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Abstract: Computation tree logic (CTL) is known to be one of the most useful temporal logics for verifying concurrent
systems by model checking technologies. However, CTL is not sufficient for handling inconsistency-tolerant
and probabilistic accounts of concurrent systems. In this paper, a paraconsistent (or inconsistency-tolerant)
probabilistic computation tree logic (PpCTL) is derived from an existing probabilistic computation tree logic
(pCTL) by adding a paraconsistent negation connective. A theorem for embedding PpCTL into pCTL is
proven, which indicates that we can reuse existing pCTL-based model checking algorithms. Some illustrative
examples involving the use of PpCTL are also presented.

1 INTRODUCTION

The verification of open, large, randomized, and
stochastic concurrent systems is gaining increasing
importance in the fields of computer science and en-
gineering. On one hand, verifying open and large
concurrent systems, such as web application sys-
tems, requires the handling of inconsistency-tolerant
(or paraconsistent) reasoning because inconsisten-
cies often appear and are inevitable in such systems
(Chen and Wu, 2006). On the other hand, verify-
ing randomized and stochastic concurrent systems,
such as fault-tolerant communication systems over
unreliable channels, requires the handling of proba-
bilistic reasoning because useful notions of reliabil-
ity for such systems require probabilistic characteri-
zation (Bianco and de Alfaro, 1995). Thus, handling
both inconsistency-tolerant and probabilistic reason-
ing by an appropriate logic is a requirement for veri-
fying such complex concurrent systems.

Computation tree logic(CTL) (Clarke and Emer-
son, 1981) is widely accepted as one of the most
useful temporal logics for verifying concurrent sys-
tems bymodel checkingtechnologies (Clarke et al.,
1999). CTL-based model checking algorithms are
known to be more efficient than model-checking algo-
rithms based on other temporal logics such aslinear-
time temporal logic(LTL) (Pnueli, 1977). However,
CTL is not sufficient for handling paraconsistent and
probabilistic accounts of concurrent systems because

it has no operators that can represent paraconsistency
and probability. Thus, the aim of this paper is to con-
struct a paraconsistent and probabilistic extension of
CTL. To achieve this aim, a new logic,paraconsis-
tent probabilistic CTL(PpCTL), is introduced. To
construct PpCTL, the existing useful CTL-variants,
namely paraconsistent CTL(PCTL) (Kamide and
Kaneiwa, 2010; Kaneiwa and Kamide, 2011) and
probabilistic CTL(pCTL) (Aziz et al., 1995; Bianco
and de Alfaro, 1995), are combined on the basis of
a theorem for embedding PpCTL into pCTL. Some
illustrative examples describing anSQL injectionat-
tack detection algorithm (Sonoda et al., 2011) that in-
volves the use of PpCTL are also presented in this
paper to highlight the virtues of combining paracon-
sistency (in PCTL) and probability (in pCTL).

Integrating useful reasoning mechanisms is re-
garded as combining and extending some useful non-
classical logics such asmodal logics. Combining
and extending useful non-classical logics are also
known to be a very important issue in mathematical
logic (see e.g., (Carnielli et al., 2008)). This paper
is thus also intended to give a solution for this is-
sue, combining and extending the following useful
non-classical logics:temporal logic, paraconsistent
(or inconsistency-tolerant) logicandprobabilistic (or
probability) logic. The proposed embedding-based
method is not so technically innovative, but gives a
new simple and useful combination mechanisms for
these logics. By combining and extending these log-
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ics, we can integrate the existing two application areas
concerning PCTL and pCTL, respectively.

PCTL, which was introduced and studied by
Kamide and Kaneiwa in (Kamide and Kaneiwa,
2010; Kaneiwa and Kamide, 2011), is a paracon-
sistent extension of CTL. To appropriately formal-
ize inconsistency-tolerant reasoning, PCTL is based
onNelson’s four-valued paraconsistent logicN4 (Al-
mukdad and Nelson, 1984; Nelson, 1949), which
includes a paraconsistent negation connective. The
paraconsistent negation connective in PCTL entails
the property ofparaconsistency. Roughly, a satis-
faction relation|= is considered to be paraconsistent
with respect to a negation connective∼ if the follow-
ing condition holds:∃α,β, not-[M,s|= (α∧∼α)→β],
wheres is the state of a Kripke structureM. In con-
trast to PCTL, classical logic has no paraconsistency
because the formula of the form(α∧∼α)→β is valid
in classical logic.

Paraconsistent logics, including PCTL, are known
to be more appropriate for inconsistency-tolerant and
uncertain reasoning than other non-classical logics
(Priest and Routley, 1982; Wansing, 1993; Kamide
and Wansing, 2012). For example, the follow-
ing scenario is undesirable:(s(x) ∧ ∼s(x))→d(x)
is valid for any symptoms and diseased, where
∼s(x) implies that ”a personx does not have a
symptoms” and d(x) implies that ”a personx suf-
fers from a diseased.” An inconsistent scenario ex-
pressed asmelancholia( john)∧∼melancholia( john)
will inevitably occur because melancholia is an un-
certain concept and the fact ”John has melancho-
lia” may be determined to be true or false by differ-
ent pathologists with different perspectives. In this
case, the undesirable formula(melancholia( john)∧
∼melancholia( john))→cancer( john) is valid in
classical logic (i.e., an inconsistency has an undesir-
able consequence), whereas it is not valid in para-
consistent logics (i.e., these logics are inconsistency-
tolerant).

We now give a detailed explanation about the use-
fulness of paraconsistent reasoning. We assume a
large medical databaseMDB of symptoms and dis-
eases. We can also assume thatMDB is inconsistent
in the sense that there is a symptom predicates(x)
such that∼s(x),s(x) ∈ MDB. This assumption is re-
garded as very realistic, because symptom is an un-
certain concept, which is difficult to determine by any
diagnosis. It may be determined to be true or false by
different doctors with different perspectives. Then,
the databaseMDB does not derive arbitrary disease
d(x), which means “a personx suffers form a disease
d”, since paraconsistent logics ensures the fact that for
some formulasα andβ, the formula∼α∧α→β is not

valid. The paraconsistent logic-based largeMDB is
thus inconsistency-tolerant. In the classical logic, the
formula∼s(x)∧s(x)→d(x) is valid for any diseased,
and hence the non-paraconsistent formulation based
on classical logic is regarded as inappropriate to the
application of this medical database. Apart from such
a medical database, large and open concurrent sys-
tems also require the handling of paraconsistent sce-
narios because inconsistencies often appear and are
inevitable in these systems. This is a reason why we
need to combine PCTL and pCTL.

pCTL, which was introduced and studied by Aziz
et al. in (Aziz et al., 1995) and Bianco and de Al-
faro in (Bianco and de Alfaro, 1995), is a proba-
bilistic extension of CTL. To appropriately formal-
ize probabilistic reasoning, pCTL uses aprobabilis-
tic or probability operatorP≥x, where the formula
of the form P≥xα is intended to read “the probabil-
ity of α holding in the future evolution of the system
is at leastx.” In (Bianco and de Alfaro, 1995), pCTL
and its extension, pCTL∗, were introduced for verify-
ing the properties of reliability and the performance
of the systems modeled bydiscrete Markov chains.
pCTL and pCTL∗ can appropriately express quantita-
tive bounds on the probability of system evolutions.
In addition, in (Bianco and de Alfaro, 1995), the
complexities of model-checking algorithms for pCTL
and pCTL∗ were clarified. In (Aziz et al., 1995),
model-checking algorithms for the extensions of the
abovementioned settings of pCTL and pCTL∗ were
proposed for verifying probabilistic nondeterministic
concurrent systems, in which the probabilistic behav-
ior coexists with nondeterminism. These algorithms
were also shown to exhibit polynomial-time complex-
ity depending on the size of the systems.

The main difference between the pCTL settings
by Aziz et al. (Aziz et al., 1995) and Bianco and de
Alfaro (Bianco and de Alfaro, 1995) is the setting of
the probability measuresin the probabilistic Kripke
structuresof pCTL. In the present paper, PpCTL is
constructed on the basis of a “probability-measure-
independent” translation of PpCTL into pCTL. By
this translation, a theorem for embedding PpCTL into
pCTL is proven, which entails the relative decidabil-
ity of PpCTL with respect to pCTL, i.e., the decidabil-
ity of pCTL implies that of PpCTL. This fact indicates
that we can reuse the existing pCTL-based verifica-
tion algorithms by Aziz et al. (Aziz et al., 1995) and
Bianco and de Alfaro (Bianco and de Alfaro, 1995)

The structure of this paper is as follows. In Sec-
tion 2, the new logic PpCTL, which is an extension of
both PCTL and pCTL, is introduced on the basis of
a paraconsistent probabilistic Kripke structurewith
two types of satisfaction relations. Some remarks on
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PpCTL are also provided in this section. In Section 3,
a theorem for embedding PpCTL into pCTL is proven
using a new translation function. As a corollary of
this embedding theorem, a relative decidability the-
orem for PpCTL, wherein the decidability of pCTL
implies that of PpCTL, is obtained. Note that the
proposed translation is regarded as a modified exten-
sion of the existing translation, which was used by
Gurevich (Gurevich, 1977), Rautenberg (Rautenberg,
1979), and Vorob’ev (Vorob’ev, 1952) to embedNel-
son’s three-valued constructive logic(Almukdad and
Nelson, 1984; Nelson, 1949) intopositive intuition-
istic logic. In Section 4, some illustrative examples
for describing the SQL injection attack detection al-
gorithm proposed by Sonoda et al. (Sonoda et al.,
2011) are presented on the basis of the use of PpCTL-
formulas. In Section 5, this paper is concluded and
some related works are addressed.

2 LOGICS

Formulasof PpCTL are constructed from countably
many atomic formulas,→ (implication)∧ (conjunc-
tion),∨ (disjunction),¬ (classical negation),∼ (para-
consistent negation), P≤x (less than or equal proba-
bility), P≥x (greater than or equal probability), P≺x
(less than probability), P≻x (greater than probability),
X (next), G (globally), F (eventually), U (until), R (re-
lease), A (all computation paths) and E (some compu-
tation path). The symbols X, G, F, U and R are called
temporal operators, and the symbols A and E are
calledpath quantifiers. The symbols P≤x, P≥x, P≺x
and P≻x are calledprobabilistic operatorsor proba-
bility operators. A formula P≤xα is intended to read
“the probability ofα is at leastx.” The symbol ATOM
is used to denote the set of atomic formulas. An ex-
pressionA≡ B is used to denote the syntactical iden-
tity betweenA andB. An expressionα ↔ β is used to
represent(α→β)∧ (β→α).
Definition 2.1. Formulasα are defined by the follow-
ing grammar, assuming p∈ ATOM and x∈ [0,1]:

α ::= p | α→α | α∧α | α∨α | ¬α | ∼α |
P≤xα | P≥xα | P≺xα | P≻xα | AXα |
EXα | AGα | EGα | AFα | EFα |
A(αUα) | E(αUα) | A(αRα) | E(αRα).

Note that pairs of symbols like AG and EU are in-
divisible, and that the symbols X,G,F,U and R can-
not occur without being preceded by an A or an E.
Similarly, every A or E must have one of X, G, F,
U and R to accompany it. It is remarked that all the
connectives displayed above are required to obtain a
theorem for embedding PpCTL into pCTL.

Definition 2.2. A paraconsistent probabilistic Kripke
structure(ppk-structurefor short) is a structure〈S,S0,
R, µs, L+,L−〉 such that

1. S is the set of states,

2. S0 is a set of initial states and S0 ⊆ S,

3. R is a binary relation on S which satisfies the con-
dition: ∀s∈ S∃s′ ∈ S [(s,s′) ∈ R],

4. µs is a certain probability measure (or probability
distribution) concerning s∈ S: a set of paths be-
ginning at s is mapped into a real number in[0,1],

5. L+ and L− are mappings from S to the power set
of a nonempty subsetAT of ATOM.

A pathin a ppk-structure is an infinite sequence of
states,π = s0,s1,s2, ... such that∀i ≥ 0 [(si ,si+1)∈R].
The symbolΩs is used to denote the set of all paths
beginning at s.

Some remarks on the ppk-structure defined above
are given as follows.

1. The definition ofµs is not precisely and explicitly
given in this paper since the proposed translation
from PpCTL into pCTL is independent of the set-
ting of µs.

2. There are many possibilities for defining a proba-
bility measureµs. Some typical examples of prob-
ability measures are addressed as follows.

(a) In (Bianco and de Alfaro, 1995), two probabil-
ity measuresµ+s andµ−s , calledminimal proba-
bility andmaximal probability, respectively, are
adopted in pCTL.

(b) In (Aziz et al., 1995), a probability measure
µs concerning somediscrete Markov processes
and discrete generalized Markov processesis
adopted in pCTL.

3. The probability measuresµ+s and µ−s used in
(Bianco and de Alfaro, 1995) are defined on
a Borel σ-algebraBs (⊆ 2Ωs) as follows: for
any ∆ ∈ Bs, µ+s (∆) = sup µs,η(∆) and µ−s (∆) =
in f µs,η(∆) whereµs,η with a strategyη concern-
ing nondeterminism is a unique probability mea-
sure onBs.

4. The probability measureµs used in (Aziz et al.,
1995) is defined as a mapping fromC s into [0,1]
whereC s is a Borel sigma field, which is the class
of subsets of the set of all infinite state sequences
starting ats.

Definition 2.3 (PpCTL). Let AT be a nonempty sub-
set ofATOM. Satisfaction relations|=+ and |=− on
a ppk-structure M= 〈S,S0,R, µs,L+,L−〉 are defined
inductively as follows (s represents a state in S):

1. for any p∈ AT, M,s |=+ p iff p∈ L+(s),
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2. M,s |=+ α1→α2 iff M ,s |=+ α1 implies M,s |=+

α2,
3. M,s |=+ α1∧α2 iff M ,s |=+ α1 and M,s |=+ α2,
4. M,s |=+ α1∨α2 iff M ,s |=+ α1 or M,s |=+ α2,
5. M,s |=+ ¬α1 iff not-[M,s |=+ α1],
6. M,s |=+ ∼α iff M ,s |=− α,
7. for any x∈ [0,1], M,s |=+ P≤xα iff µs({w ∈

Ωs | M, s |=+ α})≤ x,
8. for any x∈ [0,1], M,s |=+ P≥xα iff µs({w ∈

Ωs | M, s |=+ α})≥ x,
9. for any x∈ [0,1], M,s |=+ P≺xα iff µs({w ∈

Ωs | M, s |=+ α})< x,
10. for any x∈ [0,1], M,s |=+ P≻xα iff µs({w ∈

Ωs | M, s |=+ α})> x,
11. M,s |=+ AXα iff ∀s1 ∈ S [(s,s1) ∈ R implies

M,s1 |=
+ α],

12. M,s |=+ EXα iff ∃s1 ∈ S [(s,s1) ∈ R and
M,s1 |=

+ α],
13. M,s |=+ AGα iff for all paths π ≡ s0,s1,s2, ...,

where s≡ s0, and all states si along π, we have
M,si |=

+ α,
14. M,s |=+ EGα iff there is a pathπ ≡ s0,s1,s2, ...,

where s≡ s0, and for all states si alongπ, we have
M,si |=

+ α,
15. M,s |=+ AFα iff for all paths π ≡ s0,s1,s2, ...,

where s≡ s0, there is a state si alongπ such that
M,si |=

+ α,
16. M,s |=+ EFα iff there is a pathπ ≡ s0,s1,s2, ...,

where s≡ s0, and for some state si along π, we
have M,si |=

+ α,
17. M,s |=+ A(α1Uα2) iff for all paths π ≡

s0,s1,s2, ..., where s≡ s0, there is a state sk along
π such that[(M,sk |=

+ α2) and∀ j (0≤ j < k im-
plies M,sj |=

+ α1)],
18. M,s |=+ E(α1Uα2) iff there is a pathπ ≡

s0,s1,s2, ..., where s≡ s0, and for some state sk
alongπ, we have[(M,sk |=

+ α2) and∀ j (0≤ j <
k implies M,sj |=

+ α1)],
19. M,s |=+ A(α1Rα2) iff for all paths π ≡

s0,s1,s2, ..., where s≡ s0, and all states sj along
π, we have[∀i < j not-[M,si |=

+ α1] implies
M,sj |=

+ α2],
20. M,s |=+ E(α1Rα2) iff there is a pathπ ≡

s0,s1,s2, ..., where s≡ s0, and for all states sj
along π, we have[∀i < j not-[M,si |=

+ α1] im-
plies M,sj |=

+ α2],
21. for any p∈ AT, M,s |=− p iff p∈ L−(s),
22. M,s |=− α1→α2 iff M ,s |=+ α1 and M,s |=− α2,
23. M,s |=− α1∧α2 iff M ,s |=− α1 or M,s |=− α2,
24. M,s |=− α1∨α2 iff M ,s |=− α1 and M,s |=− α2,
25. M,s |=− ¬α1 iff M ,s |=+ α1,

26. M,s |=− ∼α1 iff M ,s |=+ α1,
27. for any x∈ [0,1], M,s |=− P≤xα iff µs({w ∈

Ωs | M, s |=− α})> x,
28. for any x∈ [0,1], M,s |=− P≥xα iff µs({w ∈

Ωs | M, s |=− α})< x,
29. for any x∈ [0,1], M,s |=− P≺xα iff µs({w ∈

Ωs | M, s |=− α})≥ x,
30. for any x∈ [0,1], M,s |=− P≻xα iff µs({w ∈

Ωs | M, s |=− α})≤ x,
31. M,s |=− AXα iff ∃s1 ∈ S [(s,s1) ∈ R and

M,s1 |=
− α],

32. M,s |=− EXα iff ∀s1 ∈ S [(s,s1) ∈ R implies
M,s1 |=

− α],
33. M,s |=− AGα iff there is a pathπ ≡ s0,s1,s2, ...,

where s≡ s0, and for some state si along π, we
have M,si |=

− α,
34. M,s |=− EGα iff for all paths π ≡ s0,s1,s2, ...,

where s≡ s0, there is a state si alongπ such that
M,si |=

− α,
35. M,s |=− AFα iff there is a pathπ ≡ s0,s1,s2, ...,

where s≡ s0, and for all states si alongπ, we have
M,si |=

− α,
36. M,s |=− EFα iff for all paths π ≡ s0,s1,s2, ...,

where s≡ s0, and all states si along π, we have
M,si |=

− α,
37. M,s |=− A(α1Uα2) iff there is a pathπ ≡

s0,s1,s2, ..., where s≡ s0, and for all states sj
along π, we have[∀i < j not-[M,si |=

− α1] im-
plies M,sj |=

− α2],
38. M,s |=− E(α1Uα2) iff for all paths π ≡

s0,s1,s2, ..., where s≡ s0, and for all states sj
along π, we have[∀i < j not-[M,si |=

− α1] im-
plies M,sj |=

− α2],
39. M,s |=− A(α1Rα2) iff there is a pathπ ≡

s0,s1,s2, ..., where s≡ s0, and for some state sk
alongπ, we have[(M,sk |=

− α2) and∀ j (0≤ j <
k implies M,sj |=

− α1)],
40. M,s |=− E(α1Rα2) iff for all paths π ≡

s0,s1,s2, ..., where s≡ s0, there is a state sk along
π such that[(M,sk |=

− α2) and∀ j (0≤ j < k im-
plies M,sj |=

− α1)].

Definition 2.4. A formula α is valid (satisfiable)
in PpCTL if M ,s |=+ α holds for any (some) ppk-
structure M= 〈S,S0,R,µs, L+,L−〉, any (some) s∈ S,
and any (some) satisfaction relations|=+ and|=− on
M.

Definition 2.5. Let M be a ppk-structure〈S,S0,R,µs,
L+,L−〉 for PpCTL, and |=+ and |=− be satisfac-
tion relations on M. Then, thepositive and nega-
tive model checking problemsfor PpCTLare respec-
tively defined by: for any formulaα, find the sets
{s∈ S | M,s |=+ α} and{s∈ S | M,s |=− α}.
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Some remarks on PpCTL are given as follows.

1. The intuitive meanings of|=+ and|=− in PpCTL
are “verification (or justification)” and “refutation
(or falsification)”, respectively (Wansing, 1993;
Kamide and Wansing, 2012).

2. PpCTL is regarded as a paraconsistent logic. This
is explained as follows. Assume a ppk-structure
M = 〈S,S0,R,µs,L+,L−〉 such thatp ∈ L+(s),
p ∈ L−(s) andq /∈ L+(s) for any distinct atomic
formulasp and q. Then,M,s |=+ (p∧∼p)→q
does not hold, and hence|=+ in PpCTL is para-
consistent with respect to∼. For more informa-
tion on paraconsistency, see e.g., (Priest and Rout-
ley, 1982).

3. The positive model checking problem for PpCTL
corresponds to the standard “verification-based”
model checking problem for pCTL. The negative
model checking problem for PpCTL corresponds
to the dual of positive one. i.e., it is regarded
as a “refutation-based” model checking problem.
Both the positive and negative model checking
should simultaneously be performed, i.e., only
one of them cannot be performed.

Proposition 2.6. The following formulas concerning
probabilistic operators are valid inPpCTL: for any
formulaα,

1. ∼P≤xα ↔ P≻x∼α,
2. ∼P≥xα ↔ P≺x∼α,
3. ∼P≺xα ↔ P≥x∼α,
4. ∼P≻xα ↔ P≤x∼α,

Proof. Suppose thatM = 〈S,S0,R, µs,L+,L−〉 is
an arbitrary ppk-structure, and that|=+ and |=− are
any satisfaction relations onM. We only show the
following case.

(1): We show only that∼P≤xα→P≻x∼α is valid
in PpCTL. Lets be an arbitrary element ofS. Then,
we showM,s |=+ ∼P≤xα→P≻x∼α. To show this, we
show thatM,s |=+ ∼P≤xα implies M,s |=+ P≻x∼α.
SupposeM, |=+ ∼P≤xα. Then, we obtain the re-
quired fact as follows: M, |=+ ∼P≤xα iff M, |=−

P≤xα iff µs({w∈ Ωs | M,w |=− α}) > x iff µs({w ∈
Ωs | M,w |=+ ∼α})> x iff M,s |=+ P≻x∼α. Q.E.D.
Definition 2.7 (pCTL). A probabilistic Kripke struc-
ture (pk-structurefor short) for pCTL is a structure
〈S,S0,R, µs,L〉 such that

1. S,S0,R and µs are the same as those in Definition
2.2,

2. L is a mapping from S to the power set of a
nonempty subsetAT of ATOM.

A satisfaction relation|= on a pk-structure M=
〈S, S0,R, µ,L〉 for pCTL is defined by the same condi-
tions for |=+ (except the condition 6) as in Definition

2.3 (by deleting the superscript+). The validity, sat-
isfiability and model-checking problems forpCTL are
defined similarly as those forPpCTL.

3 EMBEDDABILITY AND
RELATIVE DECIDABILITY

Definition 3.1. Let AT be a non-empty subset of
ATOM, andAT′ be the set{p′ | p ∈ AT} of atomic
formulas. The languageL∼ (the set of formu-
las) of PpCTL is defined usingAT, ∼, →,∧,∨,¬,
P≤x,P≥x,P≺x,P≻x, X, F, G, U, R, A andE. The lan-
guageL of pCTL is obtained fromL∼ by addingAT′

and deleting∼.
A mapping f fromL∼ to L is defined inductively

by:

1. for any p∈AT, f(p) := p and f(∼p) := p′ ∈AT′,

2. f(α ♯ β) := f (α) ♯ f (β) where♯ ∈ {∧,∨,→},

3. f(♯α) := ♯ f (α) where♯ ∈ {¬, P≤x,P≥x, P≺x,P≻x,
AX ,EX, AG,EG, AF,EF},

4. f(A(αUβ))) := A( f (α)U f (β)),
5. f(E(αUβ))) := E( f (α)U f (β)),
6. f(A(αRβ))) := A( f (α)R f (β)),
7. f(E(αRβ))) := E( f (α)R f (β)),
8. f(∼∼α) := f (α),
9. f(∼(α→β)) := f (α)∧ f (∼β),

10. f(∼(α∧β)) := f (∼α)∨ f (∼β),
11. f(∼(α∨β)) := f (∼α)∧ f (∼β),
12. f(∼¬α) := f (α),
13. f(∼P≤xα) := P≻x f (∼α),
14. f(∼P≥xα) := P≺x f (∼α),
15. f(∼P≺xα) := P≥x f (∼α),
16. f(∼P≻xα) := P≤x f (∼α),
17. f(∼AXα) := EX f (∼α),
18. f(∼EXα) := AX f (∼α),
19. f(∼AGα) := EFf (∼α),
20. f(∼EGα) := AF f (∼α),
21. f(∼AFα) := EGf (∼α),
22. f(∼EFα) := AG f (∼α),
23. f(∼(A(αUβ))) := E( f (∼α)R f (∼β)),
24. f(∼(E(αUβ))) := A( f (∼α)R f (∼β)),
25. f(∼(A(αRβ))) := E( f (∼α)U f (∼β)),
26. f(∼(E(αRβ))) := A( f (∼α)U f (∼β)).
Lemma 3.2. Let f be the mapping defined in
Definition 3.1. For any ppk-structure M:=
〈S,S0,R,µs,L+,L−〉 for PpCTL, and any satisfaction
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relations|=+ and |=− on M, we can construct a pk-
structure N:= 〈S,S0,R,µs,L〉 for CTL and a satisfac-
tion relation |= on N such that for any formulaα in
L∼ and any state s in S,

1. M,s |=+ α iff N,s |= f (α),
2. M,s |=− α iff N,s |= f (∼α).

Proof. Let AT be a nonempty subset of ATOM,
and AT′ be the set{p′ | p∈ AT} of atomic formulas.
Suppose thatM is a ppk-structure〈S,S0,R,µs,L+,L−〉
such thatL+ andL− are mappings fromSto the power
set of AT. Suppose thatN is a pk-structureM :=
〈S,S0,R,µs,L〉 such thatL is a mapping fromS to the
power set of AT∪AT′. Suppose moreover that for any
s∈ Sand anyp∈ AT,

1. p∈ L+(s) iff p∈ L(s),

2. p∈ L−(s) iff p′ ∈ L(s).

The lemma is then proved by (simultaneous) in-
duction on the complexity ofα.

• Base step:
Caseα ≡ p∈ AT: For (1), we obtain:M,s |=+ p

iff p∈ L+(s) iff p∈ L(s) iff N,s |= p iff N,s |= f (p)
(by the definition off ). For (2), we obtain:M,s |=−

p iff p ∈ L−(s) iff p′ ∈ L(s) iff N,s |= p′ iff N,s |=
f (∼p) (by the definition off ).

• Induction step: We show some cases.
Caseα ≡ β→γ: For (1), we obtain:M,s |=+ β→γ

iff M,s |=+ β implies M,s |=+ γ iff N,s |= f (β) im-
plies N,s |= f (γ) (by induction hypothesis for 1) iff
N,s |= f (β)→ f (γ) iff N,s |= f (β→γ) (by the def-
inition of f ). For (2), we obtain: M,s |=− β→γ
iff M,s |=+ β and M,s |=− γ iff N,s |= f (β) and
N,s |= f (∼γ) (by induction hypothesis for 1 and 2)
iff N,s |= f (β)∧ f (∼γ) iff N,s |= f (∼(β→γ)) (by the
definition of f ).

Caseα ≡ ¬β: For (1), we obtain:M,s |=+ ¬β iff
not-[M,s|=+ β] iff not-[N,s|= f (β)] (by induction hy-
pothesis fotr 1) iffN,s |= ¬ f (β) iff N,s |= f (¬β) (by
the definition of f ). For (2), we obtain:M,s |=− ¬β
iff M,s |=+ β iff N,s |= f (β) (by induction hypothesis
for 1) iff N,s |= f (∼¬β) (by the definition off ).

Caseα ≡∼β: For (1), we obtain:M,s |=+ ∼β iff
M,s |=− β iff N,s |= f (∼β) (by induction hypothesis
for 2). For (2), we obtain:M,s |=− ∼β iff M,s |=+

β iff N,s |= f (β) (by induction hypothesis for 1) iff
N,s |= f (∼∼β) (by the definition off ).

Caseα ≡ AXβ: For (1), we obtain: M,s |=+

AXβ iff ∀s1 ∈ S [(s,s1) ∈ R implies M,s1 |=+ β] iff
∀s1 ∈ S [(s,s1) ∈ R impliesN,s1 |= f (β)] (by induc-
tion hypothesis for 1) iffN,s |= AX f (β) iff N,s |=
f (AXβ) (by the definition off ). For (2), we obtain:
M,s |=− AXβ iff ∃s1 ∈ S[(s,s1) ∈ RandM,s1 |=

− β]
iff ∃s1 ∈ S [(s,s1) ∈ R andN,s1 |= f (∼β)] (by induc-

tion hypothesis for 2) iffN,s |= EX f (∼β) iff N,s |=
f (∼AXβ) (by the definition off ).

Caseα ≡ P≤xβ: For (1), we obtain: M,s |=+

P≤xβ iff µs({w ∈ Ωs | M,w |=+ β}) ≤ x iff µs({w ∈
Ωs | N,w |= f (β)}) ≤ x (by induction hypothesis for
1) iff N,s |= P≤x f (β) iff N,s |= f (P≤xβ) (by the def-
inition of f ). For (2), we obtain:M,s |=− P≤xβ iff
µs({w∈Ωs | M,w |=− β})> x iff µs({w∈Ωs | N,w |=
f (∼β)})> x (by induction hypothesis for 2) iffN,s|=
P≻x f (∼β) iff N,s |= f (∼P≤xβ) (by the definition of
f ).

Caseα ≡ P≺xβ: For (1), we obtain: M,s |=+

P≺xβ iff µs({w ∈ Ωs | M,w |=+ β}) < x iff µs({w ∈
Ωs | N,w |= f (β)}) < x (by induction hypothesis for
1) iff N,s |= P≺x f (β) iff N,s |= f (P≺xβ) (by the def-
inition of f ). For (2), we obtain:M,s |=− P≺xβ iff
µs({w∈Ωs | M,w |=− β})≥ x iff µs({w∈Ωs | N,w |=
f (∼β)})≥ x (by induction hypothesis for 2) iffN,s|=
P≥x f (∼β) iff N,s |= f (∼P≺xβ) (by the definition of
f ). Q.E.D.

Lemma 3.3. Let f be the mapping defined in Defini-
tion 3.1. For any pk-structure N:= 〈S,S0,R,µs,L〉 for
pCTL, and any satisfaction relation|= on N, we can
construct a ppk-structure M:= 〈S,S0,R,µs,L+,L−〉
for PpCTLand satisfaction relations|=+ and|=− on
M such that for any formulaα in L∼ and any state s
in S,

1. N,s |= f (α) iff M ,s |=+ α,
2. N,s |= f (∼α) iff M ,s |=− α.

Proof. Similar to the proof of Lemma 3.2.Q.E.D.

Theorem 3.4(Embeddability). Let f be the mapping
defined in Definition 3.1. For any formulaα,

α is valid (satisfiable) inPpCTL iff f (α) is
valid (satisfiable, resp.) inpCTL.

Proof. By Lemmas 3.2 and 3.3.Q.E.D.

Corollary 3.5 (Relative decidability). If the model-
checking, validity and satisfiability problems for
pCTL with a probability measure are decidable, then
the model-checking, validity and satisfiability prob-
lems forPpCTL with the same probability measure
as that ofpCTL are also decidable.

Proof. Suppose that the probability measureµs
in the underlying ppk-structure〈S,S0,R, µs, L+,L−〉
of PpCTL is the same as the underlying pk-structure
〈S,S0,R, µs, L〉 of pCTL. Suppose also that pCTL
with µs is decidable. Then, by the mappingf defined
in Definition 3.1, a formulaα of PpCTL can be
transformed into the corresponding formulaf (α) of
pCTL. By Lemmas 3.2 and 3.3 and Theorem 3.4, the
model checking, validity and satisfiability problems
for PpCTL can be transformed into those of pCTL.
Since the model checking, validity and satisfiability
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problems for pCTL withµs are decidable by the
assumption, the problems for PpCTL withµs are also
decidable.Q.E.D.

Some remarks on the decidability are given:

1. The logic pCTL with two probability measures
µ+s andµ−s by Bianco and de Alfaro is decidable
(Bianco and de Alfaro, 1995). The logic pCTL
with a probability measureµs by Aziz et al. is also
decidable (Aziz et al., 1995). Thus, the extended
PpCTLs based on the above pCTLs are also de-
cidable by Corollary 3.5.

2. Since the mappingf from PpCTL into pCTL is a
polynomial-time reduction, the complexity results
for PpCTL becomes the same results as those for
pCTL., e.g., if the model-checking problem for
pCTL is deterministic PTIME-complete, then so
is PpCTL.

3. The model-checking, validity and satisfiability
problems for both CTL and its paraconsistent ex-
tension PCTL (Kaneiwa and Kamide, 2011) are
known to be EXPTIME-complete, deterministic
EXPTIME-complete and deterministic PTIME-
complete, respectively.

4 ILLUSTRATIVE EXAMPLES

4.1 SQL Injection Attack Detection

SQL injection (Clarke, 2009) is one of the numer-
ous malicious attack methods used to exploit security
vulnerabilities on SQL database servers. An attacker
sends injection codes through a network to illegally
obtain stored information from the SQL database
servers. An automatic detection method for SQL in-
jection attacks is explained here on the basis of the
studies reported by (Sonoda et al., 2011; Matsuda
et al., 2011; Koizumi et al., 2012). They utilized
the contained rate of suspicious characters over the
length of an input string. Consider that an automatic
detection program attempts to determine if theith in-
put stringl i (i = 1,2, . . .) to an SQL database server is
obtained as a result of an SQL injection attack. Then,
thecontained rate pi can be defined as:

pi =
#S
|l i |

, (1)

where #S is the number of suspicious characters and
|l i | is the length of theith input string. Automatic
detection withpi is executed on the basis of the fol-

lowing rule:

h(pi) =

{

1 if pi > α;
0 otherwise,

(2)

whereh(pi) = 1 indicates that the detected result is
an attack string,h(pi) = 0 implies that it is a normal
string, andα is a predeterminedthreshold value. A set
S contains some suspicious characters (e.g., a space,
semi-colon, single quotation, etc.) in the input string
of some SQL injection attacks.

Example 4.1. Suppose the unknown input string l1 as
“ DROP sampletable;--” to the SQL server. Let the
elements of S be a space, semi-colon, and right paren-
thesis, and let the threshold valueα be 0.08. Then,
this input l1 is detected as attack string because the
length |l1| is 19 and the suspicious characters con-
tained in S is 2, the contained rate p1 = 2/19= 0.105,
and hence p1 is greater thanα.

In the experiment by (Sonoda et al., 2011), each
attack detection rate µA and normal detection rate
µN for the underlying characters was calculated by
changing the thresholdα. An overall detection rate
µ is defined as the weighted average ofµA andµN:

µ= (1−β)×µA+β×µN, (3)

where a real numberβ, which satisfies 0≤ β ≤ 1, is
the weight of the normal string over the input strings.
The use of the SQL injection attack detection algo-
rithm explained above is assumed in the following
discussion.

4.2 Representing Paraconsistency

Now, we consider some example formulas for SQL
injection attacks. The paraconsistent negation con-
nective∼α in PpCTL is used to represent the nega-
tion of an uncertain or ambiguous concept “attack”.
If we cannot determine whether an input string is ob-
tained by an SQL injection attack, then this concept is
regarded as uncertain. The uncertain conceptattack
can be represented by asserting the inconsistent for-
mula of the form: attack∧∼attack where∼attack
represents the uncertain negation information that can
be true at the same time asattack, which represents
positive information. This is well-formalized because
the formula of the form:(attack∧∼attack)→⊥ is not
valid in PpCTL.

We can also present the following formula:
EF(attack∧∼attack) which implies: “There exists
a situation in which a string input is considered to
be obtained as both an SQL injection attack and a
non-SQL injection attack, i.e., we cannot determine
by the algorithm whether a string was obtained from
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an attack.” In addition, we can present the following
formula: EF(crashed∧AG crashed) which implies:
“There is a situation in which a crashed database
caused by an SQL injection attack will not function
again.”

4.3 Representing Probability

We can express Example 4.1 as the following for-
mula: AG(P≤0.08α ∧ (pi < α) →∼attack) which im-
plies: “If the threshold valueα is at the most 8 percent
and the contained ratepi is greater thanα, then the
string wasprobably notobtained by an SQL injection
attack, i.e., it can be regarded as a normal string.”

Let µA and µN be an attack detection rate and
a normal detection rate, respectively. Then, we
can present the following formula: AG(P≥0.08µA ∧
P≥0.02µN → attack) which implies: “If the attack de-
tection rateµA and the normal detection rateµN with
respect to some fixed characters in the underlying
string are at least 8 percent and at least 2 percent, re-
spectively, then the string is obtained by an SQL in-
jection attack, i.e., it is regarded as a malicious attack
string.”

Similarly, we can present the following formula:
AG (P≺0.08µA ∧ P≺0.02µN → ∼attack) which im-
plies: “The string entered by someone isprobably
notobtained by an SQL injection attack.” In addition,
we present the following formula with the classical
negation connective¬: AG (P≺0.02µA ∧ P≺0.01µN →
¬attack) which implies: “The string entered by some-
one isclearly notobtained by an SQL injection attack,
i.e., it is just a normal string.”

4.4 Representing Experimental Facts

The single quotation mark “’” forms a set with the
previous single quotation. A pair of single quota-
tion marks appears, for instance, as “uid=’user01’”
which implies: “the user ID is user01.” We
can present this situation as the following for-
mula: AG(singleQuotation∧ EF singleQuotation→
∼attack) which implies: “At any time, if a single quo-
tation “’” appears in the string described in a web
form, and the corresponding (closed) single quotation
“’” eventually appears in the same string, then such
an input string is probably not obtained as an SQL
injection attack.”

The statement “OR 1=1” is sometimes used in an
attack string. Then, we present this situation as the
following formula: AG(EF or1=1→ attack) which
implies: “At any time, if the statement “OR 1=1”
eventually appears, then such an input string was
probably obtained as an SQL injection attack.”

5 CONCLUSIONS AND RELATED
WORKS

In this paper, the paraconsistent probabilistic compu-
tation tree logic (PpCTL) was introduced and stud-
ied. PpCTL was constructed by combining two ex-
isting extended temporal logics: paraconsistent com-
putation tree logic (PCTL) and probabilistic compu-
tation tree logic (pCTL). Then, a theorem for em-
bedding PpCTL into pCTL was proven using transla-
tion, which is independent of the probability measure
setting. A relative decidability theorem for PpCTL,
which states that the decidability of pCTL implies that
of PpCTL, was also obtained as a corollary of this
embedding theorem. This relative decidability theo-
rem indicates that we can reuse some existing pCTL-
based verification algorithms. Some illustrative ex-
amples for describing an SQL injection attack detec-
tion algorithm, involving the use of PpCTL, were also
presented to highlight the virtues of combining para-
consistency (in PCTL) and probability (in pCTL).

Some remarks are given as follows. A transla-
tion from PpCTL into PCTL was not given in this
paper, although a translation from PpCTL into pCTL
was given. The issue for obtaining a translation from
PpCTL (pCTL) into PCTL (CTL, resp) has not been
solved yet, because a formula with the probabilistic
operators which have the probability measures is dif-
ficult to translate into a non-probabilistic formula of
PCTL or CTL. In the meantime, we would like to
extend the proposed embedding-based method for an
extended PpCTL with thesequence modal operator
which was introduced for expressing ontological or
hierarchical information (see e.g, (Kamide, 2013)).
This issue is remained as a future work.

The rest of this paper addresses some closely re-
lated works. While the idea of combining paracon-
sistency and probability within a temporal logic is
new, the idea of introducing a paraconsistent compu-
tation tree logic is not. In this study, PCTL (Kamide
and Kaneiwa, 2010; Kaneiwa and Kamide, 2011)
was used as a base logic for constructing PpCTL.
However, there are some other paraconsistent vari-
ants of CTL. For example, amulti-valued computa-
tion tree logic, χCTL, was introduced by Easterbrook
and Chechik (Easterbrook and Chechik, 2001), and a
quasi-classical temporal logic, QCTL, was proposed
by Chen and Wu (Chen and Wu, 2006). PCTL was in-
troduced as an alternative to these logics. In addition,
an extension PCTL∗ of PCTL has also been studied
from the viewpoint of bisimulations for paraconsis-
tent Kripke structures in paraconsistent model check-
ing (Kamide, 2006). Another extension of PCTL was
also studied in (Kamide, 2013) for verifying student
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learning processes in learning support systems.
Compared with paraconsistent CTLs, several

studies have been reported on probabilistic temporal
logics, including probabilistic CTLs. The study in
(Hansson and Jonsson, 1994) is a typical example of
such a study. In (Hansson and Jonsson, 1994), a prob-
abilistic and real-time extension of CTL, also called
PCTL, was introduced and investigated on the basis
of an interpretation ofdiscrete time Markov chains. In
contrast to the probabilistic frameworks of pCTL and
PpCTL, the notion of probability in PCTL is assigned
to all the temporal operators in PCTL. For example,
a PCTL formula with the form G≤t

≥pα implies “the
formulaα holds continuously fort time units with a
probability of at leastp.”
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