE*

az,

. M;sET aiAaziff M;sET apand M skt ay,

M,sET a1 vVagiff M;sET aj or M, sE=" ap,
M,s =1 —ajy iff not-[M,sE" a4],

. M;sET ~aiff M,sE" q,
. for any xe [0,1], M,;s ="

Poa iff ps({w €
Qs| M, sE=Ta}) <x,

Poxa iff ps({w €
Qs| M, sETa}) >x,

Poxa iff ps({w e
Qs | M, sE=Ta}) <x,

for any xe [0,1], M,s ="
Qs| M, sETa}) >x,

Mss =" AXa iff Vs € S [(s,51) € R implies
M,s1 =T al,

M;s £ EXa iff 35 € S
M,s1 =T al,

M,s =1 AGa iff for all pathst= s0,51,%, .-,
where s= 5, and all states;salong 1, we have
M,s E*a,

M,s =" EGa iff there is a pathn= 5,51, ...,
where s= 59, and for all states;salongTt, we have
M s =1 a,

M,s =T AFa iff for all paths = 5,51, ...,
where &= 5, there is a statejsalongtsuch that
M)s =1 a,

M,s =" EFu iff there is a pathin= 5,51, ..,
where s= 5, and for some statg slong 1T, we
have Ms =7 q,

M;s = A(aiUayp) iff  for all paths 1=
%,S1,%, ..., Where &= s, there is a statesalong
nisuch thaf(M, s =1 az) andvj (0< j <kim-
plies M,s; =" aq)],

M,;s =t E(oiUay) iff there is a pathm =
%,51,%,..., Wwhere s= 5, and for some states
alongm, we havg(M,sc =1 ap) andVj (0< j <
k implies Msj =" a1)],

M;s = A(oiRay) iff  for all paths =
%,51,%, ..., Where s= 5, and all states salong
M, we have[Vi < j not-M,s ' ai] implies
M,sj =1 agl,

M;s =" E(aiRap) iff there is a pathm=
%,51,%, ..., Where s= s, and for all states s
along 1, we havelVi < j not-[M,s =" aj] im-
pliesMs; =" ay),

forany pc AT, M,skE=" piff peL(s),

M,skE=" ai—aziff M,sE'T oy and M sk~ ap,
M;sE="a1A02iff M;sl="as or M,sE" ap,
M,sE~ a1 Vvaziff M,;sl=" a3 and M;si=" ay,
M,sE=" —aq iff M,sET ay,

P.xa iff ps({w e

[(s;s1) € R and

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

M,sk=" ~aq iff M,sET ay,

for any xe [0,1], M,s =~ P<a iff ps({w e
Qs|M,sE="0a}) >x,
for any xe [0,1], M,s =~ Psya iff ps({w e
Qs|M,sE="a}) <X,
for any xe [0,1], M,s =~ Py iff ps({w e
Qs | M, sE="a}) > x,
for any xe [0,1], M,s =~ P.ya iff ps({w e
Qs|M,s="a}) <X,
Ms =~ AXa iff 35 € S [(ss1) € R and

M.s = a,

M;s =~ EXa iff Vs € S [(s,s1) € R implies
M,s = a,

M,s =~ AGa iff there is a patim= ,51,%, -,

where s= 5, and for some statg slong 1T, we

have Ms ™ a,

M,s == EGa iff for all pathsm= 9,51, %, ...,

where s= 5, there is a statejsalong mtsuch that
M,s E~ a,

M,s =~ AFa iff there is a patin= 9,51, %, ..,

where s= 5, and for all states;salongTt, we have
M,s E~ a,

M,s =" EFa iff for all pathst= 9,51, %, ...,

where s= 5, and all states jsalong 11, we have
M,s =" a,

M;s == A(aiUap) iff there is a pathm =

%,81,%, ..., where s= 55, and for all states s
along 1, we havelVi < j not-[M,s =~ a1] im-

plies Msj =" ],

M;s == E(aiUay) iff for all paths 1 =

0,51, %, ..., where s= s, and for all states s
along 1, we havelVi < j not-[M,s =" ai] im-

plies Msj =" ay],

M,s =~ A(aiRay) iff there is a pathm=

%,51,9,..., where s= 5, and for some statecs
alongm, we havg(M,sc =~ ap) andvj (0< j <

k implies Msj =~ a1)],

M;s == E(aiRap) iff for all paths 1 =

%,S1,%, ..., where &= g, there is a stategalong

ntsuch thaf(M, s =" a2) andVj (0< j <k im-

plies M,sj =" ay1)].

Definition 2.4. A formula a is valid (satisfiabl¢
in PpCTLif M,s =1 a holds for any (some) ppk-
structure M= (S, S, R 45, L™,L™), any (some) € S,
and any (some) satisfaction relatiops"™ and=" on

M.

Definition 2.5. Let M be a ppk-structuréS S, R, s,

L,

L™) for PpCTL, and =" and =~ be satisfac-

tion relations on M. Then, theositive and nega-
tive model checking problenfsr PpCTLare respec-
tively defined by: for any formula, find the sets
{se S| M,s="a} and{se S|M,s="a}.
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Some remarks on PpCTL are given as follows. 2.3 (by deleting the superscript). The validity, sat-
1. The intuitive meanings ¢ and=" in PpCTL isfiability and model-checking problems fo€TL are
are “verification (or justification)” and “refutation ~ defined similarly as those fé?pCTL
(or falsification)”, respectively (Wansing, 1993;
Kamide and Wansing, 2012).
2. PpCTL is regarded as a paraconsistent logic. This3 EMBEDDABILITY AND

is explained as follows. Assume a ppk-structure RELATIVE DECIDABILITY
M = (SS,Rps,LT,L7) such thatp € L*(s),
pe L (s) andq ¢ L (s) for any distinct atomic Definition 3.1. Let AT be a non-empty subset of

formulasp andg. Then,M;sE=* (pA~p)—q ATOM, and AT’ be the set{p/ ;
! ) , P’ | p € AT} of atomic
does not hold, and hen¢e™ in PpCTL is para- formulas. The language.™ (the set of formu-

consistent with respect te. For m(I)Drg inforrg?_\; las) of PpCTL is defined usingAT, ~, —, AV, =,
;uon i)gspzaraconsstency, seee.g., (Priestan OUt'ng,ng,P<x,P>x, X,F, G, U, R A andE. The lan-
ey, ) guager of pCTL is obtained fromz~ by addingAT’

3. The positive model checking problem for PpCTL and deleting~.
corresponds to the standard “verification-based” A mapping f fromL™ to £ is defined inductively
model checking problem for pCTL. The negative py:
model checking problem for PpCTL corresponds . ]
to the dual of positive one. i.e., it is regarded 1. forany p< AT, f(p):= pand f(~p) := p'€ AT,
as a “refutation-based” model checking problem. 2. f(afB):= f(a) § f(B) wheref € {A,V, =},
Both the positive and negative model checking 3. f(ta):=#f(a) wheref € {—, P<x,P>x, P<x, Pex,
should simultaneously be performed, i.e., only AX EX, AG,EG, AF,EF},
one of them cannot be performed. f( (chB))) — A(f(a)UF(B)),

Proposition 2.6. The following formulas concerning = E(f(a)Uf(B)),
robabilistic operators are valid iPpCTL: for an
s P P Y — A(F()RT (B))

formulaa,

1- NP<XG 4 P>_)(NG, (f( )Rf(B))’
2. sz)(a — P{XNG,
3. NP{xa <> PZXNG,

4. NP>_)(G — PSXNG, 10 f

© 00 N O 01 »
—h
> >
Q
Py}
)
~
\/5\_/

(
(
(
(
(
(

Proof. Suppose thal = (S So,R, s, L*,L7)is 11 &
an arbitrary ppk-structure, and that™ and=" are 12. f(
any sgtisfaction relations oM. We only show the 13 f(
following case.

(1): We show only that-P-xa—P.x~a is valid (
in PpCTL. Lets be an arbitrary element & Then,  15. f(~P) := P>y
we showM, s =1 ~P—ya—P.y~a. To show this, we  16. f(

(
(
(
(
(
(
(
(
(

show thatM,s =" ~P,a impliesM,s =+ Pox~0. 17 f(~AX ) :.: E;(f(wa)
SupposeM, =" ~P-xa. Then, we obtain the re- L '
quired fact as follows: M, =" ~Pa iff M,}=" 18. f(~EXa) := AX f(~a),
P iff ps({we Qs | Mwl="a}) > xiff ps(fwe  19. f(~AGa) := EFf(~a),
Qs |M,wET ~a}) > xiff M,sET P_y~a. Q.E.D. 20. f(~EGa) := AFf(~a),
Definition 2.7 (pCTL). A probabilistic Kripke struc-  21. f(~AFa) := EGf(~a),
ture (pk-structurefor short) forpCTL is a structure 22 f(~EFa) := AGf(~0),
R, ps,L) such that
<1S S;’S)’ Iis;;\r:d are the same as those in Definition 23. T(~(A(aUR))) := E(T(~@)RT(~B)),
oo K 24. f(~(E(aUB))) = A(f(~a)Rf (~B)),
2. L is a mapping from S to the power set of a 25. f(~(A(aRp))) := E(f(~a)UT(~B)),
nonempty subseT of ATOM. 26. f(~(E(aRp))) :=A(f(~o)UT(~B)).
A satisfaction relation= on a pk-structure M= Lemma 3.2. Let f be the mapping defined in

(S S, R, L) for pCTL s defined by the same condi- Definition 3.1. For any ppk-structure M=
tions for =" (except the condition 6) as in Definition (S, S, R s, LT,L~) for PpCTL, and any satisfaction
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relations|=" and =~ on M, we can construct a pk-
structure N:= (S, S, R, s, L) for CTL and a satisfac-
tion relation = on N such that for any formula in
£~ and any state s in S,

1. M,;skETaiff N, sk f(a),
2. M;skE" aiff N,sk= f(~a).

Proof. Let AT be a nonempty subset of ATOM,
and AT be the se{p’ | p € AT} of atomic formulas.
Suppose thail is a ppk-structuréS, S, R, s, L, L)
such that.™ andL~ are mappings frorSto the power
set of AT. Suppose thall is a pk-structureM :=
(S, S, R s, L) such thatl is a mapping fron§to the
power set of ATUAT’. Suppose moreover that for any
s€ Sand anyp € AT,

1. peLf(9)iff peL(s),
2. pelL (s)iff p eL(s).

The lemma is then proved by (simultaneous) in-
duction on the complexity af.

e Base step:

Casea = p € AT For (1), we obtainM,s =" p
iff peLt(s)iff peL(s)iff N,si= piff N;sl= f(p)
(by the definition off). For (2), we obtainM,s ="
piff pe L (s)iff p’ € L(s) iff N,sk p'iff N;s|=
f(~p) (by the definition off).

e Induction step: We show some cases.

Casen = B—y: For (1), we obtainM,s =T B—y
iff M,skE=" BimpliesM,skE=" yiff N,;sk= f(B) im-
pliesN,s = f(y) (by induction hypothesis for 1) iff
N,s = f(B)—f(y) iff N,skE= f(B—y) (by the def-
inition of f). For (2), we obtain:M,s =~ B—y
iff M;skE* B andM,s|=" vy iff N;sk= f(B) and
N,s = f(~y) (by induction hypothesis for 1 and 2)
iff N,sE= f(B) A f(~y) iff N,sl= f(~(B—y)) (by the
definition of f).

Casen = —f3: For (1), we obtainM,s =1 - iff
not-M,si=" Bl iff not-[N, s|= f(B)] (by induction hy-
pothesis fotr 1) iffN,s = —f (B) iff N,s|= f(-B) (by
the definition off). For (2), we obtainM,s|=" -8
iff M,s=" Biff N,sl= f(B) (by induction hypothesis
for 1) iff N,s|= f(~—B) (by the definition off).

Casea = ~: For (1), we obtainM,s =1 ~p iff
M,sk=" Biff N,s= f(~pB) (by induction hypothesis
for 2). For (2), we obtainM,s =~ ~B iff M,s|="
B iff N,sk= f(B) (by induction hypothesis for 1) iff
N,s|= f(~~B) (by the definition off).

Casea = AXB: For (1), we obtain:M,s =+
AXB iff Vs; € S[(s,s1) € RimpliesM,s; =1 B iff
Vs € S[(s,s1) € RimpliesN,s; = f(B)] (by induc-
tion hypothesis for 1) ifiN,s = AXf(B) iff N,s|=
f(AXP) (by the definition off). For (2), we obtain:
M,sk=~ AXBiff 3s; € S[(s,s1) € RandM,s; =~ B
iff 3s1 € S[(s,s1) € RandN,s; = f(~B)] (by induc-
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tion hypothesis for 2) ifiN,s = EXf(~p) iff N,s|=
f(~AXp) (by the definition off).

Casea = PB: For (1), we obtain:M,s ="
P iff ps({w € Qs | Mw = B}) < x iff ps({w €
Qs | N,w = f(B)}) < x(by induction hypothesis for
1) iff N,s|= P<xf(B) iff N,s = f(P<xB) (by the def-
inition of f). For (2), we obtain:M,s =~ P, iff
Hs({We Qs | MW=~ B}) > xiff ps({we Qs | N,w =
f(~B)}) > x(by induction hypothesis for 2) iffl, s|=
P.xf(~B) iff N,s f(~P<xB) (by the definition of
f).

Caseda = PxB: For (1), we obtain:M,s ="
PooB iff ps({w € Qs | M,w =" B}) < xiff ps({w e
Qs | N,w = f(B)}) < x (by induction hypothesis for
1) iff N,s|=Pxxf(B) iff N,s = f(P<xB) (by the def-
inition of f). For (2), we obtain:M,s == P_,p iff
Bs({We Q| M W=~ B}) > xiff ps({we Qs |N,w =
f(~B)}) > x(by induction hypothesis for 2) iffl, s =
Psxf(~B) iff N,s = f(~PxxB) (by the definition of
f). Q.E.D.

Lemma 3.3. Let f be the mapping defined in Defini-
tion 3.1. For any pk-structure N= (S, So, R, s, L) for
pCTL, and any satisfaction relatiog= on N, we can
construct a ppk-structure M= (S S, R s, L+, L)
for PpCTLand satisfaction relations=* and =" on
M such that for any formula in £~ and any state s
in'S,
1. NjsE f(a) iff M, sk a,
2. NsE f(~a)iffM;sE"a.

Proof. Similar to the proof of Lemma 3.2).E.D.

Theorem 3.4(Embeddability) Let f be the mapping
defined in Definition 3.1. For any formutg,
a is valid (satisfiable) inPpCTL iff f(a) is
valid (satisfiable, resp.) ipCTL.

Proof. By Lemmas 3.2 and 3.3).E.D.

Corollary 3.5 (Relative decidability) If the model-
checking, validity and satisfiability problems for
pCTL with a probability measure are decidable, then
the model-checking, validity and satisfiability prob-
lems forPpCTL with the same probability measure
as that ofpCTL are also decidable.

Proof. Suppose that the probability measyxe
in the underlying ppk-structurés S, R, [s, LT,L7)
of PpCTL is the same as the underlying pk-structure
(S S,R, Us, L) of pCTL. Suppose also that pCTL
with | is decidable. Then, by the mappifglefined
in Definition 3.1, a formulao of PpCTL can be
transformed into the corresponding formdléx) of
pCTL. By Lemmas 3.2 and 3.3 and Theorem 3.4, the
model checking, validity and satisfiability problems
for PpCTL can be transformed into those of pCTL.
Since the model checking, validity and satisfiability
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problems for pCTL withps are decidable by the lowing rule:

assumption, the problems for PpCTL wijtkhare also .

decidableQ.E.D. hp)— J1 T pi>a 5
(pi) {0 otherwise @)

Some remarks on the decidability are given: o )
whereh(pi) = 1 indicates that the detected result is

1. The logic pCTL with two probability measures an attack stringh(p;) = 0 implies that it is a normal
pd andpg by Bianco and de Alfaro is decidable string, andx is a predeterminettireshold valueA set
(Bianco and de Alfaro, 1995). The logic pCTL Scontains some suspicious characters (e.g., a space,
with a probability measurng® by Azizetal. isalso  semi-colon, single quotation, etc.) in the input string
decidable (Aziz et al., 1995). Thus, the extended of some SQL injection attacks.
PpCTLs based on the above pCTLs are also de-

cidable by Corollary 3.5. Example 4.1. Suppose the unknown input stringaks

“DROP sanpl et abl e; --” to the SQL server. Let the

2. Since the mappinf from PpCTL into pCTLisa  elements of S be a space, semi-colon, and right paren-
polynomial-time reduction, the complexity results thesis, and let the threshold valeebe 0.08. Then,
for PpCTL becomes the same results as those forthis input b is detected as attack string because the
pCTL., e.g., if the model-checking problem for length|li| is 19 and the suspicious characters con-
pCTL is deterministic PTIME-complete, then so tainedin Sis 2, the contained ratg  2/19=0.105,
is PpCTL. and hence pis greater tharo.

3. The model-checking, validity and satisfiability N the experiment by (Sonoda et al., 2011), each
problems for both CTL and its paraconsistent ex- attack detection rate gtand normal detection rate
tension PCTL (Kaneiwa and Kamide, 2011) are HN for_the underlying characters was calt_:ulated by
known to be EXPTIME-complete, deterministic changing the threshold. An overall detection rate
EXPTIME-complete and deterministic PTIME-  Kis defined as the weighted averaggifandy:

complete, respectively. H=(1—P) X Ha+PB X kn, 3)

where a real numbds, which satisfies X 3 <1, is
the weight of the normal string over the input strings.

4 ILLUSTRATIVE EXAMPLES The use of the SQL injection attack detection algo-
rithm explained above is assumed in the following
4.1 SQL Injection Attack Detection discussion.

SQL injection (Clarke, 2009) is one of the numer- 4.2 Representing Paraconsistency

ous maI|<_:|_o_us attack methods used to exploit security Now, we consider some example formulas for SOL
vulnerabilities on SQL database servers. An attacker. = . ; .
o : injection attacks. The paraconsistent negation con-
sends injection codes through a network to illegally nective~a in PoCTL is used to represent the neda-
obtain stored information from the SQL database P P 9

servers. An automatic detection method for SQL in- tion of an uncertam_or ambiguous poncept_ at'gack '
o ) ) ; If we cannot determine whether an input string is ob-
jection attacks is explained here on the basis of the

studies reported by (Sonoda et al., 2011; Matsudata'ned by an SQL injection attack, the_nth|s conceptis
o \ . regarded as uncertain. The uncertain conedjztck
et al.,, 2011; Koizumi et al., 2012). They utilized . . :
: L can be represented by asserting the inconsistent for-
the contained rate of suspicious characters over the )
. . . ._“mula of the form: attackA ~attack where ~attack
length of an input string. Consider that an automatic ; T .
. T, represents the uncertain negation information that can
detection program attempts to determine if ittein- be true at the same time attack which represents
put stringl; (i=1,2,...) to an SQL database server is P

obtained as a result of an SQL injection attack. Then positive information. This is well-formalized because
thecontained rate pcan be definejd as: ' ' the formula of the form({attackA ~attack— L is not

valid in PpCTL.
#S We can also present the following formula:
Pi = I 1) EF(attackA ~attack which implies: “There exists

a situation in which a string input is considered to
where #5is the number of suspicious characters and be obtained as both an SQL injection attack and a
[li| is the length of thath input string. Automatic  non-SQL injection attack, i.e., we cannot determine
detection withp; is executed on the basis of the fol- by the algorithm whether a string was obtained from
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an attack.” In addition, we can present the following
formula: ERcrashedh AG crashed which implies:
“There is a situation in which a crashed database
caused by an SQL injection attack will not function
again.”

4.3 Representing Probability

We can express Example 4.1 as the following for-
mula: AG(P<0.080 A (pi < 0) — ~attack) which im-
plies: “If the threshold value is at the most 8 percent
and the contained ratg is greater tham, then the
string wasprobably notobtained by an SQL injection
attack, i.e., it can be regarded as a normal string.”
Let pa and py be an attack detection rate and
a normal detection rate, respectively. Then, we
can present the following formula: AB>oospa A
P-0.02bn — attack) which implies: “If the attack de-
tection rateua and the normal detection rapg with
respect to some fixed characters in the underlying

5 CONCLUSIONS AND RELATED
WORKS

In this paper, the paraconsistent probabilistic compu-
tation tree logic (PpCTL) was introduced and stud-
ied. PpCTL was constructed by combining two ex-
isting extended temporal logics: paraconsistent com-
putation tree logic (PCTL) and probabilistic compu-
tation tree logic (pCTL). Then, a theorem for em-
bedding PpCTL into pCTL was proven using transla-
tion, which is independent of the probability measure
setting. A relative decidability theorem for PpCTL,
which states that the decidability of pCTL implies that
of PpCTL, was also obtained as a corollary of this
embedding theorem. This relative decidability theo-
rem indicates that we can reuse some existing pCTL-
based verification algorithms. Some illustrative ex-
amples for describing an SQL injection attack detec-
tion algorithm, involving the use of PpCTL, were also
presented to highlight the virtues of combining para-

string are at least 8 percentand at least 2 percent, recgnsistency (in PCTL) and probability (in pCTL).

spectively, then the string is obtained by an SQL in-
jection attack, i.e., it is regarded as a malicious attack
string.”

Similarly, we can present the following formula:
AG (P<oosMa A P<oo2bin — ~attack) which im-
plies: “The string entered by someonepsbably
notobtained by an SQL injection attack.” In addition,
we present the following formula with the classical
negation connective: AG (P<o.021a A P<o.01MN —
—attack) which implies: “The string entered by some-
one isclearly notobtained by an SQL injection attack,
i.e., itis just a normal string.”

4.4 Representing Experimental Facts

The single quotation mark * forms a set with the
previous single quotation. A pair of single quota-
tion marks appears, for instance, asd=" user01' "
which implies: “the user ID is user0l” We
can present this situation as the following for-
mula: AG(singleQuotatiom EF singleQuotation-
~attack) which implies: “At any time, if a single quo-
tation “ " appears in the string described in a web
form, and the corresponding (closed) single quotation
“" " eventually appears in the same string, then such
an input string is probably not obtained as an SQL
injection attack.”

The statementCR 1=1" is sometimes used in an

Some remarks are given as follows. A transla-
tion from PpCTL into PCTL was not given in this
paper, although a translation from PpCTL into pCTL
was given. The issue for obtaining a translation from
PpCTL (pCTL) into PCTL (CTL, resp) has not been
solved yet, because a formula with the probabilistic
operators which have the probability measures is dif-
ficult to translate into a non-probabilistic formula of
PCTL or CTL. In the meantime, we would like to
extend the proposed embedding-based method for an
extended PpCTL with theequence modal operator
which was introduced for expressing ontological or
hierarchical information (see e.g, (Kamide, 2013)).
This issue is remained as a future work.

The rest of this paper addresses some closely re-
lated works. While the idea of combining paracon-
sistency and probability within a temporal logic is
new, the idea of introducing a paraconsistent compu-
tation tree logic is not. In this study, PCTL (Kamide
and Kaneiwa, 2010; Kaneiwa and Kamide, 2011)
was used as a base logic for constructing PpCTL.
However, there are some other paraconsistent vari-
ants of CTL. For example, multi-valued computa-
tion tree logic xCTL, was introduced by Easterbrook
and Chechik (Easterbrook and Chechik, 2001), and a
quasi-classical temporal logi@QCTL, was proposed
by Chen and Wu (Chen and Wu, 2006). PCTL was in-
troduced as an alternative to these logics. In addition,

attack string. Then, we present this situation as the an extension PCTLof PCTL has also been studied

following formula: AG(EF orl=1— attack) which
implies: “At any time, if the statementOR 1=1"

from the viewpoint of bisimulations for paraconsis-
tent Kripke structures in paraconsistent model check-

eventually appears, then such an input string wasing (Kamide, 2006). Another extension of PCTL was

probably obtained as an SQL injection attack.”
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also studied in (Kamide, 2013) for verifying student
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learning processes in learning support systems. Kamide, N. (2006). Extended full computation tree logics
Compared with paraconsistent CTLs, several for paraconsistent model checkirigogic and Logical

studies have been reported on probabilistic temporal ~ Philosophy 15 (3):251-276.

logics, including probabilistic CTLs. The study in Kamide, N. (2013). Modeling and verifying inconsistency-

(Hansson and Jonsson, 1994) is a typical example of tolerant temporal reasoning with hierarchical informa-

tion: Dealing with students’ learning processes. In
such a study. In (Hansson and Jonsson, 1994), a prob- Proceedings of the IEEE International Conference on

abilistic and real-time extension of CTL, also called Systems, Man, and Cybernetics (SMC 2018ges
PCTL, was introduced and investigated on the basis 1859-1864.

of an interpretation adliscrete time Markov chaingn Kamide, N. and Kaneiwa, K. (2010). Paraconsistent nega-
contrast to the probabilistic frameworks of pCTL and tion and classical negation in computation tree logic.
PpCTL, the notion of probability in PCTL is assigned In Proceedings of the 2nd International Conference
to all the temporal operators in PCTL. For example, on Agents and Artificial Intelligence (ICAART 2010),

a PCTL formula with the form & a implies “the Vol.1, pages 464-469.

formulaa holds continuously fot time units with a ~ Kamide, N. and Wansing, H. (2012). Proof theory of nel-
probability of at leasp.” son’s paraconsistent logic: A uniform perspective.

Theoretical Computer Sciencé15:1-38.
Kaneiwa, K. and Kamide, N. (2011). Paraconsistent com-
putation tree logic. New Generation Computing9
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