
Discrimination of Healthy and Post-partum Subjects using Wavelet 
Filterbank and Auto-regressive Modelling 

Rolf Vetter1, Jonas Schild1, Annette Kuhn2 and Lorenz Radlinger3 
1Institute for Mobile Communication, Bern University of Applied Siences, Jlcoweg 1, Burgdorf, Switzerland 
2Women’s Hospital, Urogynaecology, Bern University Hospital and University of Bern, Bern, Switzerland 

3Applied Research and Development Physiotherapy, Bern University of Applied Sciences, Health Bern, Switzerland 

Keywords: Wavelet, Autoregressive Modelling, Patient Discrimination, Pelvic Floor Muscle. 

Abstract: Rehabilitation therapies to treat female stress urinary incontinence focus on the reactivation of pelvic floor 
muscle (PFM) activity. An objective measure is essential to assess a subject’s improvement in PFM 
capabilities and increase the success rate of the therapy. In order to provide such a measure, we propose a 
method for the discrimination of healthy subjects with strong PFM and post-partum subjects with weak 
PFM. Our method is based on a dyadic discrete wavelet decomposition of electromyograms (EMG) that 
projects slow-twitched and fast-twitched muscle activities onto different scales. We used a parametric auto-
regressive (AR) model for the estimation of the frequency of each wavelet scale to overcome the poor 
frequency resolution of the dyadic decomposition. The feature used for discrimination was the frequency of 
the wavelet scale with the highest variance after interpolation with the nearest neighboring scales. Twenty-
three healthy and 26 post-partum women with weak PFM who executed 4 maximum voluntary contractions 
(MVC) were retrospectively analysed. EMGs were recorded using a vaginal probe. The proposed method 
has a lower rate of false discrimination (4%) compared to the two classical methods based on mean (9%) 
and median (7%) frequency estimation from the power spectral density. 

1 INTRODUCTION 

Involuntary urinary leakage during effort or 
exertion, such as jogging, coughing or sneezing is 
often related to insufficient pelvic floor muscle 
(PFM) function and strength (Bø and Sherburn, 
2005). It constitutes an embarrassing condition, 
which can lead to social exclusion. Modern 
rehabilitation therapies such as stochastic resonance 
whole body vibration (Lauper et al., 2009) focus on 
the reactivation of PFM activity. In such therapies it 
is necessary to dispose of an objective measure to 
assess a subject’s improvement. Such a measure, 
when used as direct feedback, could reinforce the 
efficiency and success rate of the therapy. In an 
attempt to construct such a measure, we present in 
this paper a method for the discrimination of healthy 
subjects with strong PFM capabilities and post-
partum subjects with weak PFM capabilities. 

In clinical practice, various methods are under 
investigation for the assessment of PFM capabilities 
(Bø and Sherburn, 2005). A promising method is 
based on ElectroMyoGraphy (EMG) signals 

recorded from surface electrodes embedded on 
vaginal probes (Bø and Finckenhagen, 2001). This 
method estimates descriptive statistics of EMG 
signals to quantify the dynamics and intensity of the 
PFM activity. Signal variance is often used as an 
indicator of the muscle contraction intensity while 
mean or median frequency of the Fast Fourier 
Transform (FFT) spectrum of the signal is used to 
quantify the muscle dynamics (Auchincloss and 
McLean, 2009).  

However, it is well established that EMG signals 
are stochastic and non-stationary with intermittent 
burst-like activities. Various studies on EMG signals 
have put forward the superiority of wavelet-based 
signal analysis over FFT-based methods for 
handling the burst-like EMG activity (Croce et al., 
kein Datum) in the frequency range 10-400Hz. 
Tscharner et al. used 10 non-linearly scaled wavelets 
to cover this frequency band (Tscharner et al., 2003). 
In a discrimination application it would be 
preferable to have a lower number of wavelets for a 
better capturing of the physiological phenomena 
under investigation (Vaseghi, 2008). Wavelet scales 
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should be chosen in such a way that signal 
components related to different physiological 
phenomena are projected onto different scales. 
Indeed, it has been shown in numerous biomedical 
applications that signal separation is an important 
first step to relevant signal analysis and 
discrimination (Vetter, 1999).  

Urinary continence requires strong and fast 
muscle contraction (Shishido et al., 2008). Human 
muscles consist of slow-twitched and fast-twitched 
muscle fibers and fast contractions with high forces 
necessitate a larger recruitment of fast-twitched 
muscle fibers (Guyton and Hall, 2011). To provide 
optimal signal separation before discrimination we 
propose in this paper a dyadic discrete wavelet 
decomposition that projects signal components 
related to activities of the slow-twitched and the 
fast-twitched muscles mainly on different scales 
while simultaneously minimizing the number of 
scales. This guarantees a minimum of salient 
features for subsequent discrimination. To overcome 
the poor frequency resolution of the dyadic 
decomposition, we use a parametric auto-regressive 
(AR) model for the estimation of the frequency of 
each wavelet scale.  

2 METHODS 

2.1 Subjects and Protocol 

Data from a cross sectional study including 49 
women (Lauper et al., 2009) was retrospectively 
analyzed. The study included 23 healthy women 
with strong PFM capabilities and 26 post-partum 
women with pelvic floor muscle weakness. In a first 
step, the PFM‘s weakness was assessed digitally 
during a maximal voluntary contraction (MVC) in a 
sitting position and graded according to the Oxford 
scale (Bø and Finckenhagen, 2001) with six 
categories: M0=no contraction, M1=flicker, 
M2=weak, M3=moderate, M4=good, M5=strong. 
Then, each subject underwent four 5 seconds-MVC 
split over 2 days (2 each day), during which EMG 
signals were recorded. 

For the discrimination study presented herein, a 
subset of subjects was selected according to the 
following criteria: (1) healthy subjects had a grading 
on the Oxford scale larger than M4 and (2) weak 
PFM subjects had a grading on the Oxford scale of 
maximally M3. This reduced the original database to 
136 recordings. Thirty-four recordings were used for 
the development phase of the algorithm and the 
remaining 102 recordings were used for the 

validation phase. Both, development and validation 
databases were equilibrated with an equal number of 
healthy and weak PFM subjects. 

2.2 Data Acquisition 

The EMG of PFM was obtained from a vaginal 
probe (Periform, Parsenn-Produkte AG, 
Switzerland). These EMG signals were recorded 
using a 16-channel telemetric system (TeleMyo 
2400 G2, Noraxon U.S.A. Inc., Scottsdale, AZ, 
USA). The reference electrode (Ambu Blue Sensor 
N, Ambu A/S, Ballerup, Denmark) was applied 
according to the recommendations of SENIAM on 
the crista iliaca after preparation of the skin 
(Hermens et al., 2000). The impedance was 
controlled to be lower than 5 kΩ. The vaginal probe 
was connected to the transmitter of the telemetric 
system via a flexible cord with an integrated pre-
amplifier (baseline noise: <1 μV RMS; input 
impedance: >100 MΩ; CMMR: >100 dB; input 
range: +/−10 mV; base gain: 500; integrated band-
pass filter: 10–500 Hz). 

Finally, all signals were sampled and recorded at 
a rate of 1 kHz using a 12-bit analog-digital 
converter (Meilhaus ME-2600i; SisNova 
Engineering; Zug, Switzerland) and the software 
package “ads” (version 1.12, uk-labs, Kempen, 
Germany). 

The EMG signals were visually controlled for 
artifacts and additionally corrected for baseline 
offset by high pass filtering with a cut off frequency 
of 0.1 Hz via ads-software. 

2.3 Algorithm Development 

2.3.1 Wavelet Transform 

The proposed algorithm is based on the hypothesis 
that there is shift in muscle contraction dynamics 
between healthy subjects and weak PFM subjects 
undergoing a MVC protocol measured with EMG 
signals.  

A wavelet approach was chosen in numerous 
previous studies on EMG due to the non-stationary 
nature of EMG and their burst-like structure 
(Tscharner et al., 2003). This is also the approach we 
chose. In a wavelet transform the signal is locally 
projected on a scaled and translated wavelet 
function	߰,ሺݐሻ: 

 

dt ttx (a,b)=W baz )()( ,



  (1)

 

where ܽ ∈ ܴା and ܾ ∈ ܴ  are the scaling and 
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translation parameters. The wavelet function ߰,ሺݐሻ 
is obtained by translating the mother wavelet scaled 
by a factor ܽ	at the time ܾ, namely 

 

  abtatba /)()(
5.0

,     (2)
 

The factor |ܽ|ି.ହ is introduced to guarantee energy 
preservation. An analysis of the Equation 2 shows 
that larger values of ܽ stretch the basic wavelet 
function and allow the analysis of low-frequency 
components with low temporal accuracy. In contrast, 
smaller values of ܽ  provide contracted versions of 
the basic wavelet, which allows the analysis of high 
frequency components with high temporal accuracy. 
As a result, wavelets are located both in time and 
frequency and constitute an important tool for time-
frequency analysis. 

The free parameters, which have to be chosen for 
each given application, are the mother wavelet ߰ 
and the range of values for ܽ	and b. In EMG 
analysis, Daubechies, Symlet or Morlet wavelets 
have shown promising performance due to their 
resemblance with the burst-like EMG signal 
structure (Croce et al., kein Datum). We used the 
Symlet wavelet due to its symmetric structure.  

 

Figure 1: Time signal (top) and CWT (bottom) using 
Symlet mother wavelet of EMG signals of PFM activity of 
a healthy subject. 

If the scaling and translation parameters ܽ and ܾ 
are free to take on all values, one obtains the 
Continuous Wavelet Transform (CWT). Figure 1 
shows a typical EMG signal and the associated 
CWT of EMG signals of PFM activity of a healthy 
subject. To give a comprehensive representation we 
used center frequency of the scale instead of scale 
number as it is usually done. One can clearly 
distinguish alternating high signal intensities in the 
scales corresponding to frequency bands below (LF) 
and above (HF) approximately 60Hz. This 

observation may be related to an intermittent change 
in recruitment of sow-twitched and fast-twitched 
muscle fibers.  

The CWT is a tool for visual inspection of data, 
but provides in the given application poorer 
performance than a more compact representation, 
such as the Discrete Wavelet Transform (DWT) 
based a dyadic choice of the scaling parameter. 

Indeed, in biomedical engineering best 
performance is obtained, when the analysis method 
mimics as close as possible the phenomenon under 
investigation (Vetter et al., 1998). Thus phenomena 
of different origins should be projected onto 
different wavelet scales. This can be obtained by 
choosing discrete values for ܽ and ܾ	in Equation 1, 
namely ܽ ൌ 2	and	ܾ, ൌ ݊2 for ݊,݉ ൌ
േ1,േ2,േ3,… and yields the DWT. The signal ݔሺݐሻ 
is decomposed on different scales as follows (Akay, 
1995):  
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where ߰ଶሺ݊ െ ݇2ሻ   are discrete, translated, scaled 
analysis wavelets and ߶ଶಽሺ݊ െ ݇2ሻ  are discrete 
scaling functions. This decomposition splits the 
signal into low-passed ܽሺ݇ሻ  and band-passed 
detailed signals or wavelet coefficients	݀ሺ݇ሻ, ݈ ൌ
1,2,3, …  A straightforward implementation of the .ܮ
dyadic DWT can be based on two quadrature mirror 
filters, a high-pass filter  ݄ሺ݊ሻ and a low-pass filter 
݃ሺ݊ሻ and appropriate downscaling (Akay, 1995). 
This whole procedure provides an equivalent filter-
bank with transfer functions as shown in Figure 2. 
By choosing an appropriate sampling frequency of 
1 kHz we obtained an ideally suited approach for the 
analysis of EMG signals from PFM with the corner 
frequencies of approximately 250 Hz, 125 Hz, 62 Hz 
and 32 Hz and 16 Hz.  

2.3.2 Feature Extraction 

From the detailed signal ݀ሺ݇ሻ at scale 2 we 
extracted salient features through a descriptive 
statistics related to the intensity of muscle activation. 
We used in our algorithm signal variance of the 
detailed signals of the scales	ߪ

ଶ, ݈ ൌ 1,2,3, …  to ܮ
quantify contraction intensity as proposed in 
(Tscharner et al., 2003). Based on the analysis of 
Figure 1 we supposed that the variances of the 
detailed signals of scale 2 and 3 (frequency range 
62 Hz–256 Hz) was influenced mainly by activation 
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of fast-twitched muscle fibres, whereas variance of 
scale 4 and 5 was mainly related to the activation of 
slow-twitched muscle fibres. 

 

Figure 2: Frequency response of different scales of the 
dyadic discrete Wavelet Transform.  

The quantification of the dynamics of muscle 
activation is another important aspect, which was 
extracted from the frequency characteristics of the 
detailed signals	݀ሺݐሻ. In various EMG studies, 
interpretation of the wavelet transform in terms of 
frequency is achieved through a direct mapping 
using the central frequency of a given scale 
(Tscharner et al., 2003). This may be appropriate for 
a wavelet transform with narrowband characteristics. 
In a dyadic decomposition, the upper bands have 
larger bandwidths (see Figure 2) which may lead to 
considerable inaccuracies in terms of frequency 
mapping.  

Therefore we applied an AR modelling and 
subsequent analysis of root location for the 
estimation of the frequency of the detailed signals of 
the different scales	 ݂,

ଶ , ݈ ൌ 1,2,3, …  .ܮ
Parametric AR modelling is well known for its 

accuracy in terms of frequency estimation of quasi 
harmonic oscillations and very efficient algorithms 
are proposed in literature (Vaseghi, 2008). We 
applied Burg’s algorithm for robust parameter and 
accurate central frequency estimation. The last step 
in the development of a discrimination algorithm 
consists generally in an optimal merging of the 
extracted features after discarding unreliable features 
and adequate normalization (Vaseghi, 2008). We 
tested various approaches to merge the above 
extracted variance and frequency features of the 
detailed signals, such as for example neural 
networks and fuzzy logic. However, the 
development data base put forward the superiority of 
a simple quasi maximum likelihood approach. The 
most important feature was identified though 
determination of the scale with the highest variance, 

which provided the scale-index	݈௫. Refined 
frequency estimation was then obtained by including 
information of the adjacent scales through classical 
weighting as follows:  
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2.3.3 Statistical Processing and 
Optimization 

The analysis of features extracted from the 
experimental data showed that MVC signals were 
highly non-stationary. Subjects were rarely able to 
achieve maximal voluntary muscle contraction at the 
same level during 5 seconds. The algorithm had 
therefore to discard marginal feature values. This 
was achieved by estimating ݂ consecutively on 
segments of a duration of 1 second with an overlap 
of 50% and by processing the median of all resulting 
݂ estimations. The discrimination of healthy and 

weak PFM subjects was obtained by comparing ݂ to 
a critical value ݂௧. The proposed algorithm has 3 
freely adjustable parameters, which are the mother 
wavelet, the sampling frequency and the threshold 
for classification	 ݂௧. The optimal tuning of these 
parameters was done using the development 
database. Receiver Operating Characteristics (ROC) 
representing True Positive Rate (TPR) versus False 
Positive Rate (FPR) was used to optimize these 
parameters. A sampling frequency of 1 kHz and 
threshold value of ݂௧ ൌ  and a Symlet ݖܪ	67
mother wavelet provided maximal discrimination 
performance.  

3 RESULTS 

In order to show the performance of the proposed 
approach, we compared it to classical methods based 
on the mean (PSDmean) and median (PSDmedian) 
frequency of Welch’s power spectral density 
estimation. The following parameters were chosen: 
order of FFT 256, Hanning window and a data 
overlapping of 50%. The order of the FFT was 
chosen to obtain a spectral estimator with low 
variance while providing a sufficient frequency 
resolution. The performance of these 3 methods was 
evaluated on the validation database consisting of 51 
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recordings of healthy and weak PFM subjects each. 
Results of Table 1 show that our method 
outperforms the classical methods in terms of 
classification error.  

Table 2: Discrimination results and estimated central 
frequency of the compared methods. 

 
fo [Hz] (mean±std) Classification 

Error [%] Healthy Weak PFM 

PSDmean 85±10 65±7 9% 

PSDmedian 72±10 52±6 7% 

DWT 77±8 53±7 4% 

 

Our method has a lower rate of false 
discrimination (4%) compared to the two classical 
methods based on mean (9%) and median (7%) 
frequency estimation from the power spectral 
density. The analysis of the estimated frequency ݂ 
used for classification underlines the superiority of 
the proposed method. For both, healthy and weak 
PFM subjects, PSDmean gave the highest values of the 
estimated central frequency while PSDmedian provided 
the lowest values. As a good compromise, the 
proposed method provided values in between these 
lower and upper bounds. The standard deviations of 
all three methods were approximately equal. The 
superiority of our method is related to the fact that 
the gap in mean ݂ between healthy and weak PFM 
subjects is larger, which provides a better class 
separation. This improvement in terms of class 
separation or clustering is also confirmed by the 
analysis of the histograms of Figure 3. Indeed, the 
estimator based on the mean frequency of the PSD 
shows very large and flat clusters with large 
overlapping. In contrast, our method shows sharper 
clusters with a larger gap between the maxima of the 
healthy and weak PFM clusters. Our method had 
also the lowest cluster overlap which provided in 
turn best classification performance. 

4 DISCUSSION 

Our method outperforms classical methods based on 
mean and median frequency estimation from PSD. 
The main reason for this improvement may be 
related to a feature processing in specific frequency 
bands using a wavelet approach. Information from 
fast-twitched and slow-twitched fibers contained in 
EMG-signals is thus projected on different bands. 

Since urinary continence requires strong and fast 
muscle contraction (Shishido et al., 2008) and 
therefore increased recruitment of the fast-twitched 
fibers, the proposed method is ideally suited to 
gather this information in the HF-bands (over 60 
Hz). 

 

Figure 3: Histogram of estimated central frequency based 
on the mean and median frequency of the PSD (top and 
middle) and proposed method (bottom).  

The wavelet based approach allows a 
simultaneous design of the filter-bank in the time-
frequency domain. On one hand, the mother wavelet 
can be chosen to obtain highest resemblance with 
the EMG-burst activity. On the other hand, the 
choice of a dyadic base for the scaling and an 
appropriate sampling frequency provides the optimal 
location of the frequency bands. 

The dyadic filter bank characteristics of the 
proposed approach could also have been approached 
in the PSD domain though an appropriate choice of 
the FFT order in Welch’s method and subsequent 
band grouping. Whether FFT band grouping or 
wavelet filter bank is to be preferred depends mainly 
on application specific implementation requirements 
(Tscharner et al., 2003).  

Interestingly, we exploit only indirectly the scale 
specific signal variance in order to describe dynamic 
characteristics in terms of the estimated central 
frequency. Throughout the development phase 
numerous tests have been performed without success 
to include additionally scale specific variances using 
for example neural networks or fuzzy logic. The fact 
that additional inclusion of scale specific variances 
in the discrimination approach failed to improve 
performance could be related to the used vaginal 
probe, which has lesser sensitivity than more 
uncomfortable ones (Bø and Sherburn, 2005).  

A normalization of MVC scale specific variance 
versus baseline-scale variances could also have 
brought along some improvements. Such 
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normalization would have bought the feature to a 
subject-specific level, which is an important step in a 
discrimination method (Vaseghi, 2008). 

A limitation of the present validation consists in 
the use of the the Oxford scale as validation criteria 
for a correct discrimination. The Oxford scale 
describes a subject’s ability to contact maximally the 
PFM and was assed once. Each subject conducted 4 
MVC protocols on 2 different days. Since the 
outcome of each protocol has not been rated 
separately, unsuccessful completion of the protocols 
for healthy subjects may have occurred. The 
histogram of the central frequency estimated by the 
proposed approach (see Figure 3) shows that healthy 
subjects have a very compact cluster. In contrast, 
weak PFM subjects have a histogram with a long tail 
into the high frequency domain (> 60Hz). 
Discrimination errors are due to a misclassification 
of weak PFM subjects from this marginal tail of the 
histogram as healthy subjects. Thus, the limitation 
related to the Oxford scale should not have an 
influence on the performance of the proposed 
algorithm presented herein. 

5 CONCLUSIONS 

Wavelet decomposition together with AR-modeling 
provides a method for discrimination between 
healthy and post-partum subjects with weak PFM 
capabilities that outperforms classical FFT-based 
methods.  
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