Keywords:

Abstract:

RNN-based Model for Self-adaptive Systems
The Emergence of Epilepsy in the Human Brain

Emanuela Merelli and Marco Piangerelli

School of Science and Technology, Computer Science Division, University of Camerino, Camerino, Italy

LSTM-RNNs, Brain functional activities, epilepsy, complex systems, S[B] Paradigm.

The human brain is the self-adaptive system par excellence. We claim that a hierarchical model for self-
adaptive system can be built on two levels, the upper structural level S and the lower behavioral level B.
The higher order structure naturally emerges from interactions of the system with its environment and it acts
as coordinator of local interactions among simple reactive elements. The lower level regards the topology
of the network whose elements self-organize to perform the behavior of the system. The adaptivity feature
follows the self-organizing principle that supports the entanglement of lower level elements and the higher
order structure. The challenging idea in this position paper is to represent the two-level model as a second
order Long Short-Term Memory Recurrent Neural Network, a bio-inspired class of artificial neural networks,
very powerful for dealing with the dynamics of complex systems and for studying the emergence of brain
activities. It is our aim to experiment the model over real Electrocorticographical data (EcoG) for detecting

the emergence of long-term neurological disorders such as epileptic seizures.

1 INTRODUCTION

A self-adaptive system is “a closed-loop system with
a feedback loop aiming to adjust itself to changes dur-
ing its operation” (Salehie and Tahvildari, 2009) and
also “a system capable to adjust its behavior in re-
sponse to its perception of the environment and of
the system itself” (Cheng et al., 2009). Furthernore a
complex system is, roughly speaking, a system made
by a huge, finite, number of components interacting
each other in a nonlinear way, with some peculiar
abilities to self-organize and to exhibit an emerging
behaviorl. According to these two definitions, most
of biological systems are complex systems, whose
behavior is self-adaptive because it evolves to adapt
to new environmental conditions. Two important ex-
amples are the human brain, described as complex
networks (Sporns et al., 2004), and the human im-
mune system, as a metaphor of a self-adaptive system
(Merelli et al., 2014). The human brain is made up
by about 10! (one hundred billion) excitable cells:
the neurons. They are linked each other in a com-
plex network by about 10* (one million of billion)
synapses, that in turn can produce an enormous num-

ber, about 101+, of different patterns of connectivity:
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the possible emerging behaviors of the brain. More-
over, the brain can be seen working at two levels, the
higher one coordinates the interactions among neu-
rons and the lower one performs the functional activ-
ities by regulating the strengths of their synapses or
physically rewires their connections (see Figure 4 in
Section 3). This feature, known as plasticity, allows
the brain to properly adapt to new environmental con-
ditions (Ashby and Isaac, 2011). Thus, studying the
human brain requires a dramatic change in paradigms
that sees reductionism challenged by holism where
brain activities and its pathologies, such as epilepsy,
can be discovered as “emerging behaviors” of the
system-brain. Nowadays formal modeling of self-
adaptive systems has been advocated as a way to deal
with complex systems (Merelli et al., 2012; Khakpour
et al., 2012; Bruni et al., 2012). Therefore, we con-
sider complex systems as systems that “live” in an en-
vironment with which interact, by perceiving and re-
acting to environmental events, and by learning and
adapting to new conditions by exposing new beha-
viors. Moreover, they are in a sort of dynamic equilib-
rium: the systems remain in the state of equilibrium
until external conditions do not change. When new
conditions arise, it must adapt by evolving to reach a
new state of equilibrium. Consequently, the human
brain might be modelled as a self-adaptive system.
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We claim that a self-adaptive system can be mo-
deled with a hierarchical model built on two basic le-
vels: an upper structural level S, describing the adap-
tation dynamics of the system, and a lower behavioral
level B, accounting for the behaviour of the system.
The upper level acts as coordinator of local interac-
tions among elements, that fill up the lower behavioral
level. As a consequence, the higher order structure
emerges from the interaction of the system with its en-
vironment, and the adaptivity feature follows the self-
organizing principle that supports the entanglement of
lower level elements and the higher order structure.
In this proposal, we aim to exploit our recent expe-
rience in collecting real-time electrocorticographical
data (EcoG) of epilepsy (Piangerelli et al., 2014), a
neurological disorder traditionally viewed as a “hy-
persynchronous” activity (Kramer et al., 2010) of the
neurons in the brain, for modeling this process as an
emerging pathology of the brain activity. We want
to study a reason why the adaptation phase failed, to
this end we start to pose some key-questions: “how
the brain process can be modeled as a self-adaptive
system? How can a model freely evolve to allow the
system to adapt?’ What does it mean that the system
cannot adapt or it adapts in a wrong way?”.

By taking into account our previous work, inspired by
the immune system (Merelli et al., 2014), where the
adaptation phase is represented as a topological appli-
cation of the S[B] paradigm suitable to identify, clas-
sify and learn new relationships among antibodies, in
this position paper we address the above questions by
building a hierarchical model as a Recurrent Neural
Networks (RNN) application of the S[B] paradigm.
RNNSs are a bio-inspired class of artificial neural net-
works very powerful for dealing with the dynamics of
complex systems and for studying the emergence of
brain activities, to develop a self-adaptive model able
to discriminate between the physiological and patho-
logical human brain processes; in particular, between
the physiological and epileptic conditions. The chal-
lenging idea is to describe the S[B] two-level model
as a second order Long Short-Term Memory (LSTM)
Recurrent Neural Network. The LSTM-RNN ar-
chitecture was introduced in 1997 (Hochreiter and
Schmidhuber, 1997). Like most RNNs, a LSTM net-
work is universal in the sense that, given the proper
weight matrix, it can compute anything a conven-
tional computer can compute as program.

2 RECURRENT NEURAL
NETWORKS: A POWERFUL
METHOD

Artificial Neural Networks (ANN) are computational
(non-linear) models biologically inspired by human
central nervous system (brain). They consist in a set
of nodes, also called neurons or processes, connected
each other like the real neurons, and able to process
input signals. The ability of learning is exactly the
most important feature of an ANN: learning means
evolving and adapting to the changing context for re-
acting to different situations. A kind of self-adaptive
system with an hidden adaptivity phase. The simplest
example of an ANN is the McCulloch-Pitts neuron
(McCulloch and Pitts, 1943), followed by perceptron,
whose limit was overcome by the introduction of mul-
tilayered perceptrons with back-propagation, known
as FeedForward Neural Networks (FFNN). Details
about this subject can be funded in (Minsky and Pa-
pert, 1988).

Nowadays a great-interest is rising upon-artificial
Recurrent Neural Networks that differ with respect to
FFNNs in modeling the neurons with the ability to
sending feedback signals to each others neurons (see
Figure 1).
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Figure 1: An example of RNN. This network presents feed-
back connection but it is fully connected too. Not all the
RNNs are required to be this way.

2.1 The RNN Strong Points and
Limitations

The main features of RNNSs, due to the presence of
loops, are basically three:

RNNs develop a system dynamics even without
input signals;

RNNs are able to store, in their hidden layers, a
non-linear transformation of the input. They have
memory of past inputs;
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the rate of change of internal states con be finely
modulated by the recurrent weights to give robust-
ness in detecting distortions of input data.

RNNSs are universal approximations of any dynamical
system (Funahashi and Nakamura, 1993); the brain it-
self can be seen having an RNNs-architecture (Ashby
and Isaac, 2011) (see Figure 2). Cortical networks
present an incredible ability to learn and adapt via a
number of plasticity mechanisms which affect both
their synaptic and neuronal properties. The self-
adaptive mechanism might allow the recurrent net-
works in the cortex to learn representations of com-
plex spatio-temporal stimuli. Neuronal responses are
highly dynamic in time (even with static stimuli)
and contain a rich amount of information about past
events, i.e. memory. This can be the reason why they

Figure 2: (Left) The brain as a functional recurrent network
(van den Heuvel and Sporns, 2011). (Right) A drowning of
a recurrent anatomical network in the brain.

are biologically more plausible and computationally
more powerful than other adaptive approaches such as
Hidden Markov Models, they have no memory at all,
FFNNs and Support Vector Machines (SVM). One of
the main problem is the relative low storage capacity
meaning that the influence of a given input either de-
cays or exponentially blows up since it cycles around
the net’s loops. This problem is well know as vanish-
ing gradient problem, it does not allow past events to
influence present events.
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2.2 Long Short-term Memory
Recurrent Neural Networks

Long Short-Term Memory Recurrent Neural Net-
works are a particular architecture of RNNs. The ba-
sic unit of an LSTM network is the memory block,
such as the one shown in Figure 3, containing one
or more memory cells and three adaptive, multiplica-
tive gating units shared by all cells in the block.
Each memory cell has at its core a recurrent self-
connected linear unit (orange) called the “Constant
Error Carousel” (CEC). The CEC rules constant error
flow, and overcomes a fundamental problem plagu-
ing previous RNNs preventing error signals from de-
caying quickly as they “get propagated back in time”.
The adaptive gates (green) control inputs and outputs
of the cells (input and output gate) and learn how to
reset the state of the cell once its contents are obso-
lete (forget gate). All errors are cut off once they
leak out of a memory cell or gate. Although they
are useful to change the incoming weights. The re-
sult is-that the CECs are the only part of the system
through which errors can flow back forever, whereas
the gates learn the nonlinear aspects of sequence pro-
cessing. LSTM learning algorithm is local in space
and time and O(1) is its computational complexity per
time step and weight. Suffice it to say here that the
simple linear unit is the reason why LSTM nets can
learn to discover the importance of events that hap-
pened 1000 discrete time steps ago, while previous
RNNs already fail in case of time lags exceeding as
few as 10 steps.

LSTM networks overcome the vanishing gradient
problem connected with RNNs allowing to store and
access information over a long period of time time.
This makes an LSTM network well-suited to learn
from experience, to classify, process and predict time
series when there are very long time lags of unknown
size between important events. Recent applications of
RNNs are handwriting recognition, speech recogni-
tion, image classification, stock market (time series)
prediction and motor control and rhythm detection.
LSTM RNN are second-order neural networks (NNSs):
the gate units serve as the additional sending units for
the second-order connections (Monner and Reggia,
2012). By second-order NNs, we mean a network that
not only it allows normal weighted connections from
one sending unit to one receiving unit, but also it al-
lows second-order connections: weighted links from
two sending units to one receiving unit. In this case
the signal received is dependent upon the product of
the activities of the sending units with each other and
the connection weight (Miller and Giles, 1993).
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Figure 4: A schematic view of a self-adaptive system. On the left, the panel (a) shows the evolution of the system: LSTM
RNNs are indicated by their weight matrix [W] and some events e could make the system adapt and evolve changing the
weight matrix. For each weight matrix is possible to obtain a DFA describing the behavior of the system. On the right, the
panel (b) describes in a more detailed way an instant of the evolution: it is possible to see a LSTM-RNN and the related DFA.
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Figure 3: A LSTM cell. The linear unit lives in a cloud of
nonlinear adaptive units needed for learning nonlinear be-
havior. Here we see an input unit (white) and three (green)
gate units; small blue dots are products. The gates learn to
protect the linear unit from irrelevant input events and error
signals.
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3 EMBEDDING RNNS IN A
HIERARCHICAL MODEL FOR
SELF-ADAPTIVE SYSTEM:
THE IDEA

As explained in the previous section, RNNs have been
shown to be a powerful tool to deal with different is-
sues regarding adaptivity. That is the reason why we
believe that they might be used with proficiency in
the development of a model for self-adaptive systems
based on the architecture shown in Figure 4. The
model should consist in two levels: the reactive Be-
havioral B level and the intelligent Structural S level.
S is the “brain” of our model, it is able to sense all
the external stimuli and represent them as a set con-
straints (the weigh matrices [W] in the Figure 4) those
that will guide the B level to react with a correct be-
havior. Whenever the B level can not anymore satisfy
the set of constraints imposed by S, must evolve its
network topology to adapt its behavior to the new set
of constraints, by using the real RNN weight matrix.
The general framework presented in Figure 3 of the
paper (Merelli et al., 2014) remains valid if we con-
sider as invariants of the model a measure of the net-
work topology for example the RNN weight matrix.
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The evolution of the model relies on how the coding
of the set of perceptions (data space in the figure) that
the brain will be store within the S level and on how
the corresponding B level will be modeled. Thus the
general approach based on the use of RNNs can be
view as an application of the S[B] paradigm.

To facilitate the concrete application of the S[B]
paradigm we are going to use, as a collection of data,
the set of electrical signals of the brain (time series),
that are the proofs of the brain activity. They con-
tain all the information regarding the (topological net-
work, such as the) internal states of the brain and
its connectivity. They are the input data for train-
ing a LSTM RNN whose topology will be measured
to characterized the adaptation phase of the proposed
model. According to the work of Giles and others
(Giles et al., 1992) a second-order recurrent neural
network can be mapped into a Final State Automa-
ton (DFA), likewise the LSTM RNNs will be likely
mapped into the classes of DFAs whose correspond-
ing set of accepted regular. terms will be used to
describe the cerebral activities and-discriminate the
physiological from the pathological one.

The real data over which we will experiment
the proposed approach are the electrocorticographi-
cal signals: they are recorded using a new device,
the ECOGIW-16E (Piangerelli et al., 2014; Cristiani
et al., 2012), developed by two Italian companies:
AB-MEDICA s.p.a. and Aethra Telecommunications
s.r.l.. the device, completely wireless will provide a
huge amount of data, continuously recording electri-
cal brain activity.

4 FINAL REMARKS

Starting from the description of the human brain as
a self-adaptive system and exploiting the features of
the second-order LSTM-RNNs, we proposed to de-
velop a hierarchical model made up by two levels, S
the structural one and B the behavioral one, entangled
via a unique adaptation phase. The study of the evo-
lution of the model, rested on the adaptation phase, is
characterized by the way in which the space of data
is analyzed. In our scenario, the space of data repre-
sents the environment, the set of perceptions through
which the behavior of a system evolves and its knowl-
edge updates. We proposed to analyze the set of data
by an RNN for deriving the so called weight matrix
that allows us to build the corresponding complex net-
work that represents the emerging model at the cur-
rent time. In the study of the evolution of the com-
plex network, we aim to consider the recent impor-
tant results reached by some researchers of the TOP-
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DRIM project * (Franzosi et al., 2014): a geometric
entropy measuring networks complexity for detect-
ing the emergence of the “giant component” as the
emergence of a neurological disorders such as epilep-
tic seizures.
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