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Abstract: This position paper introduces the concept of “artificial co-pilot” (that is, a driver model), with a focus on 
driver’s oriented cognitive cars, in order to illustrate a new approach for future intelligent vehicles, which 
overcomes the limitations of nowadays models. The core consists in adopting the human cognitive frame-
work for vehicles, following an artificial intelligent approach to take decisions. This paper illustrates in de-
tails these concepts, as they are under development in the EU co-funded project HOLIDES. 

1 INTRODUCTION 

Nowadays, automation systems to support, or even 
to replace, human drivers have become a trend in the 
current Intelligent Transportation Systems research. 
They are called Advanced Driver Assistance Sys-
tems (ADAS) or Partially Autonomous Driving 
Assistance Systems (PADAS), depending on the 
level of automation considered; anyway, their goal is 
to strengthen driver’s sensing ability, to warn / in-
form in case of errors and to reduce the control ef-
forts of the vehicle itself. In fact, drivers are limited 
in recognizing, interpreting, understanding and oper-
ating in critical situations; moreover, they are prone 
to errors and to get tired (many accidents are due to 
human wrong behaviour, drowsiness, or inattention 
in general (Tango, 2013)). Therefore, these 
ADAS/PADAS can effectively avoid some acci-
dents, by cooperating with the driver and assuring 
the mutual understanding between the human-agents 
and the machine-agents, in order to reduce or avoid 
conflicts. This principle of smart collaboration be-
tween humans and machines have been the focus of 
a number of theoretical studies, such as (Inagaki, 
2008), (Flemisch, 2003), (Heide and Henning, 
2006), (Li, 2012), in which full automation can be 
regarded as one extreme point of interaction spec-
trum. 

In particular, for Li and colleagues, the concept of a 
“cognitive vehicle” was proposed and defined as 
cognitive driving assistance systems, which – utiliz-
ing the findings of multidisciplinary engineering and 
cognition science – is able to monitor and detect the 
errors of human drivers and correctly respond / in-
tervene to avoid accidents. As mentioned by Da Lio 
and colleagues, depending on its application context, 
a system capable to determine how a human expert 
should drive, can be regarded as an artificial co-
driver, which is considered a symbiotic system, that 
is, it is described using the rider-horse metaphor (or 
H-metaphor), in which an animal can “read” human 
intentions and, reciprocally, the rider can “read” the 
animal’s intentions. 

The goal of this position paper is to illustrate a 
new approach for the implementation of this virtual 
driver (hereafter, co-pilot), which adopts a human 
cognitive framework as basis and follows an artifi-
cial intelligence approach. This activity is carrying 
out inside the European co-funded project 
HOLIDES, whose main goal is to design adaptive 
cooperative systems, focussing on the optimization 
of the distribution of workloads between humans 
and machines, to compensate losses of capacities for 
instance in stress situations (http://www.holides.eu/).  
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2 MODELLING THE DRIVER 

Theories of cognition can be divided in two separate 
classes according to the role that context plays in 
cognitive processes. The implication for the artificial 
systems lays at the core of the debate among these 
different perspectives. The new embodied view, 
aiming at reducing the relationship between the 
individual and the environment in the cycle percep-
tion-action, suggests that information needed to act 
on the environment are given by the context, without 
any intervention of high cognitive processes (as in 
(Da Lio, 2013)). On the contrary, classic views of 
cognition divide between low and high cognitive 
processes being the high level of processing abstract 
and independent from the sensor modality through 
which information is acquired. Active Control of 
Thought – Reflexive (hereafter ACT-R) is a compu-
tational model aimed to simulate the behaviour of a 
driver (Salvucci, 2006) following the second per-
spective. ACT-R emphasizes the effort to integrate 
different sources as the task that a person is going to 
perform, the artefact necessary to perform the task 
and the cognition through which a person perceives, 
reasons and acts. ACT-R is an example of how cog-
nitive processes are inserted into computational 
models to simulate driving behaviour. However, it 
reflects also the limits and the gaps between research 
on cognition and their implementations. The cogni-
tive module is embodied in nature but inserted in a 
modular architecture and without a clear explanation 
about how the different processes interact each oth-
er.  

Starting from ACT-R, but with the specific aim 
to improve safety control and to reduce the number 
and the impact of human errors in human-machine 
interaction, the Cognitive Architecture for Safety 
Critical Task Simulation (hereafter CASCaS) archi-
tecture has been developed. As described by Lüdtke, 
Weber, Osterloh and Wortelen (2009), the CASCaS 
model is a three layers architecture, which distin-
guishes the human behaviour on the base of different 
intentional demands: 

1) autonomous behaviour: the level of “acting 
without thinking”; it is the level of the manual con-
trol which controls everyday low level actions; 

2) associative behaviour: the level of actions 
based on plans elaborated in familiar contexts; 

3) cognitive behaviour: the level of elaboration 
of new plans in new contexts. 

In short, the functioning of the model is based on 
rules stored at the associative level in a memory 
component. Each rule has an “if…then” structure 
which  relies  an action  on a goal, a series  of sub- 

goals and conditions imposed by the context.  
Unlike the ACT-R architecture, CASCaS model 

allows parallelism between autonomous and associa-
tive layer simulating the human ability to manage 
two tasks simultaneously. 

 

 

Figure 1: the cognitive architecture CASCaS. 

For the implementation of the co-pilot in the 
HOLIDES vehicle demonstrator, we have adopted 
the CASCaS architecture as a basis, reproducing the 
autonomous behaviour and the associative behaviour 
into the co-pilot architecture (the cognitive layer can 
be foreseen as a further step of model development). 
The adopted probabilistic approach is described in 
the following sections. 

3 IMPLEMENTING THE DRIVER 
MODEL 

The new artificial driver solution we propose ex-
ploits probabilistic techniques, in particular Markov 
Decision Process (MDP) (Howard, 1960; Bellman, 
1957) which we briefly recall in the following to 
pave the way to the explanation of how MDPs are 
been applied inside the CASCaS architecture, for the 
case under study. 

3.1 Markov Decision Processes 

MDP is a mathematical formalism introduced in the 
1950s by Bellman and Howard (Howard, 1960; 
Bellman, 1957) in the context of operations research 
and dynamic programming. It has been used in a 
wide area of disciplines including economics, manu-
facturing, robotics, automated control and communi-
cation systems. More precisely, it is a stochastic 
control process, where, at each time step, the process 
is in some state ݏ ∈ ܵ, and a decision maker may 
choose any action ܽ ∈  ,that is available in s. Then ܣ
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the process responds by randomly moving into a 
new state s’ according to a specified transition prob-
ability, and giving to the decision maker the corre-
sponding reward (cost) Ra(s,s’) (depending by the 
chosen action and by the source and destination 
state). 

A key notion for MDPs is the strategy, which de-
fines the choice of action to be taken after any pos-
sible time step of the MDP. Analysis methods for 
MDPs are based on the identification of the strate-
gies that maximize (or minimize) a target function 
based on the MDP’s rewards (or costs). 

It has been proved that the maximal (or minimal) 
reward and its associated optimal strategy for an 
MDP can be computed in polynomial time using 
linear programming techniques. However this is not 
practical for large MDPs, and alternative solution 
techniques based on iterative methods have been 
proposed, such as value iteration and policy itera-
tion. Roughly speaking, value iteration (Bellman, 
1957) consists in the successive approximation of 
the required values. At every iteration, a new value 
for a state is obtained by taking the maximum (or 
minimum) of the values associated with the state’s 
outgoing actions. A value of an action is derived as a 
weighted sum over the values, computed during the 
previous iteration, of the possible next states, and 
where the weights are obtained from the probability 
distribution associated with the actions. Each itera-
tion can be performed in time O(|ܵ|ଶ ∙  where S ,(|ܣ|
is the state space set and A the set of all the possible 
actions. Instead the policy iteration algorithm (How-
ard, 1960) alternates between a value determination 
phase, in which the current policy is evaluated, and a 
policy improvement phase, in which an attempt is 
made to improve the currently computed policy. The 
policy improvement step can be performed in 
O(|ܵ|ଶ ∙  while the value determination phase in ,(|ܣ|
O(|ܵ|ଷ) by solving a system of linear equations. In 
this regard, a critical issue for the application of 
MDPs to realistic complex problems is scalability 
with respect to the MDP size: for MDPs with very 
large or infinite state space, these algorithms may be 
inapplicable, and approximate solution techniques 
are the only viable approach. 

In this paper we focus on sparse sampling tech-
niques (Kearns et al., 1999), which do not need a 
complete description of the MDP, but that only 
require access to a generative model that can be 
queried to generate, from an initial state, a smaller 
MDP that is still sufficient to compute a near-
optimal strategy. Hence, the complexity of these 
approaches does not have dependence on the global 
MDP size, but it is exponential in the solution hori-

zon time (which depends on the desired degree of 
approximation of the optimal policy). 

Obviously a crucial aspect of this technique is 
the definition of the generative model which, taking 
in input a state-action pair ݏۦ,  must be able to ,ۧݐ
randomly generate a next state s’ according to a 
transition probability Ps,a(). 

In this paper, we propose to exploit the high level 
formalism, called Markov Decision Petri Net 
(MDPN) as starting point for the generative model. 
A MDPN models a system in terms of its events, 
while for an MDP the system evolution has to be 
expressed by explicitly describing all possible states, 
actions and probabilistic transitions. The high level 
description of the MDPN can ease the modeller task 
and can reduce the risk of introducing errors. 

3.2 Markov Decision Petri Nets 

The MDPN formalism provides a graphical descrip-
tion of the system, where a complex non-
deterministic or probabilistic behaviour is described 
as a  composition  of simpler  nondeterministic or 
 

 

Figure 2: sub-net for the vehicle speed. 

probabilistic steps in which the probabilistic behav-
iour is clearly distinct from the non-deterministic 
one. In details, a MDPN model is composed by two 
Petri nets: the probabilistic subnet Npr (enriched with 
a transition weight function) and the non-
deterministic subnet Nnd. These subnets represent the 
probabilistic and non-deterministic behaviours of the 
underlying MDP, respectively. 

 Figure 2 shows a simple probabilistic sub-net 
Npr modelling the vehicle speed. According to PN 
notation the places, graphically represented as cir-
cles, correspond to the state variables of the system 
(i.e. Low, Normal and High), while the transitions 
(graphically represented as boxes) correspond to the 
events that can induce a state change (i.e. Decreas-
eSi, IncreaseSi, and StableSi). The arcs connecting 
places to transitions and vice versa express the rela-
tion between states and event occurrences. Each 
place can contain tokens, drawn as black dots. The 
number of tokens in each place defines the state,  

Vehicle speed

Low Normal High

DecreaseS0

IncreaseS1

StableS0

DecreaseS1

IncreaseS2

StableS1 StableS2
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Figure 3: sub-net for the co-pilot’s actions. 

called “marking”. The evolution of the system is 
given by the firing of an enabled transition1, which 
removes a fixed number of tokens from its input 
places and adds a fixed number of tokens into its 
output places (according to the cardinality of its 
input/output arcs). 

 
Figure 3 shows a non-deterministic subnet Nnd in 

which the automatic driver can choose among three 
possible actions: break, do no action, or send a 
warning.  

Observe that Npr and Nnd can share places (as 
shown in Figure 3, where the places L0…L5 belong 
to a probabilistic sub-model describing the level of 
driver's attention), but they cannot share transitions. 

Moreover, an MDPN model must have an asso-
ciated reward function defined in terms of its places' 
markings and of transition firings; such reward func-
tion is used to compute the corresponding MDP 
reward to be optimized. 

The generation of the MDP corresponding to a 
given MDPN has been described in details in (Bec-
cuti et al., 2007): it consists of (1) a composition 
step, merging the two subnets in a single net, (2) the 
generation of the RG of the composed net, (3) two 
reduction steps transforming each PR and ND se-
quence in the RG into a single MDP transition. 

3.3 The MDPN Model 

The MDPN model that we use to derive the MDP of 
our co-driver requires defining first a multi-interval 
discretization of all the continuous-valued measures 
collected by the sensors (i.e. frontal Long Range 
Radar, Lane Recognition Camera and rear Short 
Range Radar for the blind-spot areas). Obviously a 
higher number of intervals increase the quality of the 
solution, but it makes the model more complex. 
Therefore, the most appropriate trade-off is an im-
portant part of our planned investigation during the 
HoliDes project. 
The second step  is a careful  selection  of which sys 

 
1 A transition is enabled if each input place contains a number of 
tokens greater or equal than a given thresh-old, and each inhibitor 
place contains a number of to-kens strictly smaller than a given 
threshold. 

tem's components have to be modelled. Our initial 
proposal is to consider the following system's com-
ponents: 

 A vehicle component describing the vehicle 
dynamic status (according to the infor-
mation available on CAN bus); 

 A driver component describing the driver 
status as reported in section 2; 

 An obstacle component describing the ob-
stacle status in terms of its relative speed 
and position (longitudinal and lateral) w.r.t. 
our vehicle; 

 An action component describing the possi-
ble actions (e.g. to break, to do no action, to 
send a warning) that the artificial driver can 
execute. 

 
It naturally follows that the first three compo-

nents will be used to generate the corresponding Npr 
net, while the last one the Nnd net. 

Moreover, the reward function for this MDPN 
model can be defined by combining the following 
transition reward: 

 if action Break is selected then it returns 
CostBreak; 

 else if action SendWarning is selected then 
it returns CostSendWarning else it returns 0; 

with the following marking reward:  
 if place Collision is marked then it returns 

CostCollision else it returns 0; 

with CostCollision ≫CostBreak ≥ CostSendWarning. 
This obtained reward function is hence able to 

assure that the system goal is to avoid collision min-
imizing the total number of actions Break and 
SendWarning. Obviously, more complex reward 
functions could be also investigated during the pro-
ject.  

3.4 Integration in the Vehicle 

Vehicle integration is shown in Figure 4, where the 
On-line Sparse Sampling Algorithm (OSSA) uses 
the MDP derived automatically by MDPN model as 
generative model. Practically, data collected by the 
vehicle's sensors are discretized to map them on a 
specific MDP state s. 

Then, such MDP state is passed as input to the 
OSSA, which will return a small “sub-MDP” to be 
solved to derive a near-optimal strategy.  

In details, starting from state s the OSSA will 
query the generative model N times on each possible 
pair 〈ݏ, ܽ௜〉. Then, this step is recursively applied on 
any generated states up to a selected time horizon H.  
 

D r iver St at usPossible act ions

Brake NoAction SendWarning L0 L5
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Figure 4: schema of vehicle integration. 

This essentially generates a sub-MDP with a tree  
structure (as shown in Figure 4) where the number 

of children for each node s is N·|As|, assuming As to 
be the set of all the available actions in s. Moreover 
H gives the tree depth. 

Finally this generated sub-MDP is solved (using 
policy or value iteration algorithms) to derive a near-
optimal strategy, which is used to suggest the next 
action to the current driver. 

4 DISCUSSION AND  
CONCLUSIONS 

Researchers have widely investigated the possibility 
to reduce or eliminate the accidents due to driver’s 
errors or inappropriate behaviors, by using specific 
ADAS/PADAS applications that warn the driver or 
even by using automated systems that can replace 
the human user, by taking control of the vehicle in a 
proper time. In this position paper, we have selected 
an appropriate cognitive model and related architec-
ture (CASCaS) of the driver and implemented an 
artificial co-pilot starting from it and reproducing the 
autonomous and associative layers. To achieve that, 
we follow a probabilistic approach, described in 
terms of Markov Decision Petri Net formalism. In 
Figure 5, the architectural scheme of the co-pilot is 
shown. Under normal condition, the driver (the hu-
man-agent) perceives the environment, evaluating 
the possible risks (using the information from the 
co-pilot as a support). Based on these results, the 
driver formulates an intention and plans the next 
action (a trajectory in the future), which are imple-
mented by acting on the pedals and on the steering. 
In the meanwhile, if a co-pilot is present, it analyzes 
the environment as well, and predicts the possibility 
to have a crash or a potentially critical situation. 
Thus, the co-pilot assesses risks creating its own 
driving plan, comparing this maneuver with the one 
that the driver is actually performing and taking into 
consideration the intention of the driver. This deter-
mines how dangerous a given situation can be, and 

thereby the level of automation which is necessary 
(e.g. by displaying a warning signal or some infor-
mation to the human-agent, or whether an automatic 
intervention is needed). 
 

 

Figure 5: co-pilot scheme in HoliDes. 

With respect to the current state of the art, we 
consider the works of Da Lio and colleagues, of Wu 
and colleagues and also of Li and colleagues. In (Da 
Lio, 2006) the perception-action framework is con-
sidered (embodied view); in this paper, we regard 
the “classical” view of cognition as the most appro-
priate, because we can reproduce the different levels 
of cognition in a hierarchical way which can be 
reproduced in a system architecture and implement-
ed by a computational point of view. In this context, 
our choice of using CASCaS is motivated by its 
goal-oriented model, for which its predictions are 
easier to be generalized respects to a task-oriented 
model (e.g. it can be applied to automotive domain 
or to aeronautics domain, indifferently), by using a 
probabilistic approach, such as the one described.  

In this sense, we follow the line indicated by Li 
and colleagues, with their concept of “cognitive 
car”, where our co-pilot can be regarded as an in-
stantiation. Another contribution of our work is 
about the understanding of which functions can be 
automated next and to which extent. This could 
provide a kind of roadmap towards the realization of 
fully autonomous vehicles in a near or far future, 
where the co-pilot can substitute the human driver 
(although the introduction of more automated hu-
man-machine systems should occur gradually). 

Finally, it is worth to mention the work of NaiQi 
Wu and colleagues, since they adopted Coloured 
Hybrid Petri Nets (CHPN). Their goal was to show a 
model based on CHPN to describe cooperation be-
haviour between a driver and a co-pilot in an ADAS 
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application. They showed that their model is dead-
lock-free and conflict-free. In our case, Petri Nets 
are used instead as a high level formalism for the 
MDP, which derives the strategy of the co-pilot 
itself and the intelligence of the automated system. 

To sum up, in this position paper we have at-
tempted a new technological system for co-pilot 
implementations, using MDP for the computational 
implementation of the cognitive system. Since 
HOLIDES project have just started October 2013, 
the development of the proposed framework is in its 
initial phase. The next steps consist now in the prep-
aration and execution of the experimental phase on 
the field with the demonstrator vehicle to collect 
real-time and on-line data for the tuning and the 
evaluation of the MDP co-pilot. This phase, together 
with the prototype set-up, is foreseen in this year and 
at the beginning of 2015; while the final implemen-
tation and assessment of the co-pilot will be the 
activity to carry out within the end of the project 
(August 2016). 

One important future work will be to investigate 
the possibility of extending this approach using 
Partially Observable MDP (POMDP) (Leslie, 
1995)). Indeed, a POMDP is a generalization of an 
MDP, in which an agent must base its decisions on 
incomplete information about the state of the envi-
ronment. Hence, POMDP can be used more effi-
ciently to model systems where the agent cannot 
directly observe the complete underlying state. 
However, POMDPs are often computationally in-
tractable to solve a real system and its approximate 
solution techniques for POMDPs could not provide a 
sub-optimal solution that satisfies the time con-
straints imposed by our application. 

In addition, another important achievement is 
represented by the full exploitation of the CASCaS 
framework, in particular for the cognitive behaviour. 
In this context, the integration of driver’s state clas-
sifier inside the co-pilot (driver state becomes an 
input in this case) is a crucial point for deciding the 
level of automation. 
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