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Abstract: A great deal of recent methodological research on missing data analysis has focused on model parameter
estimation using modern statistical methods such as maximum likelihood and multiple imputation. These
approaches are better than traditional methods (for example listwise deletion and mean imputation methods).
These modern techniques can lead to unbiased parametric estimation in many particular application cases.
However, these methods do not work well in some cases especially for nonlinear systems that have highly
nonlinear behaviour. This paper explains the linear parametric estimation in existence of missing data, which
includes an overview of biased and unbiased linear parametric estimation with missing data, and provides
accessible descriptions of expectation maximization (EM) algorithm and Gauss-Newton method. In particular,
this paper proposes a Gauss-Newton iteration method for nonlinear parametric estimation in case of missing
data. Since Gauss-Newton method needs initial values that are hard to obtain in the presence of missing data,
the EM algorithm is thus used to estimate these initial values. In addition, we present two analysis examples
to illustrate the performance of the proposed methods.

1 INTRODUCTION

Missing data problems are closely related to statisti-
cal issues because most of missing data analysis and
design methods depend on statistical theory. In fact,
all predicted values for the missing data are depend-
ing on the probability functions. Some researchers
have considered missing data analysis problems to be
the most significance issue in many real data analy-
ses and applications (Azar, 2002). More than often,
missing values are arbitrarily removed or simply re-
placed by mean values in simple missing data prob-
lems. This strategy, however, does not work well
for cases where there exist significant missing val-
ues (Baraldi and Enders, 2010). Recent research has
concentrated on maximum likelihood methods such
as the EM (Expectation-Maximization) algorithm to
deal with missing data problems, which can produce
good results for most applications. Although this ap-
proach still has greater interest in the literature, es-
pecially in linear missing data analysis, there is no
enough knowledge to know if linear missing data
analysis methods can still give good result for non-
linear systems. Consequently, the overarching pur-
pose of this paper is to introduce some nonlinear
methods for missing data problems and to illustrate

the performance of nonlinear parametric estimation
by combining maximum likelihood estimation and a
Gauss-Newton iteration method. More specifically,
this article will present a brief overview of missing
data approaches, and provide accessible illustration of
expectation-maximization algorithm and the Gauss-
Newton optimization method. In some detail, we con-
centrate on Gauss-Newton iteration estimation and
present analysis examples.

2 MISSING DATA MECHANISMS

It is important to classify the mechanisms of miss-
ing data because this would determine which miss-
ing data handling strategies would be used for spe-
cific problems. There are three important patterns of
missing data which are MAR (missing at random),
MCAR (missing completely at random) and MNAR
(missing not at random) (Little and Rubin, 2002).
These patterns explain the relationships between the
inputs, and outputs of the system and the probabil-
ity density function of missing values. In more de-
tail, these mechanisms of missing values give the rea-
sons why these values are missing or unobserved. For
each pattern, a conceptual explanation will be given
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Table 1: The proportion of chlorine and length of time in
weeks with different missing data mechanism (Draper and
smith, 1981).

Y
X Complete MAR MCAR MNAR
8 0.49 0.49 0.49 0.49
8 0.49 0.49 0.49 0.49

10 0.48 0.48 0.48 0.48
10 0.47 0.47 - 0.47
10 0.48 0.48 0.48 0.48
10 0.47 0.47 0.47 0.47
12 0.46 0.46 - 0.46
12 0.46 0.46 0.46 0.46
12 0.45 0.45 - 0.45
12 0.43 0.43 - 0.43
14 0.45 0.45 0.45 0.45
14 0.43 0.43 - 0.43
14 0.43 0.43 0.43 0.43
16 0.44 0.44 0.44 0.44
16 0.43 0.43 0.43 0.43
16 0.43 0.43 0.43 0.43
18 0.46 0.46 0.46 0.46
18 0.45 0.45 0.45 0.45
20 0.42 0.42 0.42 0.42
20 0.43 0.43 - 0.43
20 0.41 0.41 0.41 0.41
22 0.41 0.41 0.41 0.41
22 0.40 0.40 0.4 -
22 0.42 0.42 0.42 0.42
24 0.40 0.40 - -
24 0.40 0.40 0.40 -
24 0.41 0.41 - 0.41
26 0.40 0.40 0.4 -
26 0.41 0.41 0.41 0.41
26 0.41 0.41 0.41 0.41
28 0.40 0.40 0.40 -
28 0.40 0.40 0.40 -
30 0.40 - - -
30 0.38 - 0.38 0.38
30 0.41 - 0.41 0.41
32 0.40 - - -
32 0.40 - 0.40 -
34 0.40 - 0.40 -
36 0.41 - 0.41 0.41
36 0.38 - - 0.38
38 0.40 - 0.40 -
38 0.40 - 0.40 -
40 0.39 - 0.39 0.39
42 0.39 - 0.39 0.39

in the next paragraph, and for more details on miss-
ing data mechanisms, see (Graham, 2009; Schlomer
et al., 2010).

Values are missing at random (MAR) when the
probability of a missing value on an output Y (vari-
able Y) is related to the input (or inputs) U in the
system but not to the response of the output Y itself.
In other words, the probability of the missing values
depends on the relation between the output Y and in-

put (or inputs) U, that means there is no direct rela-
tionship between the probability of the missing val-
ues on Y and the values of Y variable itself. Data are
missing completely at random (MCAR) is a mecha-
nism where the probability of a missing value in Y
does not depend on the output Y and the input (or in-
puts) U. Values are missing not at random (MNAR),
if the probability of incomplete value on an output Y
depends on Y itself but not on the input (or inputs)
U. That means the probability of the missing values
dont have relation between the output Y and input (or
inputs) U (Schafer and Graham, 2002).To give more
detail, let have a look at the data given in Table.1,
which was taken from (Draper and Smith, 1981). In
this example, the dependent variable (Y) is the pro-
portion of available chlorine in a certain quantity of
chlorine solution and the independent variable (X) is
the length of time in weeks since the product was pro-
duced. When the product is produced, the proportion
of chlorine is 0.50. During the 8 weeks that it takes to
reach the consumer, the proportion declines to 0.49.

The first two columns in Table.1 show the com-
plete values for two variables (input X and output Y).
The remaining columns represent the amount of Y,
which appear in hypothetical missed data by three
mechanisms. In the third column, the probability
of missing values has a direct relationship with the
variable X where the values started missing after 30
weeks (X > 28), this mechanism is MAR. In the
second case, there are 11 measured values randomly
selected from those measured in 42 weeks; which
means that the probability of each missing data is not
affected by the value of X and the values of Y vari-
able itself, that means the mechanism is MCAR but
not MAR. In the fifth column, those equal to 0.40 (Y
= 0.40) were unobserved, and for these values there
is no direct relation between the input variable X and
the output Y. In other words, the probability of miss-
ing values depends on the variable Y only. This third
case represents of MNAR.

3 TRADITIONAL MISSING-DATA
TECHNIQUES

Many missing data analysis methods have been pre-
sented in the literature. In this paper, we describe a
limited selection of these approaches. Readers are re-
ferred to (Schafer and Graham, 2002; Enders, 2010)
for detailed information on missing data.
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3.1 Listwise Deletion

Listwise deletion throws away data whose informa-
tion is insufficient. Listwise deletion is also known
as Filtering Approaches and complete-case analysis
(CDS). This method is used in many missing data
problems, but its implementation depends on the type
of data mechanism (Baraldi and Enders, 2010). That
means CDS pays attention to data that have observed
values only. For example, if we are calculating a mean
and variance for variable Y, CDS discards any cases,
which have missing values on the variable Y, those
omitted values may lead to biased parametric estima-
tion (Allison, 2002). On the other hand, by omitting
the missing values it has a direct dramatic reduction in
the complete data. When data missing is completely
at random this technique would then generate unbi-
ased estimation but with large number of removed
data this is not true (Enders and Bandalos, 2001).

Figure 1: Complete-data scatterplot of the proportion of
available chlorine in a certain quantity of chlorine solution.

To explain the principles of deletion approach, the
data set in Table.1 for the proportion of available chlo-
rine and length of time in weeks are taken as an ex-
ample. Fig.1 shows a scatterplot of the complete cases
because there are only two variables; the negative cor-
relation between the input X and the output Y (-0.86)
means that the low proportion of available chlorine
would have acquired high length of time in weeks.
Fig.2 shows a scatterplot of the deletion approaches
in case of MAR, we will focus on this mechanism to
show the effect of the bias on these approaches. Be-
cause listwise deletion takes the observed data of the
variable Y, it systematically ignores values from 28
weeks. The plot also shows that there is weak non-
linear variation and association between Y and X. In
case of complete data set, the estimated value of the
variable Y (mean value) is 0.425, whereas the case
of omitted data analysis gives an estimated value of
0.435. Similarly, the estimated value of the variable X
is 22.27 and 17.56 for the complete-data and listwise
deletion, respectively. Even with taking the standard
deviation into consideration, the proportion of avail-

able chlorine have a standard deviation 0.03053 in the
complete case, in contrast the listwise deletion gives a
standard deviation 0.02907 that means there is atten-
uation in the system.

Figure 2: Listwise deletion scatterplot of the proportion of
available chlorine in a certain quantity of chlorine solution
(MAR).

3.2 Imputation Methods

Imputation points to a group of common traditional
missing data methods where the estimator imputes
(changes) the missing values with appropriate values
(Little and Rubin, 2002). In fact, there are many im-
putation approaches. This study will concentrate on
three of the most common methods: mean substi-
tution imputation, linear regression imputation, and
stochastic (random) regression imputation. The sim-
plest one is mean imputation method, which imputes
the missing values with the mean of the observed
data (Enders, 2006; Allison, 2002). For example for
the data in Table.1 for the MAR mechanism case the
expected value of the observed output is 0.435, this
value can represent the missing values in all cases.
Fig.3 shows that the estimated data from mean substi-
tution imputation are in straight line cross the Y-axis
at 0.435 and has a zero slope. In this case the correla-
tion between the input X and the output Y is equal to
zero and this is because the imputation of the missing
data depending only on the output Y. With focusing
on more features of mean imputation method, cross
correlation between the imputed output and input X
is -0.497, in contrast the complete-data correlation is
-0.86 (the negative sign represent the opposite rela-
tion between the input and the output as the input in-
crease the output decrease). The data variability may
not appear when the missing values are replaced by
the average of observed data (a constant value). With
taking the mean and standard deviation in consider-
ation, the mean imputation produces mean and stan-
dard deviation 0.435 and 0.025 respectively, meaning
that there is attenuation in the system. Regression im-
putation is a technique that fills missing values with
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expected value by using a regression model (Schafer,
2010). In this method, observed data of the output Y
are used to estimate a regression model, which is used
to predict the value of missing data. Again, take the
data in Table.1 as an example. In MAR mechanism,
there are 12 unobserved values and 32 observed cases.
The observed data of output Y (variable with missing
data) are used with observed data on input X (vari-
able with complete data) to estimate the missing cases
on output Y. In this case we have used linear regres-
sion model:Ŷ = 0:509� :0042X . Applying the input
X (complete data) on the regression model yields pre-
dicted output (Ŷ ), and these predicted data represents
the missing data of the output Y in the system.

Figure 3: Mean imputation scatterplot of the proportion of
available chlorine in a certain quantity of chlorine solution
(MAR).

The basic idea of the regression imputation de-
pends on a technique of borrowing information from
the observed data from the output variable, this
method also leads to biased estimation, as shown in
Fig.4. Notice that the estimated missing data repre-
sents a straight line with a slope of - 0.0042. This
means that the output of the system with imputed data
has maximum correlation value (corr=1.0 between the
imputed output Ŷ and input X). Notice that the linear
regression imputation yields a correlation equal to -
0.97 between the output Y and input X, in contrast
with the correlation of -0.86 for the complete-data.
Because the imputed data are generated by a linear
function, there are no fluctuations for the estimated
values. Consequently, the imputation process will at-
tenuate the variability of the estimation data. For ex-
ample, the standard deviation of output Y from lin-
ear regression estimation is 0.042, whereas it is equal
to 0.025 in case of complete data. Although linear
imputation gives biased estimation of standard devia-
tion and correlation for the data mechanism MCAR or
MAR, it does yield unbiased estimates of the average.

Mean substitution imputation and linear impu-
tation lead to bias estimation, especially in case
of correlation and standard deviation of both MAR
and MCAR (Allison, 2002; Graham, 2009; Schafer,

Figure 4: Regression model scatterplot of the proportion of
available chlorine in a certain quantity of chlorine solution
(MAR).

2010). Stochastic linear regression imputation can
eliminate these missing values, it is similar to stan-
dard regression imputation technique and a regres-
sion model estimates for the missing data (Baraldi
and Enders, 2010). In some detail, it is a linear re-
gression imputation with each estimated value being
added a random error value; this random value is gen-
erated randomly from a normal distribution with a
variance equal to the residual variance and a mean
of zero that is estimated from the linear regression
imputation model (Schafer, 2010; Graham, 2009).
Recall the data in Table.1, where the regression of
the output Y on input X yield a residual variance of
0.000162. Then, the new random error is produced
randomly from a normal distribution with a variance
of 0.000162 and a mean of zero. These new error
terms can then be added to the estimated output Ŷ ,
which is predicted from the linear regression impu-
tation model. Fig.5 shows the scatter plot of the im-
puted values of available chlorine data obtained from
a stochastic linear imputation model. Because there
is a random error added to each imputed value the
imputed data do not represent a straight line, as that
generated from a standard linear regression imputa-
tion model.

Figure 5: Stochastic imputation scatterplot of the propor-
tion of available chlorine in a certain quantity of chlorine
solution (MAR).

Comparing Fig.1 with Fig.5, it is clear that the

ICPRAM�2015�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

144



stochastic regression model produces much better re-
sult. This slight adjustment to regression model yields
unbiased parameter estimation in the case of MAR
mechanises. However, stochastic regression imputa-
tion may not be able to guess the real error between
the real and predicted values because it depends on
random error values.

4 EM ALGORITHM

EM algorithm is an iterative technique, which is use-
ful for incomplete data analyses, and it is an algo-
rithm depending on a maximum likelihood technique
to produce a group of data by using the relationships
among all observed variables(Enders, 2010). The ba-
sic idea of this technique was developed in 1970s
(Dempster et al., 1977). This algorithm consists of it-
erative procedures, which are divided into two steps,
that is the expectation step and the maximization step
(E and M steps, respectively). As an iterative algo-
rithm it needs initial values to start, these initial values
are represented by a mean vector and covariance ma-
trix. To generate the initial values of the mean vector
and the covariance matrix we can use much simple
technique such as listwise deletion method (Enders,
2010). EM technique uses linear regression models
to estimate the missing data and sometimes gives bi-
ased estimation especially when the system contains
high nonlinearity behaviour (Smyth, 2002; Ng et al.,
2012). This study proposes a modified iterative al-
gorithm to deal with nonlinear system models, where
there exist a number of latent variables. It follows
that for small data set problems, the EM algorithm
gives the same result as regression imputation tech-
nique (Baraldi and Enders, 2010).

5 NONLINEAR ESTIMATION BY
GAUSS-NEWTON ALGORITHM

The linearization technique for nonlinear regression
is an approach widely used in nonlinear regression
model estimation (Montgomery et al., 2006). The
basic idea of nonlinear estimation by linearization
method consists of two steps, that is the linearization
of the nonlinear system and the estimation of model
parameters (Smyth, 2002). Linearization can be im-
plemented by a Taylor series expansion of the nonlin-
ear model regarding a specific operating point. For
example for a nonlinear model f (X ;b) of n parame-
ters (X is input and b is the estimated parameter vec-
tor) the linearization result with respect to the opera-

tion point b0 is

f (Xk;b) = f (Xk;b0)+
n

å
m=1

�
¶ f (Xk;b)

¶bm

�
b=b0

(bk�bm0)

(1)

f 0
k = f (Xk;b0) (2)

a
0
m = (bm�bm0) (3)

J0
km =

h
¶ f (Xk;b)

¶bm

i
b=b0

is k�n jacobian matrix. The

residual between linear and nonlinear values for the
nonlinear model is

e = Yk� f 0
k =

n

å
m=1

a
0
mJ0

km + ek (4)

The linear model (3) is assumed to be valid just
around some specific operating point and e is assumed
to be white noise with zero mean and constant vari-
ance. Least squares method can be used to estimate
parameter a

Y0 = J0a0 + e (5)

a0 =
�

J
0
0J0

��1
J
0
0e (6)

From equation (1),

b1 = a0 +b0 (7)

The next step is to replace b0 by b1 in equation
(1) which represents new initial value for the sys-
tem and repeat same steps for [b2;b3;b4; :::::::::;bl ]
where l is the number of required iterations to get
the convergence. We can calculate the number of
iterations m by determining the convergence ratio
([(ak;l+1�akl)=akl ]) < d at each iteration until it
meets some pre-specified threshold (specific small
value for d) for example when the value less than
1�10�6 (Montgomery et al., 2006). The above pro-
cedures are called Gauss-Newton iteration method for
nonlinear system analysis. Unfortunately, this tech-
nique cannot be used to estimate the parameters if
there exist missing data because it depends on the
error between the linear and nonlinear values and if
there is a missing value on the output Y it is not pos-
sible to estimate the error. This study thus tries to
use another optimization technique (that is the EM al-
gorithm) to estimate the error and take it as an ini-
tial value in the Gauss-Newton iteration approach. It
shows that the combination of EM and Gauss-Newton
approach produces better results in comparison with
linear analysis methods. To illustrate this, the same
example taken from (Draper and Smith, 1981)was
considered here.
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Figure 6: Nonlinear scatterplot of the proportion of avail-
able chlorine in a certain quantity of chlorine solution
(MAR).

Firstly, a nonlinear exponential growth model is
used to fit the data

Y = q1 (y1�q1)eq2(X�x1) (8)

where x1 and y1 represent the first two values in
the data set (initial values). The values generated by
the estimated nonlinear model are shown in Fig.6.
Comparing Fig.6 with Fig.4 and Fig.5, there is sim-
ilarity between the linear estimation and the nonlin-
ear estimation. This slight modification to nonlinear
algorithm for missing data yields unbiased parame-
ter estimation in the MAR case. Notice that the non-
linear regression model yields a correlation -0.94 be-
tween the output Y and input X, in contrast the cor-
relation equals to -0.86 for the complete-data. Conse-
quently, the nonlinear model produces less variability,
for example, the standard deviation of the output Y
estimated from the nonlinear model is 0.029, whereas
it is equal to 0.025 for the complete data. Although
nonlinear regression model gives unbiased estimation
of standard deviation and correlation, it does produce
biased estimate of the mean. In the above example,
an exponential growth model was used to fit the data,
which shows some disadvantage in comparison with
linear models. Next, it presents the use of EM algo-
rithm for linear model parameter estimation, and the
use of the modified Gauss-Newton algorithm nonlin-
ear model parameter estimation. (Enders, 2006; Gra-
ham, 2009; Schlomer et al., 2010; Seaman and White,
2013; Montez-Rath et al., 2014). To give more de-
tails let us consider another data set which is taken
from (Montgomery et al., 2006), and shown in Ta-
ble.2. In this example, the dependent variable (Y) is
the tensile strength of Kraft paper and the independent
variable (X) is the hardwood concentration for pulp,
which produces the paper. The data set in this exam-
ple contains complete data on the input and output of
the system. The data set also includes the following
missing data mechanism: data missing completely at
random (MCAR) with 21%, 26% and 37% missing.

Note that unlike in the previous examples, the choice
of this mechanism is to study the effect of different al-
gorithms on different missing mechanisms. The ulti-
mate purpose of this example is to compare the perfor-
mance of linear algorithm (EM algorithm) and nonlin-
ear algorithm (modified Gauss-Newton algorithm) in
the presence of different percentages of missing data
for a MCAR mechanism in term of correlations, resid-
uals, standard deviations, and means. For illustration,
the complete data are plotted in Fig.7. The EM al-
gorithm is applied to estimate the parameters of the
linear model:

Y = q0 +q1X (9)

Figure 7: NComplete data scatterplot of input/output data.

The modified Gauss-Newton algorithm was ap-
plied to estimate the parameters of the nonlinear
model:

Y = q0 +q1X +q2X2 (10)
Let us start by comparing the estimated values gen-
erated by the linear and nonlinear models (in case of
MCAR with 21% missing data ), with that of the com-
plete data, where the mean value for full-observed
output Y is 34.184, and mean value for the predicted
values is 34.379, and 34.178, respectively. This result
indicates that the nonlinear regression is just slightly
better than the linear model for mean value estima-
tion. By inspecting Fig.8 and Fig.9, it can be seen
that the effect of linear regression on the system. In
Fig.8, the predicted values from linear model fall di-
rectly on a straight line that has a slope 1.73, the same
thing happens with the nonlinear model in Fig.9. The
predicted values with linear and nonlinear regression
have a correlation 0.54684 and 0.53117 respectively
between the predicted output and input X, whereas
the case of complete data has a correlation 0.55261.
Table.3, summarises the effect of other two cases of
percentage missing (MCAR 26% and MCAR 37%)
on the linear and nonlinear model. For example, lin-
ear and nonlinear model give standard deviation esti-
mates of 13.61 and 14.00, respectively, whereas the
full-observed data standard deviation is 13.778. Not
surprisingly, this is because the missing values are
close to linear region area.
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Table 2: The input and output of the system in MCAR
with missing percentage (Montgomery et al., 2006) (Mont-
gomery, Peck,and Vining, 2006).

Y-MCAR
X Complete (21%) (26%) (37%)
1 6.3 6.3 6.3 6.3

1.5 11.1 11.1 11.1 11.1
2 20 - 20 -
3 24 24 24 24
4 26.1 26.1 26.1 26.1

4.5 30 - - -
5 33.8 33.8 33.8 33.8

5.5 34 - 34 -
6 38.1 38.1 - 38.1

6.5 39.9 39.9 39.9 -
7 42 42 - 42
8 46.1 46.1 46.1 -
9 53.1 53.1 53.1 -

10 52 52 - 52
11 52.5 52.5 52.5 52.5
12 48 48 - -
13 42.8 - 42.8 42.8
14 27.8 27.8 27.8 27.8
15 21.9 21.9 21.9 21.9

Table 3: The effect of linear and nonlinear models on the
system in different MCAR missing percentage.

Linear regression

21% 26% 37%

Mean 34.379 31.744 31.106
Correlation 0.5468 0.543 0.5541

Standard deviation 13.61 13.778 13.778
Nonlinear regression

Mean 34.178 30.945 31.426
Correlation 0.5312 0.5148 0.5372

Standard deviation 14.01 12.438 12.356

Figure 8: Linear regression model of input/output data in
case of 21% missing data scatter plot.

Figure 9: Linear regression model residual e versus pre-
dicted values scatter plot in case of 21% missing.

Figure 10: Nonlinear regression model of input/output data
in case of 21% missing data scatter plot.

6 CONCLUSIONS AND FUTURE
WORK

The primary aim of this paper is to introduce a non-
linear modelling technique for missing-data analy-
sis. Comparative studies on EM and Gauss-Newton
approaches have been carried out. EM and Gauss-
Newton algorithms are advantageous over traditional
approaches. Although EM and Gauss-Newton algo-
rithms have not produced same results specially in
existing of high nonlinearity in the system and dif-
ferent missing data mechanism (i.e., MAR and dif-
ferent MCAR cases). Most studies in the literature
focus on using of linear techniques because they hold
the simplest assumptions that make these procedures
easier for users especially in computerised environ-
ment. As mentioned previously, in existence of high
nonlinearity parts in the system, EM does not always
give good result. Although Gauss-Newton does need
initial values to start iteration process and that gives
it disadvantage because this needs more time to do
in computerised environment. In summary, EM and
Gauss-Newton algorithms require similar procedures
and frequently produce similar parameter estimates
(in case of small number of data for both MAR and
MCAR mechanism), particularly if the distribution of
data contains low nonlinear parts. As a future work,
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for a nonlinear model, the form of the model must be
specified, the parameters need to be estimated, and
starting values for those parameters must be carefully
provided.(Box and Tidwell, 1962) proposed the first
technique for model selection. (Royston and Sauer-
brei, 2008) suggested a class of regression models by
fractional polynomials (FP), involving model choice
from a specific number of models, but all of these
methods work only in case of complete data. We will
try to modify one of these approaches and apply it on
missing data. To further improve and test the perfor-
mance of the proposed method, we will try and incor-
porate good ideas of other methods for example those
presented in (Luengo et al., 2012)also carry out com-
parative studies on real data sets, readers are referred
to (Alcalá et al., 2010) for good sample data sets.
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