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Abstract: A method for evaluating optimal complexity of regression models is discussed. It is supposed that complicated
model must be used only when any simple model fails describe exhaustively regularity that exists in data.

At that null hypothesis about exhaustive explanation of data by simple regularity is tested with the help of
complicated model. Validity of null hypothesis is evaluated with the help p-value that is calculated with the

help of special version of permutation test. An application is discussed where developed technique is used
to evaluate if more complicated piecewise-linear regressions must be used instead of simple regressions to

describe correctly dependence of parathyroid hormone on vitamin D status.

1 INTRODUCTION model of optimal complexity but also to estimate va-
lidity of choice. Let suppose that models may be
Standard task of statistical modelling is discussed. It searched inside simple famiMs and more compli-
is necessary to find statistical model that forecasts re-cated familyMc. At thatMs C Me. It is not sufficient
sponseY by variablesXy, ..., Xq: to find out if optimal model must be searched inside
o family Ms or inside familyMc\Ms. It is also neces-
V=R X) e sary to evaluate our confidence that model found in-
whereF (Xi,...,Xn) is predicting function and is side M¢\Ms really better describes data than model
error term. FunctionF with minimal mathemati-  found inside familyMs. It must noted that choice be-
cal meanEe? is chosen from familyM by data set  tween two families sometimes corresponds to choice
S ={(2,x9),...,(¥%,x%)}, wherey?,... y% areval-  between two suppositions about type of process that
ues of response variabfeandx?, ..., x% are vectors  generates studied data. It may be physical, chemical
of predicting variableX, ..., Xs. It is supposed that  or biological process for example. Usually in statis-
observations corresponding different objects frﬁm tics validity of choice between two hypotheses is eval-
are independent and are taken from the same probauated with the help of p-values. The same way of
bility space. Success of modelling depends on correctvalidity evaluating is used in this paper. It is consid-
choice of predicting functior complexity or more  ered that complicated family must be used then and
exactly on complexity of familyM. Today there are ~ Only then when any simple model fails to describe ex-
several approaches for complexity optimization that haustively regularity that exists in data. At that null
allow to discourage overfitting effect. Akaike infor- hypothesis about exhaustive explanation of existing
mation criterion (Akaike, 1974), Bayesian informa- regularity by simple predictive function fromls is
tion criterion (Schwarz, 1978), Hannan-Quinn infor- tested with the help of complicated famil.. Such
mation criterion (Hannan and Quinn, 1979), Risannen approach correspond to well known principle of of
principle (Rissanen, 1978) may be mentioned there Occam’s razor that is attributed William of Occam
above. These techniques often allow to find out com- living in the 14th century. The most popular ver-
plexity level with best generalization ability. But in sion of razor is formulated as "Entities should not
many application tasks it is important not only to find be multiplied beyond necessity.” Later razor principle
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was adopted by many scientists and another variants2.2 Permutation Test Technique
were invented. Principle was stated by Isaac New-
ton in form "We are to admit no more causes of nat- |et f is set of all possible permutations of integers

ural things than such as are both true and sufficient {1,...,m}. Let §p(f F) be data set that is received

to explain their appearances.” Such form as it may be A = .

seen is most close to approach that is represented in:rec;%dg'lg(?l datar s)gtso by random permutation of

the paper. Problems that are associated with Occam'’s Lyeestm):
[ i ientific i S 0y 0 0y 0

razor are discussed in modern scientific literature on So(F,F) = {[rs() +FOQ), X, [ g+ F (xQ), X 3.

machine learning or knowledge discovery. Usually

it is considered that razor is a way to improve fore- Definition Two permutations’ andf” from f will be

casting ability. Arguments for and against such razors 4jjed equivalent if data seé,(f’ F) and§p(f” F)
are represented in details in (Domingos, 1999). Ap- 5.e equal. ’ ’

proach that is discussed in this paper is based on test- £ _s¢b
; . Let f, = {fl,
ing of null hypotheses with the help of random per- that
mutation test. Let note that random permutation test a _
now is rather popular technique allowing to evaluate e any two permutation fronf, are not equivalent,
statistical validity without any addmon_al suppositions any permutation is equivalent to one of permuta-
(Ernst, 2004; Good, 2005). Permutation tests also are tions from f,
used to study regression or recognition models (Kim ' 1 ;
et al., 2000; Ojala and Garriga, 2010; Golland et al., Let note that due to transitiveness of equivalence any
2000). permutation may be equivalent only one element from
fp. Equivalence class(f) may be defined for each

permutation fromf, that consists of all permutation
2 EVALUATING VALIDITY OF that are equivalent t6. Equality
COMPLICATED MODELS

" f&} is such set of permutations

2.1 Main Suppositions !

_ _ o _ . is true by definition offy,. Two statement are true.
Itis supposed that optimal predicting functiég(x) is  Statement 1. In case supposition 2 is true for any
searched inside familwidetildeM by some training fi e fo

setS= {(y1,X1),...,(Ym,Xm)} with the help of least .

squares technique: i PSS F] | X1 = 30, o = X0} — .HP(Ei —r)
Fo(x) = argminQ[S F (x)], =

FeM Proof. Statement 1 may be easily received from
whereQ|S,F] = 5™ 1 [yj — F(%)]?. Minimal value of independence of residualon vectorsx and mutual
Q[§ F(x)] at seﬂ\ﬁJ;vill be referred to am (§ M) independence of observations corresponding different
min . - =~ .

The represented approach is based on several simpl@PI€Cts romS. It follows from supposition 2 that

suppositions. probabilities of data setSy(f1,F),...,Sp[fy, F] are

Supposition 1. More complicated function froml, ~ €dual each otheilr. ?'E'D' . . i

must be used only when there is no function inside Statement 2. All classesclfy],...,c[fn] are of the

R . ) same size.
family Mg that exhaustively describes data. - . -
Supposition 2. It is considered that some func- Proof. Really. Let{rs,...,Tk} be such partition of

tion F exhaustively describes dependencé& dfom {r(l)""’r(m).} that residualsr, inside each e_Ie-
X, X if residuals {r1 = yi — F(x?) i ment of partition are equal each other and residuals
gy — - 1 gy m —_

0 o . from different groups are different. Suppose that
ym—F(xm)} are realizations of mutually independent I 131 ] i set of residual b
identically distributed random valugs,...,&n, that sa {Ja(1), T q[u(q)J} IS Set ot residuals numboers
are independent on vector descriptionslt is sup- inside grouprg according some permutatidn € fp,
posed also thdk (&) = 0,i =1,...,m}. whereu(q) is size of grougy a|_1dq =1, .k It. is
Supposition 3.1t is possible to reject (or verify) null ~ €vident that for any permutatioff that is received
hypothesis that functioR exhaustively describes de- from fj by some permutations of numbers only inside
pendence oiX variables with the help of complicated sets Ji,...,J equality of data setsSS,(fj,F) and

family M. Sp(fj’,F) is preserved. At that for any permutation
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f{' that is received fromf; by some permutation

including exchanges between séfs..., J; data sets
Se(fj,F) andSy(f{’,F) are not equal. So classf))

_ I € F1Qmin(Sp(f,F),Me) < Quin(So, M)}
i

Q.E.D.

must include all permutations that are received from Thus ratio

f; by some permutations of numbers inside sets

J1,...,%. Classc(fj) does not include any other per-

mutations. Let note that amount of such permutations

depends only on sizes of groufi§, ..., Tk} and does
not depend on specific permutatidn So size of
classc[f;j] does not depend of). Q.E.D.

SetS, = {Sp(f1,F),...,Sp(fa,F)} includes all
possible data seésatisfying conditions
a) empirical distribution of residuals from fore-
casting functionF in S coincides with empirical
distribution of residuals at initial data seéo (condi-
tionC (S, F));
b) x-descriptions in S completely coincide with
x-descriptions ofy(conditionCy (S, F)).
Let 2 is some predicate that is defined at set of all
possible data sets of size Let predicate? be true
at some subser () of setS,. Probabilities of all
data sets fron, are equal according statement 2. So
equalityP{?(S) = TRUESe S,} may be evaluated

as ratioSL2)

|Sp] o
Supposition 4. Let Ppv = Qmin(SMe) <
Qmin(SoJ\ﬁc). It is suggested to use conditional
probability

St (Zp)|

|Sol
as p-value that evaluates validity of null hypothesis
about exhaustiveness.

P{P(S) =TRUESE S} = 1)

Statement 3.Equality is true

St (o)
Sl
_ I € FlQmin[Sp(f . F). Mc] < Quin(So. Mo)|
]
Proof. Really, evidently
P1S(f. %)) = 2[Sp(F, S)]

if f is equivalentf’. According statement 2 all equiv-
alence classes are of the same size.nkdte number
of permutations in each equivalence class. Then

|§T(5PPV)| e
|SO|*nC

)

{f € f|Qmin[Sp(f,F), Mc] < Qmin(So,Mc)}|
]

theoretically allows to calculate exact p-value testing
validity of null hypothesis about exhaustive descrip-
tion of existing regularity by simple regularity from
Ms. But practically it is impossible to calculate exact
p-values because of huge amount of possible permu-
tation. However it is easily to estimate 3 using rela-
tively small number of random permutations that are
generated by random numbers generator. Let

fg={fjli=1,...,Ng}
be set of permutations calculated by by random num-
bers generator. Then p-value may be estimated as ra-
tio
|{ fj € fgl Quin(Sp(f, F); Mc) < Quin(So;Mo)}
Ng

2.3 Choice of Simple Model

3)

(4)

Technique described in previous subsection may
be used only if simple model fronMs has been
previously chosen. Supposition 1 declares that com-
plicated model must not be used when there is simple
model that exhaustively describes data. Such model
may be searched by evaluating all predicting func-
tions fromMs with the help of described in previous
section PT version. But it is practically impossible
to implement such approach. In this paper only two
simple predicting functions fronMs are evaluated.
At first simple predicting function is studied that
is searched with the help of standard least squares
technique. Itis naturally to hope that in many task LS
regression is very close to a model that exhaustively
describes data. However experiments with optimal
valid partitioning method (Senko and Kuznetsova,
2006) demonstrated that really false complicated
regularity . may be mistakenly evaluated as valid.
Such mistakes take place when regularity are verified
relatively simple regularity®s that in the best way
approximate data. But at thgt significantly deviates
from verified complicated regularitf.. So a method
was developed in (Kuznetsova et al., 2013) verifying
more complicated modek; relatively simple model
that minimally deviates frongs.

Let try to explain why such technique may be
useful. Suppose thdd(x) is some predicting func-

tion from Ms, FO(x) is argming .. QlSo, F (X)),
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8(j) = Fs(x}) — FO(x;). 3 APPLICATION EXAMPLE
Discussed approNach is b~ased on evaluating upper
boundary oQmin[Sp(f,Fs), Mc] wheref € f. 3.1 Obijectives
But by definition ofSy(f, Fs) Effect of vitamin D status(vitD) on parathyroid hor-
mone (PTH) concentration was studied (Kim et al.,
Qmm[Sp(f Fo), M ]<Q[Sp(f Fo),FO] = 2012). Now serum 25 (OH) D is the best indica-

tor of the (vitD), but target levels of vitamin D in

L E 2 the blood are still represent a matter of debate. So
= 71[ 1)+ Fs(Xj) — Z +o(j)]"= the priority arrears of the research are the develop-
= . B . ment of a method-dependent reference values with
R 2 the use of biomarkers for vitD sufficiency. One such

- JZl f(i +ZZ S(ire(; +1216 (- widely recognized biomarker is the correlation of

vitD with PTH. But supposition exists that vitD cor-
relates with PTH.only when vitD concentration is less
Qmin(So, M¢) = Q(So,FO) = than certain threshold level and there is correlation
"loss” when vitD concentration is higher than thresh-
old level. Goal of our research was statistical verifica-
tion of last supposition and search of optimal model
that describes dependence of PTH on vitD. It must be
Ir j+6(J)] noted tha_t dis_cussed supposition corresponds to use
of piecewise-linear model.

On another hand

[yj — Fs(Xj)+

_><
||
,[MB

S h

+F(x)) — F2(x))]?

Il
M3

Il
sl

m m
er+2z 6(j)rj+262(j). 3.2 Data Set
= =1 =1
Taking into account that The study included patients (n = 139, males 18%,
m m mean age 48,5 18 years) in which levels of to-
Z 12— Z (2 tal 25(OH)D (LIAISON, DiaSorin) and PTH (ELEC-
L ) = i SYS, Roche) were measured during autumn period
. (September-October). In selection of patients we
we receive that used exclusion criteria: presence of primary hyper-
Q[gp(f,Fs),Fco] _ Qmin(gmmc) _ parathyroidism, secondary or tertiary hyperparathy-

roidism on the background terminal chronic renal fail-
. m . ure, blood creatinine level of more than 100 mmol/l
=2% 8(j)[re(j)) —ri] < ZZ 18D -1re¢jy) = rill- or GFR less than 60 ml/min/1,73m2, intake of active
1=t - vitD metabolites within 1 month prior the blood test.
Thus upper bound fon.n[Sp(f Fs),M ] tends to
Qmin[S, Mc] as max_1._m|j| tends to 0. Itis more 3.3 Search of Optimal Regression
probable that inequality

3

It is supposed that response variallés predicted
Quin[Sp( f, Fs), Me] < Qmin[So, Mc] by variableX with the help of piecewise-linear model

is true when max.1...m|dj| is small. So we may with 2 segments

hope that p-value that is calculated by ratios 4 will Y = [3'0_|_ B'1X+s|,whenxg B
be greater when max, . m|ESJ| is small. Thus small ) ;
p-value received wheR¢ is verified relatively clos- Y = Bo+ B1X + &, whenX> B (%)

est simple model is strong argument for absence of At that it is supposed that

simple model fromMg that cannot be rejected using | ln_ af r

complicated model. Existence of such argument cor- Bo+ BB =PBo+PBaB. (6)

responds to Supposition 1 correctness. Let M , be family of all piecewise-linear predicting
functlons with 2 segments and fix&d For eaclBre-
gression coefficientd), B} , B, B} are calculated from
observations

(y17 Xl)a ey (ym7 Xm)
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with the help of standard least squares technique. It iswas equal 2:1";)52]9'J for model predlctlng/ph from Xyq
evident that search of coefficients may be reduced to (task 1) andB = 24. 721? for piecewise-linear regres-

of quadratic programming task:

Q(So,MB,) = ZB (yj — Bo— B1Xj)*+
+ ZB (yj — B — BiXj)* — min, ©)

when constraint (6) is satisfied. Partial derivatives of
Lagrange function

Q(So,Mpwi) +A(Bo+ ByB — By — B1B)

by coefficientsB}, B}, Bh, B} must be equal O for the
task (7). LetXm = {X1,...,xm}. Using 4 equalities
for partial derivatives and constraint (6) we receive
system of 5 equations.

mBo+X|B' B%
XiBy+ diBy — 5A ciy
m G+ d Bl+Bz7\ Y,
><r[30+dr[31+ =Cy
—BO [318+ BO+ B[31_

(8)

where

e m is number of points iXy, satisfying inequality
Xj < B,

e m is number of points iXy, satisfying inequality
Xj > B,
d ZZXJ BXJ!ZZZXJ BXJ!

b ny 2xj<BXjYij» ny 2x>BXjYj

hd X| ZXJ<B(Xj) 'Xf = ZXJ>B(Xj) )

Optimal regression coefficients belongs to solution of
system (8). Let

Xj —|—X//

Xe = {6 = Xjr # Xjr, Xjr € X, Xjr € Xm}

sion pred|ct|ng/|ph from xyq (task Il). Dependence of
QU Mpw|) onBintask | is given at figure 1.

Q(B)
157

P S S
5

15 20 |25 30 35 40

23.95

Figure 1: Dependend®(S, M

45
B (ng/mL)

pwl) onBin task I.

It is seen from figure 1 that point 23.95(ng/ml)
corresponds: unique expressed. global minimum  of

QS MBW|) Graphic of piecewise-linear function
from model | is represented at figure 2. It is seen
PTH (pg/mL)
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Figure 2: Optimal piecewise regression for task I.

be a set of boundanes separating neighbour pointsthat slope of linear predicting function inside left seg-

from Xm. To find LS piecewise -linear regression it
is sufficient to calculat®(S,, Mpw|) for all boundary

points from)(C and to select boundary corresponding
to minimal Q(S,, Mpwl)
3.4 Data Analysis Results

Let x,4 be concentration of serum 25(0OH)®pn
be concentration of PTHyjpn = logypn. Optimal
piecewise-linear regressions calculatig andyipn
were chosen iﬂpw| with the help of technique de-
scribed in previous section. Optimal boundary p&nt

ment significantly exceeds slope of linear predicting
function inside right segment. Correlation coefficient
betweenyph andxyg in group of patients withk,q <
23.95 is equal -0.2934 (significant at pj0.01). Corre-
lation coefficientin group of patients witfyg > 23.95

is close to zero (equal 0.0351). Such results are in
good agreement with supposition that vitD correlates
with PTH only when vitD concentration is less than
certain threshold level. However statistical signifi-
cance of such correlation analysis is not too high be-
cause correlation coefficients are calculated in groups
formed by boundar that was previously found by
the same data set. Let try to validate result with the
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help of procedures verifying complicated models rel-
atively simple models that were discussed in previous
sections.

3.5 \Verification

At the first stage null hypothesis about independence
of ypnh 0N Xyq was tested with the help previously dis-

cussed in (Senko and Kuznetsova, 2006) permutation

test version. Set of random permutations of integers
1,...,mwas formed with the help of random num-
bers generator. This séhg consisted of\y elements.
Data setgSp(f;)| fj € fing} was built fromS by ran-
dom permutation oy positions relatively fixed po-
sitions ofxyq. Statistical validity of null hypothesis is
evaluated with the help of p-value that is equal ratio

I{ i € frng|Qmin[Sp(fj); Mpwi] < Qmin(So, Mpwi) }|
Ny ‘

In other words p-value is calculated as fraction of
random data sets where dependence/gaf on Xud
is apgroximated better than at initial &t Values
Qmin(S0, Mpwi) @nd Qmin[Sp(fj), Mpwi] are calculated
with the help of procedure that is describe in section
3.3. Piecewise-linear modeling p§, from x,q allows
to reject null hypothesis with p-value equal 0.000041.
Piecewise-linear modeling gfpn from x,q allows to
reject null hypothesis with p-value equal 0.000079.
At that number of random permutations was equal
10°. Then piecewise-linear regressions were veri-
fied relatively simple regression models. Optimal
piecewise-linear regressigpn = FF?W,(de) +&pwwas
verified by testing null hypothesis about exhaustive
description of dependence by simple linear regression
Yph = Og + O1%d + €1. Piecewise-linear regression
Yiph = F§W|de + £pw Was verified by testing null hy-

pothesis about exhaustive description of dependenceAkai

by simple linear regressiofipn = cx'o + cx'lxvd +&2.
Two ways of regression coefficiers, aj, o1, o}
calculating were considered:
e simple regression coefficients were searched with
the help of standard LS procedure,

e such simple regression coefficients were chosen
that distance between verified piecewise-linear re-
gression and simple regression was minimal.

Let suppose thax values in& belong to some in-
terval (ay,ap). Then distance between two predicting
functionsF(x) andF,(x) is calculated by formula

DIF(X), Fo(X)] = /eq * [F(0) — F2(0]2dlx

Ratio (4) was used to estimate p-values. At that num-
ber of permutations was equal®1(Results of verifi-
cation are represented in table.

442

and Information Retrieval

Table 1: Results of verification.

target| type of symple mode| p-value
Yph standard LS 0.022
Yiph standard LS 0.026
Yph most close td-5, 0.015
Yiph most close tCFr?w 0.0218

Itis seen from table that p-values for null hypothe-
ses about exhaustive description of data by simple re-
gressions do not exceed 0.026. This result is strong
argument that simple regressions are not sufficient to
explain data and more complicated piecewise-linear
regression models are really necessary. Thus suppo-
sition that vitD correlates with PTH only when vitD
concentrationisless than certain threshold level is sta-
tistically valid.

4 CONCLUSIONS

So methodwas proposed that allows to evaluate valid-
ity of choice between simple or complicated regres-
sion models in terms of p-values. Method is based on
testing null hypothesis about independence of devia-
tions from simple predicting function axX variables.
Method was successfully used for evaluating correct-
ness of biomedical supposition that vitamin D status
correlates with parathyroid hormone levels. Method
may be used in variety of tasks where a problem of
choice between more complicated or simple models.
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