
Discover Knowledge on FLOSS Projects Through RepoFinder

Francesca Arcelli Fontana1, Riccardo Roveda2 and Marco Zanoni1
1University of Milano-Bicocca, Milano, Italy

2 KIE S.r.l, Milano, Italy

Keywords: Knowledge Discovery, Project Discovery, FLOSS Projects, Full-text Search.

Abstract: We can retrieve and integrate knowledge of different kinds. In this paper, we focus our attention on FLOSS
(Free, Libre and Open Source Software) projects. With this aim, we introduce RepoFinder, a web application
we have developed for the discovery, retrieval and analysis of open source software. RepoFinder supports
a keyword-based discovery process for FLOSS projects through google-like queries. Moreover, it allows to
analyze the projects according to well-known software metrics and other features of the code, and to com-
pare some structural aspects of the different projects. In the paper, we focus on the discovery capabilities of
RepoFinder, evaluating them on different project categories and comparing them with a well-known search
engine as Google.

1 INTRODUCTION

Through the Web we are able to retrieve a huge
amount of data and information of different kinds.
Among them FLOSS (Free, Libre and Open Source
Software) projects and applications are receiving a
continuous increasing interest across different com-
munities, both in the industry, public administra-
tion and research institutions. FLOSS projects are
managed on dedicated web platforms, called Code
Forges (Squire and Williams, 2012), designed to col-
lect, promote, and categorize FLOSS projects, and
to support development teams. Some examples are
Launchpad, Google Code, SourceForge, Github, Bit-
bucket and GNU Savannah. Code Forges provide
tools and services for distributed development teams,
e.g., version control systems, bug tracking systems,
web hosting space. Currently, Github hosts more than
ten million software components, and is probably the
largest. SourceForge is one of the first Code Forges,
created in 1999, with more than 425,000 projects, all
of them fitting a categorization, while Google Code
hosts about 250,000 projects.

To find a project satisfying specific requirements,
we can start from a simple query on a generic search
engine or on each Code Forge. In this case, the risk
is receiving many useless answers, because FLOSS
project names are often ambiguous and difficult to re-
cover. Even retrieving the source code of a partic-
ular project can be difficult, because it may be man-

aged by different portals and with different versioning
technologies, e.g., Git, SVN, Mercurial (HG), CVS,
GNU Bazaar. Moreover, to choose a project for inte-
grating a FLOSS component, it is often necessary to
spend significant time inspecting the project activity,
releases, and web forums or communities explaining
strength and weaknesses of these projects. In this tra-
ditional way of evaluating new components to inte-
grate in a software, there is very little knowledge of
the quality of the project, design, code and develop-
ment team.

We started facing these issues, by developing a
web application, called RepoFinder. Its aim is to be a
platform able to support the discovery, retrieval, anal-
ysis and comparison of FLOSS projects. In the cur-
rent development stage, we started supporting FLOSS
project discovery, retrieval and analysis. RepoFinder
is currently able to perform the following tasks:

� Crawling of widely known Code Forges (Github1,
SourceForge2, Launchpad3 and Google Code4),
through their APIs or by parsing their web pages.
During this activity, projects contained in the
Code Forges are indexed, and tagged with labels
and other available metadata (e.g., tags, forks,
stars), depending on the particular Code Forge.

1https://github.com
2http://sourceforge.net
3https://launchpad.net
4https://code.google.com

485Arcelli Fontana F., Roveda R. and Zanoni M..
Discover Knowledge on FLOSS Projects Through RepoFinder.
DOI: 10.5220/0005156704850491
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2014), pages 485-491
ISBN: 978-989-758-048-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Currently, we indexed more than 450,000 projects
and found more than 20,200 labels.

� Browsing projects through a search engine based
on simple google-like queries. It is possible to
search into the projects’ descriptions, names and
all the available metadata. The code of the found
projects can be retrieved through their version
control system repository.

� Analysis of the projects’ code. We integrated ex-
ternal software for the computation of metrics and
the detection of code smells (Fowler, 1999; Ar-
celli Fontana et al., 2012) in Java code. Cur-
rently, the following tools are integrated: Check-
style (Ivanov and Sopov, 2014), PMD (Dangel,
2014) for code smell detection, NICAD (Roy and
Cordy, 2008) for clone detection, JDepend (Clark-
ware Consulting Inc., 2014), Understand (Sci-
entific Toolworks, Inc., 2014), JavaNCSS (Lee,
2014) and another tool developed at our Labo-
ratory (ESSeRE-Evolution of Software Systems
and Reverse Engineering Lab), called DFMC4J,
for metrics computation.

� Integration of data gathered by the code analyz-
ers in a dataset, to be used for statistical analyses.
In the resulting dataset, data extracted by the an-
alyzers is merged in a uniform format, allowing,
e.g., to compare the analyses performed by differ-
ent tools on the same code artifact.

In this paper, we describe the functionalities and
the architecture of RepoFinder, we summarize the
amount and characteristics of the projects we in-
dexed during the crawling phase, and we evaluate
the discovery capabilities of the tool, by simulating
a FLOSS project discovery use case, repeated on dif-
ferent project categories.

The paper is organized through the following sec-
tions: In Section 2 we describe some related work,
in Section 3 we introduce the main functionalities of-
fered by RepoFinder and its software architecture; in
Section 4 we show the data we collected in the crawl-
ing phase; in Section 5 we evaluate a project discov-
ery use case. Finally, in Section 6 we conclude and
outline some future developments.

2 RELATED WORK

Other applications exist with functionalities similar to
the ones of RepoFinder. We cite below some of them,
outlining the main similarities and differences with
our tool.

� SonarQube5 (Arapidis, 2012; Campbell and Pa-
papetrou, 2013)

– Similarities: performs different types of analy-
sis, integrating different external tools; exploits
also Checkstyle and PMD.

– Differences: it can be used like a plugin of
Eclipse; SonarQube does not support projects
discovery, but every project must be added to
the system. In addition to Java, it allows ana-
lyzing other languages by integrating different
plugins.

� SECONDA (Prez et al., 2012)(Software Ecosys-
tem Analysis Dashboard)

– Similarities: performs analyses and computes
metrics on locally stored Git repositories. Uses
a web GUI to visualize the results.

– Differences: analyzes C code and allows to
download code only using Git.

� Ohloh.net (Black Duck Software, 2014)

– Similarities: provides a search engine that use
tags and labels to improve performance.

– Differences: computes few metrics (LOC and
number of commits). In Ohloh, any user can
freely modify labels, tags and other information
about the indexed site. RepoFinder, instead, di-
rectly reports the information published on the
official Code Forge page.

� GlueTheros (Robles et al., 2004)

– Similarities: calculates metrics code reposito-
ries repository and shows results using a Web
GUI.

– Differences: supports CVS only. In addiction
to Java, it analyzes other languages. It does not
support the discovery of new projects.

� Complicity (Neu et al., 2011)

– Similarities: computes metrics from a project’s
repository. Extracts all projects from a single
repository. Uses a dashboard to visualize re-
sults.

– Differences: computes only few repository’s
metrics (e.g., number of commits, number of
files). It does not support project discovery,
but is initialized with an input project ecosys-
tem. The supported analyses focus on the con-
tributions the developers give to the ecosystem,
rather than the source code and its quality.

There are also a number of datasets (Van Antwerp
and Madey, 2008; Howison et al., 2006; Gousios,
2013) that gather data coming from different Code

5http://nemo.sonarqube.org/

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

486

Forges, which could be integrated in the crawling
and analysis processes of RepoFinder. However, their
availability is variable and, unfortunately, some of
these data-collection projects are closed.

3 REPOFINDER

In this section, we introduce the overall architecture
of RepoFinder and we briefly describe its main func-
tionalities.

3.1 RepoFinder Functionalities

RepoFinder provides five different functionalities:

� Crawling: it allows to find FLOSS projects on the
different Code Forges, and to save, update and in-
dex their information in a data store local to the
application.

� Indexing: it allows to obtain better results during
the projects search and has been developed using
the Lucene external library.

� Pre-Analysis (Selection): it allows finding
projects through simple queries submitted to the
application; found projects can be selected for be-
ing analyzed.

� Analysis: allows to analyze and store data gath-
ered with different analysis tools. The projects are
built before the analysis, because some tools need
projects that can be compiled.

� Post Analysis: analyses results are graphically vi-
sualized; it is possible to make comparison among
the data extracted on different analyzed projects.
Extracted data can be exported for external pro-
cessing.

3.2 RepoFinder Architecture

RepoFinder allows searching FLOSS projects in Code
Forges and to analyze Java projects. The overall ar-
chitecture of RepoFinder is represented in Figure 1.

The architecture is client-server. The server side,
implemented in Java and hosted on Tomcat 7, does all
the heavy jobs and is made of different components:

� Crawler: this component performs and manages
the scheduled crawling jobs. There are differ-
ent crawling strategies to extract the projects’ in-
formation from HTML pages, because there can
be different HTML project page structures in the
same Code Forge.

Figure 1: RepoFinder architecture

� Search engine: indexes the projects collection and
performs the query execution. It exploits Lucene6

to create and query the projects’ index.

� Analyzer and project builder: downloads source
code from the projects repositories; builds the
projects and, after running all tools, saves all the
gathered data.

� Storage manager: manages all the stored data
gathered from both crawling and analyses.

The client-side is a Web GUI. It enables the user
interaction with the application using a web browser.
The user can search projects, run the analyses on se-
lected projects, and show reports of the extracted data.
Vaadin7 has been used to create the GUI, and to real-
ize the client-server communication through RPC.

Currently, analyses can be applied only to Java
systems having a working Maven8 configuration.
Maven ensures that all relevant sources are included
in the analyses. It also retrieves from its reposito-
ries all the library dependencies needed to compile the
systems and to gather the required metrics correctly.
It can provide only projects’ source code, without
test cases, and executing code generation tools (e.g.,
ANTLR, JOOQ) if required. These features allow to
provide the analysis tools a consistent and compil-
able codebase to analyze, minimizing possible errors
during the analyses. Currently, RepoFinder supports
six different tools for metrics computation and code
smell detection (Understand, DFMC4J, JDepend, Ja-
vaNCSS, PMD, Checkstyle, Nicad). Code smells
have been defined by Fowler (Fowler, 1999) and are
synthoms of problems at code or design level, that can
be removed through refactoring steps.

6https://lucene.apache.org/
7https://vaadin.com
8http://maven.apache.org

Discover�Knowledge�on�FLOSS�Projects�Through�RepoFinder

487

250000

FLOSS Projects FLOSS Projects

150000

200000

250000

FLOSS Projects

5%
8%

36%

FLOSS Projects

0

50000

100000

150000

51%

gc lp sf gh
repository 24119 33917 232107 162044

0

50000 51%

gc lp sf gh

Figure 2: Number of project and division.

P i l
10%

30000
35000
40000
45000

Programming languages

35%55%

h l0
5000
10000
15000
20000
25000
30000
35000
40000

more than one languages

only one languages

not specified

perl c python php javascrip
t ruby java

languages 10917 21111 25916 27427 28629 30010 41335

0
5000
10000

Figure 3: Languages.

4 COLLECTED DATA

Crawling Code Forges, we obtained different num-
bers of projects. In Figure 2 we show the number of
the projects we obtained. The collected projects are
written in many different programming languages. In
Figure 3, we outline the number of projects we found
for each language. Projects can be written in more
than one language. In that case, they are counted
into each language. Only 10% of the projects con-
tain more than one language. We considered only tags
and labels to determine the programming languages,
so the language of about one half of the projects is
unknown.

The crawling phase of the discovery process has
performances that vary a lot with respect to the
crawled forge and the number of projects it exposes.
In Figure 4, we report the time needed for crawling in
the different Code Forges. GoogleCode is the faster
to index, but exposes a smaller number of projects.
Github is the slowest. In fact, we were able to collect
only a small fraction of Github projects, because its
APIs limit the number of request for listing projects
metadata to 5,000 request per hour. We are contin-
uously updating our database by crawling the four
Code Forges we support. The usage of Github is in-

80
100
120
140
160
180
200

10000

15000

20000

25000

30000

Duration and speed crawling

gc lp sf gh
hours 1 4 84 176
p/h 24119 8479,25 2679,654762 497,6818182

0
20
40
60

0

5000

10000

Figure 4: Crawling speed and duration.

Table 1: Keywords used for the use case experiment.

Category Query

Office office suites spreadsheet word pro-
cessor

Java-IDE editor text programming java ide
program

Full-text text search engine library java
Java-ORM orm database mapping java library
Algebra linear algebra math library java

Table 2: Results of the use case experiment.

Google RepoFinder
Category G RF ^ P1 P2 P3 P1 P2 P3

Office 23 18 4 0.57 0.30 0.30 0.61 0.22 0.22
Java-IDE 22 51 1 0.68 0.59 0.59 0.39 0.24 0.20
Full-text 44 50 5 0.84 0.52 0.39 0.50 0.22 0.18
Java-ORM 54 51 5 0.85 0.54 0.54 0.90 0.69 0.43
Algebra 42 49 9 0.79 0.26 0.26 0.73 0.61 0.49

G, RF : Num. prjs returned by Google and RepoFinder;
^: Prjs returned by both tools; Px: precision on criterion x

creasing, and many projects we found in other Code
Forges are totally or partially migrated to Github.
This appears to happen for different reasons, often for
achieving more visibility.

Another important source of FLOSS projects are
foundations like Eclipse, Mozilla and Apache. These
organizations tend to use their own infrastructure for
project pages, bug tracking and code repositories.
These projects are not indexed by RepoFinder, while
many of them can be found anyway as mirrors on
Github.

5 USER EXPERIENCE REPORT

To understand the effectiveness of RepoFinder’s dis-
covery capabilities, we simulated a use case where a
user is looking for projects and uses some keywords
as a search query. We used the same query in Re-
poFinder and in Google. For RepoFinder, we con-
sidered the first 50 results, while for Google we col-
lected all the projects mentioned in the first 10 re-
turned links. We recorded the time needed to un-
derstand if the collected projects are pertinent to the
query and if they are active. For Google, we listed
also in which position we found the references to new
projects.

We replicated the use case for five different
queries, reported in Table 1. The five queries are tar-
geted to different categories of projects, each one hav-
ing at least a famous FLOSS project. We sorted the

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

488

categories from the wider, addressing more general
functionalities, to the narrower, addressing more spe-
cific functionalities.

For every query, we measured how many projects
were discovered in common, and how many were dis-
covered by only one of the two sources. We also mea-
sured the precision of the results using different crite-
ria. The criteria are defined in more detail for each
considered software category, but can be summarized
as:

1. the project is correct if it covers the needs ex-
pressed by the query, even if in a different tech-
nology;

2. if criterion 1 is met, consider the project as cor-
rect if it is active; we considered active projects
the ones having significant activity on the source
code, or having releases, in year 2012;

3. if criterion 2 is met, consider the project as correct
if it is implemented using the technology specified
in the query, or it fits any other specific require-
ments of the query.

We defined these different levels of criteria be-
cause some of these considerations are difficult or im-
possible to be made by an automatic search engine,
but are relevant to the user. Assessing precision from
these three points of view, we want to give an idea of
the effort the user has to put in evaluating the results.
The collected results are summarized in Table 2.

A general consideration we can formulate is
that the intersection between the results returned by
Google and RepoFinder is very small. In the follow-
ing, we discuss the results obtained on each category.
For each category, we also give a specialized version
of the applied criteria, where the general criteria are
detailed with respect to the defined software category
and the experimented query. Criterion 2 is never re-
ported, because it does not need specialization. Spe-
cialized criteria are of increasing strictness, as in the
generalized ones.

5.1 Considerations on Office Results

This software category contains open source office
suites, or single word processors and spreadsheets.
The most famous project in the category is LibreOf-
fice/OpenOffice. The specialized criteria for this soft-
ware category are: 1) we consider a correct project ev-
ery open source application providing at least a word
processor or a spreadsheet; 3) no restriction applied
in this case.

This category is one of the oldest and most pop-
ular software categories at all. The alive projects in
this category have typically a long history, and many

FLOSS projects have been stopped or discontinued
due to the consolidation of the main players in both
the FLOSS and commercial world. The results of
both Google and RepoFinder confirm this analysis.
RepoFinder returned 18 projects only, while Google
returned 23, but nearly half of them are commercial
projects. The low precision of RepoFinder is influ-
enced mainly by the generality of the keywords, and
to the fact that many FLOSS projects in this category
are not updated anymore.

5.2 Considerations on Java-IDE Results

This category contains text editors and Integrated De-
velopment Environments (IDEs) written in Java or
supporting the development of Java software. Popular
IDEs in this category are Eclipse, Netbeans and Intel-
liJ IDEA, but also smaller projects like JEdit. For this
category, we specialized our evaluation criteria in this
way: 1) correct projects are text editors, programming
editors, IDEs, or any software supporting editing and
development; we exclude plugins for other editors or
IDEs, and commercial projects; 3) correct projects are
the ones written in Java or dealing with Java develop-
ment.

The results obtained on this project category are
slightly better than previous ones. The search made
on Google returned 22 projects only, and only one is
in common with the results provided by RepoFinder.
This category of projects include major players in the
whole software development area, like the aforemen-
tioned ones. Eclipse, Netbeans and IntelliJ IDEA are
not hosted on Code Forges, but on their own plat-
forms. In this case, Google gives better results than
RepoFinder, and this was expected, given the popular-
ity of the returned software. Moreover, the precision
on criterion 1 for Google is due only to the inclusion
of commercial software in the proposed results.

RepoFinder has low performance on this query.
The motivation is basically that the query is very gen-
eral, and both the description and the labels of other
project kinds match the same query. Examples of
projects matching the query are plugins for other ed-
itors or IDEs (7 projects), editors for special files (5
projects) or miscellaneous Java libraries (4 projects).
The only project in common with Google is drjava,
an actual Java IDE. JEdit, one of the project we men-
tioned, is not present in the first 50 results of Re-
poFinder. By extending the result list, we found JEdit
in the next 50 projects. This placement is due to the
result contamination we just discussed.

Discover�Knowledge�on�FLOSS�Projects�Through�RepoFinder

489

5.3 Considerations on Full-text Results

This category contains Java libraries dealing with the
indexing and search of textual data, or services having
the same purpose. One of the most famous members
of this category is Lucene. For this category, we spe-
cialized our criteria in this way: 1) a project is correct
if it is an open source library or service helping with
the search and indexing of textual data, at any scale or
complexity; 3) a project is correct if it is a Java library
or a platform-independent service.

The performances for this category are aligned to
the already reported ones. Criteria 3 for Google is
lower than in the previous categories. Returned re-
sults are contaminated by other kinds of text process-
ing libraries, inactive clones or ports of Lucene, and
API support for languages different form Java. The
last issue is very relevant also for Google results, in
addition to the presence of commercial software in
the results. The impact of inactive projects in the two
cases is comparable, instead.

5.4 Considerations on Java-ORM
Results

This category addressed Java libraries for Object-
Relational Mapping. One of the most famous projects
of this category is Hibernate. For this category, we
specialized the evaluation criteria in this way: 1) we
consider correct projects all the ones providing li-
braries exposing an API for working with a database
of any kind, for any programming language; 3) we
consider correct projects only the ones providing Java
libraries for mapping objects to a relational database.

The precision of both tools is comparable for this
category, especially considering the amount of non-
active projects returned, highlighted by the difference
between the precision of criteria 1 and 2 in both cases.
As for the projects missed by RepoFinder, we tested
that only 22 of the 49 reported only by Google are cur-
rently indexed in RepoFinder. Among the projects we
do not index there are Apache and Eclipse projects,
which are hosted on their own forge. The analysis
of Google results took one hour and twenty minutes.
Most of the projects (51 out of 54) have been found in
the first and third result, which are two pages contain-
ing categorized lists (directories) of project names.
First result is a Wikipedia entry, and the third is from
java-source.net. From the results, we can see that
these pages contained outdated information, demon-
strated by the precision change between criterion 1
and criterion 2. Finally, both Google and RepoFinder
reported Hibernate in the considered result set; we

consider Hibernate the most famous library in this cat-
egory.

This query confirms the increasing trend in the
performances of RepoFinder along with the increase
of the specialization of the query. The query is simi-
lar to the Full-text one, but identifies a slightly more
precise area. In both categories, there is a very fa-
mous project (Hibernate for Java-ORM and Lucene
for Full-text).

5.5 Considerations on Algebra Results

The last project category we tested contains Java li-
braries dedicated to linear algebra, math and matri-
ces. Some known projects in the category are JAMA,
Colt, jblas. We specialized our evaluation criteria for
this category as follows: 1) a project is correct if it is
a library for solving any kind of mathematics, alge-
bra or matrix calculation; 3) a project is correct if it
provides a Java library.

This is the narrowest category we defined in this
evaluation. The results are the best obtained in all
categories for both Google and RepoFinder. In this
case, the precision of RepoFinder is superior the pre-
cision of Google, which found a high number of inac-
tive projects. This category does not contain a project
representing a standard-de-facto, but is populated by
many medium-small projects, often addressing only
particular tasks. A peculiarity of this category is that
some popular projects, e.g., JAMA and Colt, are ac-
tually inactive, but they keep a wide user base.

6 CONCLUSIONS AND FUTURE
DEVELOPMENTS

In this paper, we described a web application we de-
veloped, called RepoFinder, which gives automated
support to the discovery and selection of FLOSS
projects. We reported the current stage of the crawl-
ing and indexing process we did on four Code Forges.
Currently, we index more than 450,000 projects, la-
beled with more than 20,200 labels/tags, and written
more than one hundred languages. The crawling pro-
cess is more effective on some Code Forges than oth-
ers. For example, Github imposes artificial speed lim-
its to its APIs, slowing down the crawling process.

We performed some evaluations with RepoFinder,
to understand its behaviour with respect to the tradi-
tional way of discovering FLOSS project through a
general purpose search engine. In our evaluation, we
simulated a project discovery use case, where a de-
veloper defines some keywords to look for a certain
project category, and uses them to discover FLOSS

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

490

projects. We defined five categories, and verified the
correctness of the discovered projects using three cri-
teria. The discovered performances have great vari-
ability, depending also on the query. The most pop-
ular project categories we defined have low perfor-
mances in RepoFinder, while, increasing the speci-
ficity of the query, performances raise.

The discovery time is one of the quality factors
in RepoFinder. To collect the results on RepoFinder,
it took from 5 to 15 minutes, while the same task on
Google took from 1 to 2 hours. The motivation is very
simple: RepoFinder reports projects in a structured
and uniform way, showing the name, labels and de-
scription of projects. Web pages, instead, mostly re-
port the name of the project, and sometimes the link to
the official site, making the discovery process slower.

We did not describe in this paper the analyses we
can perform on the retrieved projects, by exploiting
the different tools we have integrated for metrics com-
putation and code smell detection. We wanted to fo-
cus instead on the discovery functionalities of Re-
poFinder, leaving the demonstration of the analysis
phases for another future work.

Regarding future work, we identified some direc-
tions in which RepoFinder’s discovery functionalities
can be extended:

� Online query support. As we outlined, the crawl-
ing process can be slow, also because of limita-
tions imposed by Code Forges, and can lead to a
partial exploration of the available projects. We
are planning to combine our local index search
with online queries submitted to the supported
Code Forges. This hybrid solution should increase
the chance of discovering new projects, and will
leverage the existing search engines available on
each Code Forge.

� Similar projects search. As we outlined in Sec-
tion 5, software categories often have one or
more famous projects. It happens many times
that developers look for alternatives to an existing
project, rather than directly searching a software
by identifying its category. This is a common use
case, and we plan to integrate automated support
for it.

ACKNOWLEDGEMENTS

This work was partly funded by KIE S.r.l. of Milano,
Italy (http://www.kie-services.com/). The authors
kindly thank this society.

REFERENCES

Arapidis, C. S. (2012). Sonar Code Quality Testing Essen-
tials. Packt Publishing.

Arcelli Fontana, F., Braione, P., and Zanoni, M. (2012).
Automatic detection of bad smells in code: An ex-
perimental assessment. Journal of Object Technology,
11(2):5:1–38.

Black Duck Software (2014). Ohloh. www.ohloh.net.
Campbell, G. A. and Papapetrou, P. P. (2013). SonarQube

in Action. Manning Publications Co.
Clarkware Consulting Inc. (2014). JDepend.

clarkware.com/software/JDepend.html.
Dangel, A. (2014). PMD. pmd.sourceforge.net.
Fowler, M. (1999). Refactoring: Improving the De-

sign of Existing Code. Addison-Wesley Longman
Publishing Co. Inc., Boston, MA, USA. http://
www.refactoring.com/.

Gousios, G. (2013). The GHTorrent dataset and tool suite.
In Proc. 10th Working Conf. Mining Software Reposi-
tories (MSR ’13), pages 233–236, San Francisco, CA,
USA. IEEE.

Howison, J., Conklin, M., and Crowston, K. (2006).
FLOSSmole: A collaborative repository for FLOSS
research data and analyses. Intl J. Information Tech-
nology and Web Engineering, 1:17–26.

Ivanov, R. and Sopov, I. (2014). CheckStyle. checkstyle.
sourceforge.net.

Lee, C. C. (2014). JavaNCSS. www.kclee.de/clemens/
java/javancss.

Neu, S., Lanza, M., Hattori, L., and D’Ambros, M. (2011).
Telling stories about GNOME with Complicity. In
Proc. 6th Intl Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT 2011), pages
1–8, Williamsburg, Virginia, USA. IEEE.

Prez, J., Deshayes, R., Goeminne, M., and Mens, T. (2012).
SECONDA: Software ecosystem analysis dashboard.
In Proc. 16th European Conf. Software Maintenance
and Reengineering (CSMR 2012), pages 527–530,
Szeged, Hungary. IEEE.

Robles, G., Gonzlez-Barahona, J. M., Ghosh, R. A., and
Carlos, J. (2004). GlueTheos: Automating the re-
trieval and analysis of data from publicly available
software repositories. In Proc. Intl Workshop on Min-
ing Software Repositories (MSR 2004), pages 28–31,
Edinburgh, UK. IET.

Roy, C. and Cordy, J. (2008). NICAD: Accurate de-
tection of near-miss intentional clones using flexi-
ble pretty-printing and code normalization. In Proc.
16th IEEE Intl Conf. Program Comprehension (ICPC
2008), pages 172–181.

Scientific Toolworks, Inc. (2014). Understand.
www.scitools.com.

Squire, M. and Williams, D. (2012). Describing the soft-
ware forge ecosystem. In Proc. 45th Hawaii Intl Conf.
Systems Science (HICSS-45 2012), pages 3416–3425,
Grand Wailea, Maui, HI, USA. IEEE.

Van Antwerp, M. and Madey, G. (2008). Advances in the
sourceforge research data archive (SRDA). In Proc.
4th Intl Conf. Open Source Systems (WoPDaSD 2008),
Milan, Italy.

Discover�Knowledge�on�FLOSS�Projects�Through�RepoFinder

491

