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Abstract: We proposed a novel framework to analyse homeostasis of gene networks using linear temporal logic. We
formulate a kind of homeostasis stsong satisfiabilityof reactive system specifications. Both behaviours and
properties of gene networks are specified in linear temporal logic and homeostasis of the network is checked
by strong satisfiability checkers. Though this framework is simple and applicable for many networks, the
computational complexity is heavy and large networks cannot be directly analysed. In this paper we present an
approximate analysis method to mitigate this computational difficulty. We approximately specify a network
specification using fewer propositions such that approximated specifications guarantee homeostasis of the
network. However it is difficult to find such safely approximated specifications for any gene network. Thus
we present approximate specificationsrietwork motifswhich are common patterns appearing in many gene
networks. We demonstrate our approximate method and see that our approximate method is quite efficient in
analysing large networks.

1 INTRODUCTION specifications (Pnueli and Rosner, 1989; Abadi et al.,
1989). The problem, however, is the computational

Although homeostasis in biological systems is a re- complexity of realisability problem of LTL which is
markable feature of life, it has been considered to be 2EXPTIME-complete in the size of a formula (Pnueli
elusive and difficult to be analysed. Ito et al. (Ito and Rosner, 1989). Since the size of a formula is pro-
et a|_' 2014) proposed a mathematical and precise def_portional to the size of a netWOfk, direct anaIySiS ofa
inition of homeostasis in gene networks and provided arge network is intractable in general.

a method for analysing it. Their approach is based In this paper, we propose the notion waeak

on lto et al.’s constraint-based modelling of gene net- homeostasighich is close to Ito et al.’s definition but
works (Ito et al., 2010; Ito et al., 2013b; Ito et al., a bit weaker. We formulate this notion Isyrong sat-
2013a) using linear temporal logic (LTL) (Emerson, isfiability (Mori and Yonezaki, 1993) which is weaker
1990). In their method, possible behaviours of gene than realisability. Strong satisfiability is proposed
networks are characterised as LTL formulae, which to approximate realisability and has a more efficient
means that possible behaviours are behaviours thatthecking algorithm than realisability has. However,
satisfy the constraints (called network specifications) the complexity of checking strong satisfiability is
given as LTL-formulae. With network specifications still high (EXPSPACE-complete (Shimakawa et al.,
and given biological property, tHeomeostasisf net- 2013)) and we need to devise some efficient method
work is analysed by checking whether the formulae to mitigate this difficulty. Fortunately, we found that
is realisable or not. The specification which sat- we can import the approximate analysis method for
isfies realisability (homeostasis) can respond to any checking satisfiability (Ito et al., 2013b) to strong sat-
input sequence (any stimulus) without violating the isfiability checking, which is the main contribution of
specification (breaking its internal functions). This this paper. The key idea of approximate analysis is to
framework for analysing gene networks belongs to simplify a network specification using fewer propo-
the same lineage as the verification of reactive systemsitions and approximate the possible behaviours of a
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network. We prove that the certain class of approxi- ® + N0 + >
mate specifications can be used instead of the original

specifications to check weak homeostasis of gene net-rigure 1: A gene network in whick, y andz are genes.
works. The problem is that it is difficult to find such Plus-edges represent activation relationship.
safeapproximate specifications for arbitrary gene net-

works. Thus we use Ito et al.’s approximate specifica- oEp iff peolo]forpeAP
tions (Ito et al., 2013b) fonetwork motifswhich are ok ¢ ifft o
common patterns in gene networks (Alon, 2007). We oAy iff ok=@ando =y
demonstrate our approximate method for several net- ocEoQvy iff oE=@orokEy
works from real biological systems. This experiment cEqUy iff (Ji>0)0 =y
shows that the cost of analysis is drastically reduced and_Vj 0<j<i)o =g
by our approximate analysis. -
This paper is organised as follows. In section 2 whereo' = ofijofi+1]..., i.e. thei-th suffix ofo. We

we introduce LTL and show how we model possible saycamodelof pwheno = .

behaviours of gene networks. In section 3 we define  |n the rest of the paper we use the following ab-
the notion of weak homeostasis using strong satisfia- previations: L = p A =p for somep € AP, T = -1,
bility of LTL. In section 4 we introduce the approx- P P=—0VY oo P=(@— PYAW— ),
imate method for analysing weak homeostasis. We Fp= TUq, Go= —F—¢, and@Ny = (QUU) vV Go.
also present approximate specifications for network we assume that,\ andU bind more strongly than

motifs. In s_ection 5 we show experimental resu_lts of _, and unary connectives bind more strongly than bi-
our approximate method and see how we benefit from pary ones.

it. The final section offers conclusion and future di-

rections. 2.2 Conceptualising Behaviours of a

Gene Network as Time Structure
2 PRELIMINARY

The basic idea of modelling possible behaviours of
a gene network is that we abstract time series of dy-
namic behaviours of gene networks as time structures.
For example, given a network depicted in Fig. 1 in
which genex activates geng and geney activates
genez, we consider an example dynamic behaviour
of this network depicted in Fig. 2. The expression
levelsx, andy in Fig. 2 are the threshold of geme

to activate geng and that of gengto activate gene,
respectively. If a gene is expressed beyond a thresh-
old to activate (or inhibit) a gene, its regulation effects

In this section we introduce linear temporal logic
(LTL) upon which our constraint-based modelling
method is based. Then we review how we charac-
terise possible behaviours of a given network using
LTL (Ito et al., 2010; Ito et al., 2013b; Ito et al.,
2013a).

2.1 Linear Temporal Logic

Let A be a finite set. We writé\® for the set of all start to work. For example, when gexés expressed
infinite sequences oA. We writecli] for thei-th el-  peyond the threshold, (e.g. duration between time
e_ment ofo € Aw. LetAPbe a setA%f proposmogs_. A t;, andts), geney is ON and begins to be expressed.
time structurds a sequence (%) where 2° is If we verbally describe the network behaviour, we

the powerset oAP. The formulae in LTL are defined only need to mention that whether a gene is ON or

as follows. OFF, whether a gene is expressed beyond its thresh-
e pc APis aformula. olds! and how such situation changes over time. Such
atomic facts to describe a situation of a network can
be represented bgropositions In the case of net-
work depicted in Fig. 1, we introduce the following

_Leto be atime structure anglbe a formula. We  propositions to describe the behaviour:
write 0 = @ to mean thatp is true ing, and we say

o satisfiegp. The satisfaction relatiop: is definedas ~ ® Ok, Ony,on;: whether gene, y andz are ON, re-
follows. spectively.

* Xy, Y. whether genex is expressed beyond the

o If @andy are formulae, ther@ @A Y, @V P and
@Jy are also formulae.

1in general, there should be multiple thresholds for each
gene.
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X This is solved by the following principles about be-
haviours of gene networks.

e A gene is ON when its activators are expressed

base A beyond some thresholds.
t . o
v e A gene is OFF when its inhibitors are expressed
beyond some thresholds.
Y, 1 e If a geneis ON, its expression level increases.
base ~ 1 . o If a gene is OFF, its expression level decreases.

Fortunately, these principles can be naturally de-
scribed in LTL. In the following we show how we de-

L /\\ scribe the above principles.
base

t Conditions for Activation and Inhibition of Genes.
toty Lty ttstg t oty tg In simple situation such that genealone activates
e - e behavi ¢ the rilfwork depicted i geney, geney is ON if genex is expressed beyond
igure 2: Example behaviour of the network depicted in isi i
Fig. 1. The Ievebz, is the threshold of gerefor activgting el bk ™l ClliARES
geney andy; is the threshold of gengfor activating gene G(xy — ony).
Z

Another choice i$5(xy <+ ony) which says that gene

O y is ON if, and only if genex is expressed beyond
OO 0020200020202 the thresholdk,. If we consider no other (implicit)
e, e T, regulator for geng, the latter specification may be
ony  ony ony ony on, reasonable. Similarly, if gene alone inhibits gene
e y, geney is OFF if genex is expressed beyond the
thresholdx,. This is described as
Figure 3: Representation of behaviour depicted in Fig. 2 as
a gme structSre. P ’ G(xy — —on).
As in the case of activation , we may wri@xy <
thresholdxy, and whether gengis expressed be-  —ony).
yond the thresholg,, respectively. For more complicated situation, a gene has mul-
tiple regulators and the effect may be different from

Using these propositions as the #6t of atomic e ganother. For example, consider that geigac-

propositions, we have a time structure (2°")° de- fjyated by both geng andy, and inhibited by gene
picted in Fig. 3. Note that state 0 corresponds to the Generally we do not know the regulation function of
interval [0, to), state 1 tdfto, t1), and so on. u which has three inputs. In such situation, we only

) ) _ describe sufficient conditions fais activation and in-
2.3 Modelling Possible Behaviours of a hibition: geneu is ON if genex is expressed beyond

Network in LTL Xu, geney beyondy, and genez below z,. This is
described as

Based on the abstraction of behaviours of a net- G(Xu AYuA—zy — ony).

work as a time structure, we characterise possible be-p,o-a0ver gene is OFF if genexis expressed below
havpurs of agene network as _the set of the mod_els ofxu andgeney belowy, andgenez beyondz,. This is
a suitable LTL formula, which is obtained by a given yaccribed as

network. Formally, for a given netwoi®, we specify

an LTL formula¢s which is intended to characterise G(=Xu A =YuAZy — —ony).
the set of poss?ble bghaviours Gf ATph((in the set of If we (may partially) know about the regulation
possible behaviours is the st € (2°) | 0 = ¢} function, we can reflect such knowledge in the speci-
(i.e. 0 is a model ofpc). _ fication. For example the positive effect of genand
The problem is how we obtain a such formula. y are merged by ‘OR’, we can describe as
2Although the same symbols (i.&, andyx) are used to G((Xu VYu) A =zy — ony),
represent both thresholds and propositions, we can clearly G((—Xy A —Yu) A Zy — —ony).

distinguish them from the context.
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Total Order of Thresholds. Since a gene may have
multiple thresholds, we need to specify a total order of
them. Assume that gemxdhas thresholds, Xz, . . ., Xm

in this order. This order relation can be described in
LTL as follows:

N GXii1—xi).

1<i<m-1

For exampleG(x2 — x1) means that if the cur-
rent expression level is beyond the threshaldit is
also beyondk; sincex; is lower thanx,. Note that
the propositiorx; is interpreted as genes expressed
beyond the thresholx].

Change of Expression Levels When Genes Are
ON. Assume that genex has its thresholds
X1,X2,...,Xm in this order. If genexis ON, the ex-
pression level ok increases over time. For example,
if the current level of gena is betweerx; and X1
andx is ON, x will cross the threshold;_; in future

(if genex does not become OFF prematurely). This
fact is simply described as follows:

G(on Ax; — (xU (Xi11V —ory)))

wherei € {1,...,m— 1}. This formula says that gene
x mustcross the thresholq, 1 unless geng becomes
OFF. Thatis, we do not allow that the expression level
of genex can be equilibrated between the lexeand
xi+1 if genexis indefinitely ON. This specification is
calledstrong specificationTo allow such equilibrated
behaviour, we specify as:

G(omy AX — (W—ory))

wherei € {1,...,m—1}. This kind of specification is
calledweak specificationThe choice of strong speci-

fication and weak specification depends on a situation
or an assumption of the analysis which we are to per-

form.
We need special treatment for the level bebow
(the lowest threshold) and the level abayg (the

Change of Expression Level When Genes Are
OFF. We also assume that geréas its thresholds
X1,X2,...,%m in this order. The specification for the
case where genes are OFF is symmetric to the case
where genes are ON. Thus we only show formulae.

G(—on A =% — (—xU (—x-1V ory))),
G(—om A =X — (—=xWory)),

G(—orx — F(—XxmV o)),

G(—0m A —Xq — (—XW—0rk)).

(strong)
(weak)

3 WEAK HOMEOSTASIS AS
STRONG SATISFIABILITY

In this section we show how we formulate weak
homeostasis of a gene network by the notion of strong
satisfiability of reactive system specifications (Mori
and Yonezaki, 1993).

A reactive system is a system which reacts to ex-
ternal events from an environment and produces out-
put events or controls its internal states in appropriate
timing. How it reacts is dictated by specifications.
LTL is known to be suitable to write reactive sys-
tem specifications formally (Pnueli and Rosner, 1989;
Abadi et al., 1989). Formally, a reactive system speci-
fication is represented as the trigke, |, ¢) whereE is
a set of external propositions (corresponding to exter-
nal events)] is a set of internal propositions (corre-
sponding to internal or output events) amis an LTL
formula consists of atomic propositions frofu|.
Then the notion of strong satisfiability of a reactive
system specification is defined as follows.

Definition 1 (Strong Satisfiability) LTL specification
(E,l, ) is strongly satisfiabléf
Ve (25)935 € (2')°.(%.9) = ¢.
HereX'=xgx1 ... (eachx; CE),¥=VYoy1... (each

yi C 1) and(X,y) = (xoUYo)(x1Uy1)....
Intuitively a specificationE,1,¢) is strongly sat-

highest threshold). In the case that the expressionisfiaple if for any infinite sequence of external propo-

level ofx is belowx;, none of the propositions among
X1,...,%Xm are true. If geneis ON, it will crossx;

in future (unless genr becomes OFF prematurely).
This can be described as:

G(ony — F(xq vV —ory)).

If genexis expressed abowg,, since we do not have
the threshold over it, its expression level does not in-
crease further. Instead, gexevill keep its level (un-
less gene becomes OFF). This can be described as:

G(om A Xm — (XmW—o0ry)).
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sitions there exists an infinite sequence of internal
propositions such that its behaviour satisfies the spec-
ification ¢.

Now we consider the relationship of this notion to
homeostasis of gene networks. Homeostasis is infor-
mally stated as the tendency of a system to maintain
its internal condition desirable against any situation
or stimulus. In other words, the problem of analysing
homeostasis of a gene network is to check whether a
network satisfies a given property agaiasly exter-
nal input sequenceThe purpose of this section is to
present a formal definition for this problem.
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A gene network can be regarded as reactive sys-nal states at some time-point only from the input se-
tems, since it reacts to external inputs (e.g. from quences which is availab# that time(i.e. finite in-
environment or other cells) and determines its inter- put sequences), which is the requirement for realis-
nal states. In section 2.3, we show how we spec- able specifications. In other words, the network can
ify possible behaviours of a given network in LTL. useinfinite input sequences to determine its internal
Then we can regard a behaviour specification of a states at any time. Thus the homeostasis we capture
network (say) as a reactive system specification, if in this definition isweakcompared to that of Ito et
we determine which propositions correspond to in- al.’s definition based on realisability. Although the
puts or outputs. For example, let us consider the homeostasis we capture in this work is weak, we still
example network depicted in Fig. 1 again. In that have an biological insight for a homeostasis of gene
network we do not have external inputs. Thus we networks. Since strong satisfiability is necessary con-

assume geng accepts positive inputs from environ-
ment. Then we introduce two propositioimg and

e. The propositioningk represents whether input is
coming ande represents whether the level of the in-
put is beyond the threshold above which genis
activated. Then we have the following propositions:
{iny, 0n, ony, ory, e, Xy, Yz }. The division of external
propositionsE and internal propositionk is as fol-
lows: E = {iny}, | = {on,0n,,0m;, &, %y,Y-}. Note
that the environment only controisy which means
the environment is only able to determine whether it
gives the input to geng or not. Whether the level
of input exceeds the levey is determined by the be-
haviour specification. Thue is internal propositions.
The specification for change of levels of inputs is the
same as the case of gene expressions:

G(iny — F(exV —iny))
G(ink A ex — (exW—iny))
G(—iny — F(—ecViny))
G(—ing A —&x — (—-exWirny))

Now we introduce a network propemy(specified
in LTL) of a given network which represents a desir-
able function of the network. We are to check whether
the property holds againsiny input sequences. We
can give any property like stability (e.g. a certain gene
is always ON) or oscillation (e.g. when a gene is ON,
it will later be OFF) in LTL.

The problem of checking whether a network
whose behaviours are specified dysatisfiesy for
anyinput sequence is formally stated as follows.

Definition 2. Let E be the set of external proposi-
tions, | be the set of internal propositions and E and
| are disjoint. Let AP= EUI be the set of atomic
propositions. A propertyp is weakly homeostatic
with respect to a behaviour specification of a network
(E,1,0) if (E,1,0 AW) is strongly satisfiable. Herg
andy are written in LTL with AP.

Note that Ito et al.’s definition of homeostasis is
that (E,I,0 A ) is realisable(lto et al., 2014). The

reason why this definition iweakhomeostasis is that
the network is not required to determine its inter-

dition of realisability, if a specification is proved to be
not strongly satisfiable (i.e. weakly homeostatic), we
see that it is not realisable (i.e. homeostatic).

This definition reduces the problem of checking
weak homeostasis to the problem of checking strong
satisfiability of reactive system specifications. Unfor-
tunately, the complexity of strong satisfiability check-
ing of LTL formula is EXPSPACE-complete in the
size of formulae (Shimakawa et al., 2013), which is
still high. In our framework, the size of a formula
obtained from a gene network is proportional to the
size of the network. Due to the high-complexity of
strong satisfiability checking, direct analyses of large
networks are generally intractable. In the next sec-
tion we introduce an approximate method to ease the
analysis of large networks.

4 APPROXIMATE ANALYSIS

The factor which is critical to the performance of
strong satisfiability checking is the size of a formula.
Thus reducing the size of a formula is a natural solu-
tion to overcome this computational difficulty. How-
ever, it is unclear that we can safely reduce the size of
a formula.

Ito et al. (Ito et al., 2013b) proved that such safe
reduction of the size of a formula is feasible. They
approximate the set of possible behaviours of a given
network using fewer propositions. Their approximate
method guarantees that if an approximate specifica-
tion is satisfiablethe original specification is alsat-
isfiable Here we say a formulxis satisfiable if there
exists a behaviows such that = ¢. Since satisfiabil-
ity is a weaker property than strong satisfiability, it is
unclear that their method is also feasible in analysing
weak homeostasis of a gene network.

This section extends their result to analyse weak
homeostasis of a gene network. Intuitively, the idea
of the approximate method is to shrink the set of pos-
sible behaviours by approximate specifications. This
means that the network has fewer choices to react to
the environmental inputs. If we can prove that the
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network can still respond to any environmental in- We say thatp’ is alower approximatiorof ¢ if
puts in such restricted choices compared to original ¢’ C ¢. The formulap’ has fewer propositions than
behaviour sets, it guarantees that the network surelyOur approximate method is to check strong satisfiabil-
reacts to any inputs. For formal development of our ity of the specificatiofEP(¢'),IP(¢’),¢’) instead of
approximate analysis, we first introduce some notions (EP(¢),IP($),$) in checking strong satisfiability. To

and related theorems. guarantee the correctness of this approximate method,
Definition 3. Let$ be an LTL formula. Prog) de- e need to prove th/at_if the approximate specifica-
notes the set of propositions occurringdn More-  tion (EP(¢7),IP(¢"),4") is strongly satisfiable, so is

over, if Prop¢) is partitioned into external propo-  (EP($),IP(9),). The rest of this section is devoted
sitions and internal propositions, Ef) denotes the O Prove this correctness.

set of external propositions occurring gnand 1P(¢) First we prove the following lemma.

denotes the set of internal propositions occurring-in_ | emma 1. Assumeb’ C ¢. For anyo’ € (2Prop(®)yw,
¢. Clearly ER¢)NIP(¢) =0 and ER¢) UIP(¢) = if o = ¢’ then there exists € (2P°P®))® sych that
Prop(¢). 0 = ¢ andalpope) = 0

The next definition is of the Buchi automaton, L , ,
which is a kind of w-automata accepting infinite Proof. By definition of ¢’ L ¢, we haveProp(¢’) €

words. Prop(¢) and L(ﬁl¢,? C L(4p)|prop(e)- Suppose’ |=
¢’ for o’ € (2PP®))® we haveo’ € L(Ay) by the-

Definition 4. A Buchi automatorns a quintuple(Q, orem 1. By assumption we ha € L(y) prop(s)-

%, 8, qi, F), where Q is a finite set of statesjs a fi- W . Prop($) e
nite alphabet: Q x = — (Q) is the state transition  BY definition 5, there exists < (2 ) such that

function, q € Q is the initial state, and F= Q is the O € L(Ap) ando]propg) = 0. _ 0
set of accepting states.ranof a Blichi automaton on I.:ro'm this theorem we immediately have the fol-
an infinite worda = a[0ja[1] --- € 5@ is an infinite se-  1OWINg:

quencep = p[0]p[1]--- € Q¥, such thap[0] =g and Corollary 1. If ¢’ C ¢, there is a mappindy ¢ :

pli +1] € d(p[i],ali]) for alli > 0. An infinite worda (2PoP(®))® _, (2PoP(®))® sych that ifo’ = ¢’ then

is acceptedyy the automaton if the run over visits lor 5(0) = &

at least one state in F infinitely often. We denote the oo ' )

set of infinite words accepted by an automatoiy Now we prove our main theorem.

L(A). Theorem 2. Suppose’ C ¢. If (EP(¢'),IP(¢'),d’) is
The next theorem (Vardi and Wolper, 1994) states strongly satisfiable thetEP(¢),IP(¢),¢) is strongly

that we can construct a Biichi automaton that exactly satisfiable.

accepts the models of LTL formuéa Proof. Since ¢’ is strongly satisfiable, for any
Theorem 1. Given an LTL formula, one can con- & € (25P@))® there existsy e (2P(®))® such that
struct a Bichi automatondy = (Q,Z,9,q,F) such (X,¥) = ¢'. By definition of¢’ C ¢, we have(X,§) €
that |Q| is in 20(1¢) | 5 — 2Prop(9) and Lgy) ={o € L(A)lprop(¢r)- From corollary 1, there exists a func-
(2PTP9)@ | g = ). tion £y ¢ such thaty ¢ ((X,9)) = ¢. SinceEP(¢') =

The above theorem says that the set of time struc- EP(@), we have(%.2) = £y 4((%§)) for someZ'e
. o . K (2IP(¢))(»' O
tures which satisfies formuliis obtained by (4y).

e To prove the correctness of approximate analysis
Definition 5. Let AC B ando € (2B)®. We denote

Let s U A of weak homeostasis, we need to prove the following
o|a for the pointwise restriction of on A, i.e.c|a = corollary (proof is omitted).

(0[0]|a)(0[1]|a).... Assume LC (2B)®. We denote .

L|a for the element-wise restriction of set L on A, i.e. Corolla}ry 2. SUPp959¢ C ¢/and P/FOFNJ) <
Lia={0]a] o €L Prop(¢”).  If (EP(¢" A W), IP(¢" A W),¢" A W) is
strongly satisfiable the(EP(¢ A W), IP(d AW), d AL)

Then we introduce an approximate relation be- is strongly satisfiable.

tween LTL formulae.

Definition 6. Let$ andd’ be LTL formulae such that
EP(¢) = EP(¢') and IP(¢’) C IP(d). We define the
relation C as follows:

Thanks to corollary 2, in analysing weak home-
ostasis of a network whose behaviour specification is
¢, we can simplify the specificatiofn to ¢’ such that
¢’ C ¢. The problem is that it is unclear whether we

o8 (gL ) can systematically obtain such approximate specifi-
vCo (Ay) < L) lpropie) cation ¢’ for any LTL formula¢. Ito et al., how-
Note that Prog$’) C Prop(¢). ever, showed that for a specific class of networks,
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— subnetwork1

subnetwork2 —

input

input

Figure 4: A network irE. coli.

callednetwork motifswe have approximate specifica-
tions (Ito et al., 2013b). Network motifs are common
network patterns recurring in many gene networks
(Alon, 2007). Thus approximate specifications for
network motifs are useful when we analyse real gene
networks. We use Ito et al.’s approximate specifica-
tions for five network motifs (lto et al., 2013b), neg-
ative auto-regulation, coherent type 1 feed-forward
loop, incoherent type 1 feed-forward loop, single-
input module and multi-output feed-forward loop. We
cannot find space for showing them. Interested reader
may wish to consult it.

5 EXPERIMENTAL RESULTS

In this section we show experimental results of our
approximate method in analysing weak homeostasis
of gene networks. For the experiment we use a net-
work in Escherichia col{Alon, 2007) depicted in Fig.

4 and a network irabidopsis thalianavhich is ob-
tained from RelN and is depicted in Fig. 5. In the
network of Fig. 4, we have one single-input module
(consisting of gene, v; andv,), two negative auto-
regulations (generp andmall), and one multi-output
feed-forward loop (consisting of gemey, z1, z and

73). In Fig. 5, we have one negative auto-regulation
(geneAP2) and one single-input module whose mas-
ter gene isGL1/GL3and target genes are those reg-

Figure 5: A network inrArabidopsis

G(uy, < ony )A

G(Uy, < 0ny,) A

G(on, — F(uy, V —ony))A
G((0nuAly;) — (U (—0ny V uy,)))A
G((ony Aly,) — (U, W—on,)) A

This specification can be approximated as:

G(on, — F(on,, V —ony))A
G((ornyAon, ) = (on, W—ony))A
G((ornyAony,) — (on,W-orny)) A

As we can see, we no longer use propositiojsand
Uy, .

’ In this experiment we use three variations of spec-
ifications for each network — specification for the en-
tire network and its two subnetworks. Subnetworks
are obtained by eliminating some genes and edges
from the entire network as shown in Fig. 4 and 5.
We assume that the network depicted in Fig. 4 re-
ceives two inputs and the network depicted in Fig. 5
receives one input, as depicted. The property we con-
sider in this experiment is that if a certain gene is ac-
tivated, it will be suppressed afterward. We consider
the same type of property for both of the networks.

ulated by the master gene. Some target genes havd his property is described as:

another regulator but such case can be easily taken

into consideration in the approximate specification.
We show the part of the behaviour specification of
the network of Fig. 4.

Shttp://arabidopsis.med.ohio-state.edu/REIN/

G(on— F-on)

whereon proposition is for gene; in the network
Fig. 4 and for gen&@ TG2in the network Fig. 5. This
amounts to check whether the networks of Fig. 4 (Fig.
5) can suppress geze (TTG2 against any environ-
mental input sequence. In the network of Fig. 4, gene
7y is activated by geneand gene receives the nega-
tive input. Thus when the negative input never comes,
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Table 1: Experimental results for checking weak homeosta- based on the formulation by realisability (Ito et al.,
sis of networks (i.e. we have no assumptions of environ- 2014). For further improvement, we are interested in
mental inputs). Columns 'E’ and 'I" respectively show the \yhether Ito et al.'s modular method (lto et al., 2013a)
numbers of external propositions and internal proposstion ;< 5y ailable in analysing (weak) homeostasis of gene
Column 'S’ shows the size of a formula. Column 'T’ shows . . .

the time of analysis (in seconds). The lower half of the table ngtwqus. _Slnce modulgr analysis can be used in com-
shows the resuit of approximate analysis. bination with the approximate analysis, we further ex-

tend the limits of tractable networks. Using these re-

| Network IE] '] S| T sults, we now should try to solve real problems in bi-
Fig. 4 (subl) 2| 24| 572| >3600
Fig. 4 (sub2) 2 | 19 | 459 | 408.87
Fig. 5 1|46 | 869 | >3600
Fig. 5 (subl) 1] 23] 449 | >3600 ACKNOWLEDGEMENTS
Fig. 5 (sub2) 1|13 269 0.10
Fig. 4 (appr. 51181 448 | 176.80 This work was supported by JSPS KAKENHI Grant
Fig. 4 (appr.) (subl)| 2 | 14 | 354 835 Number 26730_153. We also appreciate the help of
Fig. 4 (appr) (sub2)| 2 | 10 | 278 | 0.752 Dr. Mgsaya Sh|makav_v§1 an_d Dr. Takashi Tomita for
Fig. 5 (appr. 11301692 11.07 checking proofs and giving invaluable comments.
Fig. 5 (appr.) (subl)] 1| 16 | 379 0.17
Fig. 5 (appr.) (sub2)] 1| 9| 231 0.04
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