
A Method for Evaluating Validity of Piecewise-linear Models

Oleg V. Senko1, Dmitriy S. Dzyba2, Ekaterina A. Pigarova3, Liudmila Ya. Rozhinskaya3

and Anna V. Kuznetsova4

1Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, 119991 Moscow, Russia
2Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia

3Department of Neuroendocrinology and Bone Diseases, Endocrinology Research Centre,
11 Dmitry Ulyanov st., 117036 Moscow, Russia

4Emanuel Institute of Biochemical Physics, ul. Kosygina 4, 117997 Moscow, Russia

Keywords: Regression Model, Optimal Complexity, Permutation Test.

Abstract: A method for evaluating optimal complexity of regression models is discussed. It is supposed that complicated
model must be used only when any simple model fails describe exhaustively regularity that exists in data.
At that null hypothesis about exhaustive explanation of data by simple regularity is tested with the help of
complicated model. Validity of null hypothesis is evaluated with the help p-value that is calculated with the
help of special version of permutation test. An application is discussed where developed technique is used
to evaluate if more complicated piecewise-linear regressions must be used instead of simple regressions to
describe correctly dependence of parathyroid hormone on vitamin D status.

1 INTRODUCTION

Standard task of statistical modelling is discussed. It
is necessary to find statistical model that forecasts re-
sponseY by variablesX1, . . . ,Xn:

Y = F(X1, . . . ,Xn)+ ε,

whereF(X1, . . . ,Xn) is predicting function andε is
error term. FunctionF with minimal mathemati-
cal meanEε2 is chosen from familyM̃ by data set
S̃0 = {(y0

1,x
0
1), . . . ,(y

0
m,x

0
m)}, wherey0

1, . . . ,y
0
m are val-

ues of response variableY andx0
1, . . . ,x

0
m are vectors

of predicting variablesX1, . . . ,Xn. It is supposed that
observations corresponding different objects fromS̃0
are independent and are taken from the same proba-
bility space. Success of modelling depends on correct
choice of predicting functionF complexity or more
exactly on complexity of familyM̃. Today there are
several approaches for complexity optimization that
allow to discourage overfitting effect. Akaike infor-
mation criterion (Akaike, 1974), Bayesian informa-
tion criterion (Schwarz, 1978), Hannan-Quinn infor-
mation criterion (Hannan and Quinn, 1979), Risannen
principle (Rissanen, 1978) may be mentioned there
above. These techniques often allow to find out com-
plexity level with best generalization ability. But in
many application tasks it is important not only to find

model of optimal complexity but also to estimate va-
lidity of choice. Let suppose that models may be
searched inside simple familỹMs and more compli-
cated familyM̃c. At thatM̃s ⊆ M̃c. It is not sufficient
to find out if optimal model must be searched inside
family M̃s or inside familyM̃c\M̃s. It is also neces-
sary to evaluate our confidence that model found in-
side M̃c\M̃s really better describes data than model
found inside familyM̃s. It must noted that choice be-
tween two families sometimes corresponds to choice
between two suppositions about type of process that
generates studied data. It may be physical, chemical
or biological process for example. Usually in statis-
tics validity of choice between two hypotheses is eval-
uated with the help of p-values. The same way of
validity evaluating is used in this paper. It is consid-
ered that complicated family must be used then and
only then when any simple model fails to describe ex-
haustively regularity that exists in data. At that null
hypothesis about exhaustive explanation of existing
regularity by simple predictive function from̃Ms is
tested with the help of complicated familỹMc. Such
approach correspond to well known principle of of
Occam’s razor that is attributed William of Occam
living in the 14th century. The most popular ver-
sion of razor is formulated as ”Entities should not
be multiplied beyond necessity.” Later razor principle
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was adopted by many scientists and another variants
were invented. Principle was stated by Isaac New-
ton in form ”We are to admit no more causes of nat-
ural things than such as are both true and sufficient
to explain their appearances.” Such form as it may be
seen is most close to approach that is represented in
the paper. Problems that are associated with Occam’s
razor are discussed in modern scientific literature on
machine learning or knowledge discovery. Usually
it is considered that razor is a way to improve fore-
casting ability. Arguments for and against such razors
are represented in details in (Domingos, 1999). Ap-
proach that is discussed in this paper is based on test-
ing of null hypotheses with the help of random per-
mutation test. Let note that random permutation test
now is rather popular technique allowing to evaluate
statistical validity without any additional suppositions
(Ernst, 2004; Good, 2005). Permutation tests also are
used to study regression or recognition models (Kim
et al., 2000; Ojala and Garriga, 2010; Golland et al.,
2000).

2 EVALUATING VALIDITY OF
COMPLICATED MODELS

2.1 Main Suppositions

It is supposed that optimal predicting functionF0(x) is
searched inside familywidetildeMby some training
setS̃= {(y1,x1), . . . ,(ym,xm)} with the help of least
squares technique:

F0(x) = argmin
F∈M̃

Q[S̃,F(x)],

whereQ[S̃,F ] =∑m
j=1 [y j −F(xj )]

2. Minimal value of

Q[S̃,F(x)] at setM̃ will be referred to asQmin(S̃,M̃).
The represented approach is based on several simple
suppositions.
Supposition 1. More complicated function from̃Mc
must be used only when there is no function inside
family M̃s that exhaustively describes data.
Supposition 2. It is considered that some func-
tion F exhaustively describes dependence ofY from
X1, . . . ,Xn if residuals {r1 = y1 − F(x0

1), . . . , rm =

ym−F(x0
m)} are realizations of mutually independent

identically distributed random valuesξ1, . . . ,ξm that
are independent on vector descriptionsx. It is sup-
posed also thatE(ξi) = 0, i = 1, . . . ,m}.
Supposition 3. It is possible to reject (or verify) null
hypothesis that functionF exhaustively describes de-
pendence onX variables with the help of complicated
family M̃c.

2.2 Permutation Test Technique

Let f̃ is set of all possible permutations of integers
{1, . . . ,m}. Let S̃p( f ,F) be data set that is received
from initial data setS̃0 by random permutation of
residuals(r1, . . . , rm):

S̃p( f ,F)= {[r f (1)+F(x0
1),x

0
1], . . . , [r f (m)+F(x0

m),x
0
m]}.

Definition Two permutationsf ′ and f ′′ from f̃ will be
called equivalent if data sets̃Sp( f ′,F) andS̃p( f ′′,F)
are equal.

Let f̃b = { f b
1 , . . . , f b

N
} is such set of permutations

that

• any two permutation from̃fb are not equivalent,

• any permutation is equivalent to one of permuta-
tions from f̃b.

Let note that due to transitiveness of equivalence any
permutation may be equivalent only one element from
f̃b. Equivalence classc( f ) may be defined for each
permutation fromf̃b that consists of all permutation
that are equivalent tof . Equality

f̃ =
N⋃
i=1

c( f b
j )

is true by definition of̃fb. Two statement are true.
Statement 1. In case supposition 2 is true for any
f j ∈ f̃b

P{S̃p[ f j ,F ] | x1 = x0
1, . . . ,xm = x0

m}=
m

∏
i=1

P(ξi = r i)

Proof. Statement 1 may be easily received from
independence of residualsr on vectorsx and mutual
independence of observations corresponding different
objects fromS̃0. It follows from supposition 2 that
probabilities of data sets̃Sp( f1,F), . . . , S̃p[ fN ,F ] are
equal each other. Q.E.D.
Statement 2. All classesc[ f1], . . . ,c[ fN] are of the
same size.
Proof. Really. Let{r̃1, . . . , r̃k} be such partition of
{r(1), . . . , r(m)} that residualsr∗ inside each ele-
ment of partition are equal each other and residuals
from different groups are different. Suppose that
J̃q = {Jq(1), . . . ,Jq[µ(q)]} is set of residuals numbers
inside group̃rq according some permutationf j ∈ f̃b,
whereµ(q) is size of group̃rq andq= 1, . . . ,k. It is
evident that for any permutationf ′j that is received
from f j by some permutations of numbers only inside
sets J̃1, . . . , J̃k equality of data sets̃Sp( f j ,F) and
S̃p( f ′j ,F) is preserved. At that for any permutation
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f ′′j that is received fromf j by some permutation

including exchanges between setsJ̃1, . . . , J̃k data sets
S̃p( f j ,F) andS̃p( f ′′j ,F) are not equal. So classc( f j )
must include all permutations that are received from
f j by some permutations of numbers inside sets
J̃1, . . . , J̃k. Classc( f j ) does not include any other per-
mutations. Let note that amount of such permutations
depends only on sizes of groups{r̃1, . . . , r̃k} and does
not depend on specific permutationf j . So size of
classc[ f j ] does not depend onf j . Q.E.D.

Set S̃b = {S̃p( f1,F), . . . , S̃p( fN ,F)} includes all

possible data sets̃Ssatisfying conditions
a) empirical distribution of residualsr from fore-
casting functionF in S̃ coincides with empirical
distribution of residualsr at initial data set̃S0 (condi-
tion Cr(S̃0,F));
b) x-descriptions in S̃ completely coincide with
x-descriptions of̃S0(conditionCx(S̃0,F)).
Let P is some predicate that is defined at set of all
possible data sets of sizem. Let predicateP be true
at some subset̃ST(P ) of set S̃b. Probabilities of all
data sets from̃Sb are equal according statement 2. So
equalityP{P (S̃) = TRUE|S̃∈ S̃b} may be evaluated

as ratio|S̃T (P )|

|S̃b|
.

Supposition 4. Let Ppv = Qmin(S̃,M̃c) <

Qmin(S̃0,M̃c). It is suggested to use conditional
probability

P{P (S̃) = TRUE|S̃∈ S̃b}=
|S̃T(Ppv)|

|S̃b|
(1)

as p-value that evaluates validity of null hypothesis
about exhaustiveness.

Statement 3.Equality is true

|S̃T(Ppv)|

|S̃b|
=

=
| f ∈ f̃ |Qmin[S̃p( f ,F),M̃c]< Qmin(S̃0,M̃c)|

| f̃ |
(2)

Proof. Really, evidently

P ]S̃p( f , S̃0)) = P [S̃p( f ′, S̃0)]

if f is equivalentf ′. According statement 2 all equiv-
alence classes are of the same size. Letnc be number
of permutations in each equivalence class. Then

|S̃T(Ppv)| ∗nc

|S̃b| ∗nc
=

=
| f ∈ f̃ |Qmin(S̃p( f ,F),M̃c)< Qmin(S̃0,M̃c)}|

| f̃ |
.

Q.E.D.
Thus ratio

|{ f ∈ f̃ |Qmin[S̃p( f ,F),M̃c]< Qmin(S̃0,M̃c)}|

| f̃ |
(3)

theoretically allows to calculate exact p-value testing
validity of null hypothesis about exhaustive descrip-
tion of existing regularity by simple regularity from
M̃s. But practically it is impossible to calculate exact
p-values because of huge amount of possible permu-
tation. However it is easily to estimate 3 using rela-
tively small number of random permutations that are
generated by random numbers generator. Let

f̃g = { f j | j = 1, . . . ,Ng}

be set of permutations calculated by by random num-
bers generator. Then p-value may be estimated as ra-
tio

|{ f j ∈ f̃g|Qmin(S̃p( f ,F),M̃c)< Qmin(S̃0,M̃c)}|

Ng
(4)

2.3 Choice of Simple Model

Technique described in previous subsection may
be used only if simple model from̃Ms has been
previously chosen. Supposition 1 declares that com-
plicated model must not be used when there is simple
model that exhaustively describes data. Such model
may be searched by evaluating all predicting func-
tions fromM̃s with the help of described in previous
section PT version. But it is practically impossible
to implement such approach. In this paper only two
simple predicting functions from̃Ms are evaluated.
At first simple predicting function is studied that
is searched with the help of standard least squares
technique. It is naturally to hope that in many task LS
regression is very close to a model that exhaustively
describes data. However experiments with optimal
valid partitioning method (Senko and Kuznetsova,
2006) demonstrated that really false complicated
regularityRc may be mistakenly evaluated as valid.
Such mistakes take place when regularity are verified
relatively simple regularityRs that in the best way
approximate data. But at thatRs significantly deviates
from verified complicated regularityRc. So a method
was developed in (Kuznetsova et al., 2013) verifying
more complicated modelRc relatively simple model
that minimally deviates fromRs.
Let try to explain why such technique may be
useful. Suppose thatFs(x) is some predicting func-
tion from M̃s, Fo

c (x) is argminF(x)∈M̃c
Q[S̃0,F(x)],
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δ( j) = Fs(x j)−Fo
c (x j).

Discussed approach is based on evaluating upper
boundary ofQmin[S̃p( f ,Fs),M̃c] where f ∈ f̃ .

But by definition ofS̃p( f ,Fs)

Qmin[S̃p( f ,Fs),M̃c]< Q[S̃p( f ,Fs),F
o
c ] =

=
m

∑
j=1

[r f ( j)+Fs(x j)−Fo
c (x j)]

2 =
m

∑
j=1

[r f ( j)+ δ( j)]2=

=
m

∑
j=1

r2
f ( j)+2

m

∑
j=1

δ( j)r f ( j)+
m

∑
j=1

δ2( j).

On another hand

Qmin(S̃o,M̃c) = Q(S̃o,F
o
c ) =

=
m

∑
j=1

[y j −Fo
c (x j)]

2 =
m

∑
j=1

[y j −Fs(x j)+

+Fs(x j)−Fo
c (x j)]

2 =
m

∑
j=1

[r j + δ( j)]2 =

m

∑
j=1

r2
j +2

m

∑
j=1

δ( j)r j +
m

∑
j=1

δ2( j).

Taking into account that

m

∑
j=1

r2
j =

m

∑
j=1

r2
f ( j)

we receive that

Q[S̃p( f ,Fs),F
o
c ]−Qmin(S̃o,M̃c) =

= 2
m

∑
j=1

δ( j)[r f ( j))− r j ]≤ 2
m

∑
j=1

|δ( j)| · |[r f ( j))− r j ]|.

Thus upper bound forQmin[S̃p( f ,Fs),M̃c] tends to
Qmin[S̃o,M̃c] as maxj=1,...,m|δ j | tends to 0. It is more
probable that inequality

Qmin[S̃p( f ,Fs),M̃c]< Qmin[S̃o,M̃c]

is true when maxj=1,...,m|δ j | is small. So we may
hope that p-value that is calculated by ratios 4 will
be greater when maxj=1,...,m|δ j | is small. Thus small
p-value received whenFc

o is verified relatively clos-
est simple model is strong argument for absence of
simple model fromM̃s that cannot be rejected using
complicated model. Existence of such argument cor-
responds to Supposition 1 correctness.

3 APPLICATION EXAMPLE

3.1 Objectives

Effect of vitamin D status(vitD) on parathyroid hor-
mone (PTH) concentration was studied (Kim et al.,
2012). Now serum 25 (OH) D is the best indica-
tor of the (vitD), but target levels of vitamin D in
the blood are still represent a matter of debate. So
the priority arrears of the research are the develop-
ment of a method-dependent reference values with
the use of biomarkers for vitD sufficiency. One such
widely recognized biomarker is the correlation of
vitD with PTH. But supposition exists that vitD cor-
relates with PTH only when vitD concentration is less
than certain threshold level and there is correlation
”loss” when vitD concentration is higher than thresh-
old level. Goal of our research was statistical verifica-
tion of last supposition and search of optimal model
that describes dependence of PTH on vitD. It must be
noted that discussed supposition corresponds to use
of piecewise-linear model.

3.2 Data Set

The study included patients (n = 139, males 18%,
mean age 48,5± 18 years) in which levels of to-
tal 25(OH)D (LIAISON, DiaSorin) and PTH (ELEC-
SYS, Roche) were measured during autumn period
(September-October). In selection of patients we
used exclusion criteria: presence of primary hyper-
parathyroidism, secondary or tertiary hyperparathy-
roidism on the background terminal chronic renal fail-
ure, blood creatinine level of more than 100 mmol/l
or GFR less than 60 ml/min/1,73m2, intake of active
vitD metabolites within 1 month prior the blood test.

3.3 Search of Optimal Regression

It is supposed that response variableY is predicted
by variableX with the help of piecewise-linear model
with 2 segments

Y = βl
0+βl

1X+ εl ,whenX≤ B

Y = βr
0+βr

1X+ εr ,whenX≥ B (5)

At that it is supposed that

βl
0+βl

1B= βr
0+βr

1B. (6)

Let M̃B
pwl be family of all piecewise-linear predicting

functions with 2 segments and fixedB . For eachB re-
gression coefficientsβl

0,β
l
1,β

r
0,β

r
1 are calculated from

observations

(y1,x1), . . . ,(ym,xm)
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with the help of standard least squares technique. It is
evident that search of coefficients may be reduced to
of quadratic programming task:

Q(S̃0,M̃
B
pwl) = ∑

xj<B

(y j −βl
0−βl

1x j)
2+

+ ∑
xj<B

(y j −βr
0−βr

1x j)
2 → min, (7)

when constraint (6) is satisfied. Partial derivatives of
Lagrange function

Q(S̃0,M̃
B
pwl)+λ(βl

0+βl
1B−βr

0−βr
1B)

by coefficientsβl
0,β

l
1,β

r
0,βr

1 must be equal 0 for the
task (7). LetX̃m = {x1, . . . ,xm}. Using 4 equalities
for partial derivatives and constraint (6) we receive
system of 5 equations.






ml βl
0+ X̄lβl

1−
1
2λ = Ȳl

X̄l βl
0+dl

xβl
1−

B
2 λ = cl

xy

mr βr
0+dr

xβr
1+

1
2λ = Ȳr

X̄rβr
0+dr

xβr
1+

B
2 λ = cr

xy

−βl
0−βl

1B+βr
0+Bβr

1 = 0

(8)

where

• ml is number of points iñXm satisfying inequality
x j < B,

• mr is number of points iñXm satisfying inequality
x j > B,

• dl
x = ∑xj<Bx j , X̄r = ∑xj>Bx j ,

• cl
xy = ∑xj<Bx jy j , cr

xy = ∑xj>Bx jy j ,

• X̄l = ∑xj<B(x j)
2, X̄r = ∑xj>B(x j)

2,

Optimal regression coefficients belongs to solution of
system (8). Let

X̃c = {xc
j ′ j ′′ =

x j ′ + x j ′′

2
|x j ′ 6= x j ′′ ,x j ′ ∈ X̃m,x j ′′ ∈ X̃m}

be a set of boundaries separating neighbour points
from X̃m. To find LS piecewise-linear regression it
is sufficient to calculateQ(S̃0,M̃B

pwl) for all boundary

points fromX̃c and to select boundary corresponding
to minimalQ(S̃0,M̃B

pwl).

3.4 Data Analysis Results

Let xvd be concentration of serum 25(OH)D,yph
be concentration of PTH,yl ph = logyph. Optimal
piecewise-linear regressions calculatingyph andyl ph

were chosen inM̃pwl with the help of technique de-
scribed in previous section. Optimal boundary pointB

was equal 23.95ng
ml for model predictingyph from xvd

(task I) andB = 24.7ng
ml for piecewise-linear regres-

sion predictingyl ph from xvd (task II). Dependence of
Q(S̃0,M̃B

pwl) onB in task I is given at figure 1.

5 10 15 20 25 30 35 40 45
1.51

1.52

1.53

1.54

1.55

1.56

1.57

 B (ng/mL)

 Q(B)

23.95

Figure 1: DependenceQ(S̃0,M̃B
pwl) onB in task I.

It is seen from figure 1 that point 23.95(ng/ml)
corresponds unique expressed global minimum of
Q(S̃0,M̃B

pwl). Graphic of piecewise-linear function
from model I is represented at figure 2. It is seen

0 5 10 15 20 25 30 35 40 45 50
0  

20 

40 

60 

80 

100

120

140

160

180

200

 25(OH)D (ng/mL)

 PTH (pg/mL)

23.95

Figure 2: Optimal piecewise regression for task I.

that slope of linear predicting function inside left seg-
ment significantly exceeds slope of linear predicting
function inside right segment. Correlation coefficient
betweenyph andxvd in group of patients withxvd <

23.95 is equal -0.2934 (significant at p¡0.01). Corre-
lation coefficient in group of patients withxvd > 23.95
is close to zero (equal 0.0351). Such results are in
good agreement with supposition that vitD correlates
with PTH only when vitD concentration is less than
certain threshold level. However statistical signifi-
cance of such correlation analysis is not too high be-
cause correlation coefficients are calculated in groups
formed by boundaryB that was previously found by
the same data set. Let try to validate result with the
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help of procedures verifying complicated models rel-
atively simple models that were discussed in previous
sections.

3.5 Verification

At the first stage null hypothesis about independence
of yph on xvd was tested with the help previously dis-
cussed in (Senko and Kuznetsova, 2006) permutation
test version. Set of random permutations of integers
1, . . . ,m was formed with the help of random num-
bers generator. This set̃frng consisted ofNg elements.
Data sets{S̃p( f j )| f j ∈ f̃rng} was built fromS̃0 by ran-
dom permutation ofyph positions relatively fixed po-
sitions ofxvd. Statistical validity of null hypothesis is
evaluated with the help of p-value that is equal ratio

|{ f j ∈ f̃rng|Qmin[S̃p( f j),M̃pwl]< Qmin(S̃0,M̃pwl)}|

Ng
.

In other words p-value is calculated as fraction of
random data sets where dependence ofyph on xvd

is approximated better than at initial setS̃0. Values
Qmin(S̃0,M̃pwl) andQmin[S̃p( f j ),M̃pwl] are calculated
with the help of procedure that is describe in section
3.3. Piecewise-linear modeling ofyph from xvd allows
to reject null hypothesis with p-value equal 0.000041.
Piecewise-linear modeling ofyl ph from xvd allows to
reject null hypothesis with p-value equal 0.000079.
At that number of random permutations was equal
106. Then piecewise-linear regressions were veri-
fied relatively simple regression models. Optimal
piecewise-linear regressionyph= Fo

pwl(xvd)+εpw was
verified by testing null hypothesis about exhaustive
description of dependence by simple linear regression
yph = α0 + α1xvd + ε1. Piecewise-linear regression
yl ph = Fo

pwlxvd+ εpw was verified by testing null hy-
pothesis about exhaustive description of dependence
by simple linear regressionyl ph = αl

0+αl
1xvd+ ε2.

Two ways of regression coefficientsα0,αl
0,α1,αl

1
calculating were considered:
• simple regression coefficients were searched with

the help of standard LS procedure,

• such simple regression coefficients were chosen
that distance between verified piecewise-linear re-
gression and simple regression was minimal.

Let suppose thatx values inS̃0 belong to some in-
terval(al ,ah). Then distance between two predicting
functionsF1(x) andF2(x) is calculated by formula

D[F1(x),F2(x)] =
∫ ah

al

[F1(x)−F2(x)]
2dx.

Ratio (4) was used to estimate p-values. At that num-
ber of permutations was equal 106. Results of verifi-
cation are represented in table.

Table 1: Results of verification.

target type of symple model p-value
yph standard LS 0.022
yl ph standard LS 0.026
yph most close toFo

pw 0.015
yl ph most close toFo

pw 0.0218

It is seen from table that p-values for null hypothe-
ses about exhaustive description of data by simple re-
gressions do not exceed 0.026. This result is strong
argument that simple regressions are not sufficient to
explain data and more complicated piecewise-linear
regression models are really necessary. Thus suppo-
sition that vitD correlates with PTH only when vitD
concentration is less than certain threshold level is sta-
tistically valid.

4 CONCLUSIONS

So method was proposed that allows to evaluate valid-
ity of choice between simple or complicated regres-
sion models in terms of p-values. Method is based on
testing null hypothesis about independence of devia-
tions from simple predicting function onX variables.
Method was successfully used for evaluating correct-
ness of biomedical supposition that vitamin D status
correlates with parathyroid hormone levels. Method
may be used in variety of tasks where a problem of
choice between more complicated or simple models.
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