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Abstract: In this paper we present several combination strategies using multiple BLSTM-CTC systems. Given several
feature sets our aim is to determine which strategies are the most relevant to improve on an isolated word
recognition task (the WR2 task of the ICDAR 2009 competition), using a BLSTM-CTC architecture. We
explore different combination levels: early integration (feature combination), mid level combination and late
fusion (output combinations). Our results show that several combinations outperform single feature BLSTM-
CTCs.

1 INTRODUCTION

Automatic off-line handwriting recognition is the
transcription into an electronic format of an image
containing a graphical representation of a word. The
recognition of offline handwriting is difficult due to
the variability between writers for a same word, pres-
ence of overlapping letters, and complex long term
context dependencies. However, handwriting systems
have been successfully applied to different tasks, such
as bank cheque recognition (Knerr et al., 1997) and
postal address recognition (El-Yacoubi et al., 1995).
Indeed bank cheques and addresses follow a strict for-
mat and have a very limited vocabulary: the prior
knowledge on these task is extensively used to boost
the recognition performances. However, the recogni-
tion of unconstrained handwriting that can occur in
various documents, such as letters, books, notes, is a
very complex task. Exploring recognition in context
free systems is now a main interest of researchers.

Handwriting systems are generally divided in four
steps: preprocessing, feature extraction, recognition
and post-processing. In this paper we focus on the
recognition stage, for which the Hidden Markov Mod-
els (Rabiner, 1989) (HMM) have been massively used
(Kundu et al., 1988; El-Yacoubi et al., 1999; Bunke
et al., 2004). HMMs are states machines that com-
bine two stochastic processes: a stochastic event that
cannot be observed directly (the hidden states) is ob-

served via a second stochastic process (the observa-
tions).

These models have several advantages. First they
provide a way of breaking out of Sayre’s paradox
(Vinciarelli, 2002). Indeed recognizing a letter in a
word image requires its prior detection. But the re-
verse is also true, thus leading to an ill posed problem
known as Sayre’s paradox in the literature. Methods
using HMMs break up word images in atomic parts,
either as graphemes or frames extracted using a slid-
ing window. This will cause a difference between
the input sequence length and the output sequence
length. However, HMMs are able to cope with this
difference in length, they can label unsegmented se-
quences. They do so by recognizing every window as
a character or part of a character and modeling char-
acter length. A second advantage of HMMs is their
robustness to noise since they are statistical models.
Furthermore, the algorithms used for HMMs decod-
ing integrate language modeling, lexicon check or N-
gram models, which makes them very powerful tools
for handwriting recognition.

However, they also have some shortcomings.
Firstly, they are generative systems, which means that
when compared to other classifiers, they have a lesser
ability to discriminate between data since they pro-
vide a likelihood measure to decide . Secondly, within
the HMMs framework the current hidden state only
depends on the current observation and the previous

173Mioulet L., Bideault G., Chatelain C., Paquet T. and Brunessaux S..
BLSTM-CTC Combination Strategies for Off-line Handwriting Recognition.
DOI: 10.5220/0005178601730180
In Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM-2015), pages 173-180
ISBN: 978-989-758-076-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



state (markovian condition) which prohibits the mod-
eling of long term dependencies.

Recently a new system based on recurrent neural
networks (Graves et al., 2008) has overcome these
shortcomings. The Bi-directional Long Short Term
Memory neural network (Hochreiter and Schmidhu-
ber, 1997; Gers and Schraudolph, 2002) (BLSTM)
consists in combining two recurrent neural networks
with special neural network units. The output of
these networks are then processed by a special Soft-
max layer, the Connectionist Temporal Classification
(Graves and Gomez, 2006) (CTC), that enables the
labelling of unsegmented data. The composed sys-
tem, referred as the BLSTM-CTC, has shown very
impressive results on challenging databases (Graves,
2008; Graves et al., 2009; Grosicki and Abed, 2009;
Menasri et al., 2012).

In this paper, we present three baseline systems
using the same architecture, built around the BLSTM-
CTC network. These systems only differ by the
features that are extracted using a sliding window
method. These baseline systems enable a direct com-
parison between the three sets of features, which en-
ables us to prefer one set of features over the other.
However, it is well known that combining systems
or features may improve the overall results (Menasri
et al., 2012; Gehler and Nowozin, 2009).

In this paper we explore different ways of com-
bining an ensemble of F BLSTM-CTC. We explore
different levels of information combination, from a
low level combination (feature space combination), to
mid-level combinations (internal system representa-
tion combinations), and high level combinations (de-
coding combinations). The experiments are carried
out on the handwriting word recognition task WR2
of the ICDAR 2009 competition (Grosicki and Abed,
2009). We first present the baseline system used for
handwriting recognition. We then detail the differ-
ent level of combinations available throughout the
BLSTM architecture, finally we present the results
and analyse them.

2 THE BASELINE PROCESSING
SYSTEM

In this section we present the baseline system we use
to recognize handwritten word images. We first give
an overview of our system, we then describe each step
with further detail.

2.1 Overview

Our system is dedicated to recognizing images of iso-
lated handwritten words. In order to do so we imple-
mented a very common processing workflow that is
represented in Fig. 1.

First the image is preprocessed in order to remove
noise and normalize character appearance between
different writing styles. Given that our main interest
is the combination of systems we did not focus on the
preprocessing, hence we used well known algorithms
that have been widely used in the literature. After
cleaning the image we use a sliding window to ex-
tract the features: a window of length P is used to ex-
tract a subframe from the image, this subframe is then
analyzed and transformed by mathematical processes
into a M dimensional vector representation. For in-
stance a 2D image of length N is transformed into a
sequence of N feature vectors of dimension M.

This sequence is then processed by a BLSTM-
CTC network, in order to transform this M dimen-
sional signal into a sequence of labels (characters).
This output is finally processed by a HMM in order
to apply a directed decoding. It has to be stressed
that it is possible to add a lexicon to the BLSTM-CTC
(Graves et al., 2009) decoding stage. However, we did
not opt for this solution since the HMMs enable us to
be more modular, e.g. offering the possibility to inte-
grate language models with various decoding strate-
gies available on standard decoding platforms such as
HTK (Young et al., 2006), Julius (Lee et al., 2001) or
Kaldi (Povey et al., 2011), without deteriorating the
performances.

We now go into further details for each part.

2.2 Preprocessing

The preprocessing of images consists in a very simple
three step image correction. First a binarization by
thresholding is applied. Secondly a deslanting pro-
cess (Vinciarelli and Luettin, 2001) is applied. The
image is rotated between [−Θ;Θ] and for each an-
gle θ the histogram of vertical continuous traits Hθ is
measured. The deslanting angle is determined by the
Hθ with the maximum number of continuous traits.
Thirdly a height normalization technique is applied to
center the baseline and normalize the heights of the
ascenders and descenders.

2.3 Feature Computation

Among numerous feature representations, we se-
lected three efficiency proven features: the pixels, the
features presented in (Graves et al., 2009), and the

ICPRAM�2015�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

174



Figure 1: The baseline system.

Histogram of Oriented Gradients (Dalal and Triggs,
2005; Ait-Mohand et al., 2014). In the remaining of
this paper, these feature sets are respectively referred
as Pixels, SPF and HOG. They are all extracted us-
ing a sliding window method on the images. We now
briefly describe the three feature sets.

Pixels: pixels feature are the pixel intensity values
on a single colon. No other features are extracted, the
image is the direct input of the system.

SPF: The features presented in (Graves et al.,
2009) are referred as Simple Pixel Features (SPF). It
is a very simple set of features, based on a spatial rep-
resentation of a single colon of pixels. SPF are a low
level feature set, very basic information is extracted
from the pixels. It mainly compresses the informa-
tion for faster processing. We decline this descriptor
over three colons of pixels, hence composing a vector
of 3×9 = 27 dimensions.

HOG: HOG describes the window by dividing it
into sub-windows of n× n pixels. Within each sub-
window a histogram is computed, it describes the dis-
tribution of the local intensity gradients (edge direc-
tion). The histograms from all sub-windows are then
concatenated to form the final representation. In our
experiments, we have found out that the best window
size was 8×64 pixels, divided into 8 non-overlapping
sub-windows of 8×8 using 8 directions, hence com-
posing a feature vector of 64 dimensions. HOG fea-
tures are medium level features, they are more com-
plex features than SPF, they describe the local context
of the window.

2.4 BLSTM-CTC

After extracting the features from a database (RIMES
database) they are then independently used to train a
BLSTM-CTC network. The network transforms a se-
quence of unsegmented data into a one dimensional
output vector, e.g. it transforms a sequence of SPF
features of length N into a word of length L. We first
present the BLSTM network and then the CTC.

2.4.1 BLSTM Network

The BLSTM is a complex memory management net-
work, it is in charge of processing a N dimensional in-
put signal to produce an output signal that takes into

account long term dependencies. In order to do this
the BLSTM is composed of two recurrent neural net-
works with Long Short Term Memory neural units.

One network processes the data chronologically
while the other processes the data in reverse chrono-
logical order. Therefore at time t a decision can be
taken by combining the outputs of the two networks,
using past and future context. For handwriting recog-
nition having a certain knowledge of previous and
future possible characters is important since in most
cases characters follow a logical order induced by the
underlying lexicon of the training database. Instead
of modeling this order at a high level using N-grams
they are integrated at a low level of decision inside the
BLSTM networks. Moreover, handwritten characters
have various length which can be modeled efficiently
by the recurrent network.

These networks integrate special neural network
units: Long Short Time Memory (Graves and Gomez,
2006) (LSTM). LSTM neurons consist in a memory
cell an input and three control gates. The gates con-
trol the memory of the cell, namely: how an input will
affect the memory (input gate), if a new input should
reset the memory cell (forget gate) and if the memory
of the network should be presented to the following
neural network layer (output gate). The gates enable a
very precise and long term control of the memory cell.
Compared to traditional recurrent neural network lay-
ers, LSTM layers can model much longer and more
complex dependencies. A LSTM layer is a fully re-
current layer, the input and the three gates receive at
each instant t the input at time t from the previous
layer and the previous output t −1.

The combination of the bidirectional networks
with LSTM units enables the BLSTM to provide a
complex output taking into account past and future
long term dependencies.

2.4.2 CTC Layer

The CTC is a specialized neural network layer dedi-
cated to transforming BLSTM outputs into class pos-
terior probabilities. It is designed to be trained using
unsegmented data, such as handwriting or speech. It
is a Softmax layer (Bishop, 1995) where each output
represents a character, it transforms the BLSTM sig-
nal into a sequence of characters. This layer has as
many outputs as characters in the alphabet plus one
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additional output, a “blank“ or “no decision“ output.
Therefore it has the ability to avoid taking a deci-
sion in uncertain zones instead of continuously being
forced to decide on a character signal in a low context
area (e.g. uncertain).

The power of the CTC layer is in its training
method. Indeed for handwriting recognition, images
are labelled at a word level, therefore making it im-
possible to learn characters individually. The CTC
layer provides a learning mechanism for such data.
Inspired by the HMM algorithms, the CTC uses an
objective function integrating a forward and backward
variable to determine the best path through a lattice of
possibilities. These variables enable the calculation of
error between the network output and the groundtruth
at every timestep for every label. An objective func-
tion can then be calculated to backpropagate the error
through the CTC and the BLSTM network using the
Back Propagation Through Time(Werbos, 1990) al-
gorithm.

After being trained the BLSTM-CTC is able to
output for an unknown sequence x a label output l′.

2.5 HMM

In order to perform lexicon directed recognition we
use a modeling HMM. This stage is usually per-
formed by the CTC using a Token Passing Algorithm
(Graves et al., 2009). However, we substitute this cor-
rection step by a modeling HMM, enabling us to have
more flexibility in regards of the decoding strategy ap-
plied without deteriorating the results.

The BLSTM-CTC character posteriors substitute
the Gaussian Mixture Models (Bengio et al., 1992)
(GMM), prior to this step we simplify the outputs of
the CTC. As said previously the blank output covers
most of the response of a CTC output signal, whereas
character labels only represent spikes in the signal.
We therefore remove all blank outputs above a cer-
tain threshold, this enables us to keep some uncertain
blank labels that may be used for further correction by
the HMM lexicon directed stage. This new CTC out-
put supersedes the GMMs used to represent the under-
lying observable stochastic process. Subsequently the
HMM uses a Viterbi lexicon directed decoding algo-
rithm (implementing the token passing decoding al-
gorithm) and outputs the most likely word among a
proposed dictionary.

3 SYSTEM COMBINATION

In the previous section we described the BLSTM-
CTC neural network. Our main interest in this paper

is to combine F feature representations in a BLSTM-
CTC system to improve the recognition rate of the
overall system. The BLSTM-CTC exhibits three dif-
ferent levels at which we can combine the features:

1. Low level combination can be introduced through
the combination of the input features

2. Mid level combination can be introduced by com-
bining the BLSTM outputs into one single deci-
sion stage. This combination strategy assumes
implicitly that each BLSTM provides specific fea-
tures on which an optimized CTC based decision
can take place.

3. Finally a high level combination at the CTC de-
coding stage using the direct output of this level.

We now describe in detail each combination scheme
using F different feature sets. Fig. 2 represents all the
combinations we explored.

3.1 Low Combination

First we consider the feature combination. The fea-
ture vectors of the different representations are con-
catenated into one unique vector, this method is also
known as early integration. Combining at this level
has the advantage of being the most straightforward
method.

3.2 Mid Level Combination

The mid level combination concerns the BLSTM
level combination. This method is inspired by pre-
vious work on deep neural networks, especially auto-
encoders (Bengio, 2009) and denoising auto-encoders
(Vincent et al., 2008). An ensemble of F BLSTM-
CTC is first trained on the F different feature rep-
resentations. Then the CTCs are removed, hence
removing the individual layers that transform each
feature signal into a label sequence. The remaining
BLSTMs output are then combined by training a new
architecture containing a CTC. The BLSTMs weights
stay unchanged during the training of the new archi-
tecture, we consider they are high level feature ex-
tractors that are independently trained to extract the
information from each feature set.

We consider the addition of two different archi-
tectures for this level of combination. First a single
CTC layer is added, this CTC level is a simple feature
combination layer (See Fig. 2 system 2.1). Second a
complete BLSTM-CTC architecture is added, hence
building a new feature extractor using the previously
acquired context knowledge as an input (See Fig. 2
system 2.2).
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Figure 2: The different BSTM-CTC combinations.

3.3 High Level Combination

Lastly we consider the combination of the CTC out-
puts, a late fusion stage. An ensemble of F BLSTM-
CTC is first trained on the F different feature rep-
resentations. The outputs of each BLSTM-CTC are
then combined to form a new output signal. We pro-
pose five different combination operators for the out-
puts:

1. Averaging outputs: it performs a simple average
of outputs at every instant (Fig. 2 system 3.1).

2. Averaging outputs and training a new BLSTM-
CTC: a BLSTM-CTC is added in order to mea-
sure the ability of the BLSTM-CTC to learn and
correct long term dependencies errors at a charac-
ter level (Fig.2 system 3.2).

3. Combination of outputs and training a new
BLSTM-CTC: this method selects at every instant
the maximum output between the F output labels,
the results are then normalized to appear in the

range [0;1] (Fig. 2 system 3.3).

4. Selecting the maximum output at all times: this
strategy adds a BLSTM-CTC network on the third
combination, for identical reasons than the second
high level combination (Fig. 2 system 3.4).

5. Selecting the maximum output and training a new
BLSTM-CTC: it is a simple concatenation of the
F CTC outputs at every instant (Fig.2 system 3.5).

Therefore creating a new output representation, if
we consider an alphabet A of size |A|, the new rep-
resentation is of dimension (|A|+ 1)×F . This new
output representation is largely superior to the HMM
input dimensions capacity. Hence we use a BLSTM-
CTC to learn and correct errors as well as reduce the
signal dimensionality.

The different combination levels previously pre-
sented all have theoretical advantages and drawbacks.
We now present the experimental results and we ex-
plain why certain combinations outperform the oth-
ers.
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Figure 3: Output signals prior to the HMM on word “d’avance”.

4 EXPERIMENTS

In this section we describe the database and the recog-
nition task we used to compare the various combina-
tion performed on the BLSTM-CTC.

4.1 Database and Task Description

In order to compare our results we use the RIMES
database. This database consists in handwritten letters
addressed to various administrations and registration
services. From these letters, single words were iso-
lated and annotated. The database is divided in three
different subsets: training, validation and test. Each
set contains respectively 44197 images, 7542 images
and 7464 images. The RIMES database was built to
be a low noise database, i.e. the background and fore-
ground pixels are easily identifiable. However, the in-
traword variation is very important since 1300 differ-
ent writers participated for writing the letters. The
word length distribution among the three sets is very
similar. It has to be stressed that the words with three
and less characters contribute to more than 40% of
the database. This will affect the HMM lexicon cor-
rection since it is harder to correct short words.

We compare our results on the ICDAR 2009 WR2
task (Grosicki and Abed, 2009). This task consists

in finding the correct transcription of a word using a
lexicon of 1600 words. The measure used is the Word
Error Rate (WER) on the Top 1 outputs and Top 10
outputs.

In order to learn the system we use the whole
training database to train each part of the system.
This may cause some overfitting, however splitting
the training base in order to train each system on sep-
arate bases causes some global loss on the learning
performances.

4.2 Results

We now present the results of the various combina-
tion schemes on the RIMES database for BLSTM-
CTC feature combination. Table 1 presents the results
of the different combinations by displaying the top 1
and top 10 Word Error Rate (WER). We also provide
the raw WER output of the last CTC layer prior to
the HMM layer, i.e. the system without the lexicon
decoding. Combination 3.2 an 3.5 do not outperform
the single features, all other prove to be better strate-
gies than single feature combination.

The best combination is the low level feature com-
bination. The reason is that the BLSTM-CTC is able
to model very efficiently the data. In a very similar
fashion to deep neural networks, it models very well
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Table 1: Results of the different BLSTM-CTC combination experiments on the RIMES database using Word Error Rate.

System Raw WER Top 1 WER Top 10 WER
Single features:

Pixels 41.95 13.19 3.97
SPF 42.23 13.06 4.34
HOG 37.62 12.49 4.47

1-Low Level combination 32.04 9.53 3.01
2-Mid level combinations:

2.1-Output combination and CTC 33.16 10.06 3.11
2.2-Output combination and BLSTM-CTC 32.89 9.6 2.29

3-High Level combinations:
3.1-Averaging 56.8 10.92 2.35
3.2-Averaging and BLSTM-CTC 34.21 13.36 5.68
3.3-Maximum 74.44 12.09 2.93
3.4-Maximum and BLSTM-CTC 34,25 12.45 4.19
3.5-Output combination and BLSTM-CTC 35.73 15.53 6.36

the spatial and time domain dependencies of features.
In order to combine several features using a BLSTM-
CTC it is therefore preferable to directly combine the
features.

Compared to the results produced in (Grosicki and
Abed, 2009) our system is under the performances
of the TUM system based on BLSTM-CTC which
achieves on the same task a 6.83% WER on top 1
and 1.05% WER on top 10. We must point out the
fact that we did very few optimization steps on the
different neural network systems as well as the dif-
ferent preprocessing parameters. The results could be
improved further thanks to a comprehensive research
on the different parameters.

The results of the mid level combinations are in-
teresting since even without relearning the BLSTM
layer used to extract features we obtain a system
that is close to the low level features performance on
Top 1 and outperforms it on Top 10. Relearning the
BLSTMs used as feature extractors may enable fur-
ther improvements of these results.

The outcome of the high level combinations is
more contrasted. On the one hand averaging and max-
imum enable to improve the Top 1 results. On the
other hand relearning a BLSTM-CTC from these out-
puts does not enable further correction, it slightly de-
creases the performances. For system 3.2 it degrades
the system to the point it is worse than the single fea-
ture systems.

It is noteworthy to point out that the Top 10 of sys-
tem 3.1 is better than system 1, hence the averaging
process is able to produce more hypothesis to be used
during the lexicon directed decoding stage. As it can
be seen on figure 3 the signals between the low level
combination and the averaging are different. The av-
eraging has less peaks achieving the maximum output

value on characters, hence it puts forward more char-
acters that can help explore different paths during the
lexicon directed decoding.

As a final note it is interesting to see that relearn-
ing long term dependencies using a BLSTM-CTC for
high level combinations decreases the performance of
the system. This is probably due to the very peaked
output of the BLSTM-CTC. Indeed relearning from
the output probabilities of the BLSTM-CTC were
strong hypothesis are put forward does not enable the
most likely hypothesis to emerge. The BLSTM-CTC
carrying out the combination may simply be over-
learning the data.

5 CONCLUSION

In this paper we presented different strategies to com-
bine feature representations using a BLSTM-CTC.
The best result is achieved using a low level feature
combination (early integration), indeed the internal
spatial and time modeling ability of the BLSTM net-
work is very efficient. The mid level combination
and the high level combination by averaging improve
significantly the results of the baseline systems. Fu-
ture work will investigate the importance of retrain-
ing the BLSTMs used as feature extractors for the
mid level features. Retraining these weights may im-
prove further the recognition rate of systems 2.1 and
2.2. We will also investigate the addition of high di-
mension feature extractor. Indeed adding too many
features may lead to a saturation of a single BLSTM-
CTC using the low level strategy, hence training mul-
tiple BLSTM layers with low dimensional inputs may
prove a better solution than working with high dimen-
sional input. Future work may also investigate the
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combination of combinations.
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