
Technical Aspects of XML Format – Case Study
Differences between Saving Data into Element and Attribute

Ondřej Bureš
Faculty of Informatics and Management, University of Hradec Králové, Rokitanského 62, Hradec Králové, Czech Republic

Keywords: XML, Data, Java, PHP, Visual Basic.

Abstract: XML technology is used for data transmission on daily basis. While processing huge files, every
millisecond per node can play its part in the process. In total time it can lead to extending the whole
procedure by minutes or even tens of minutes which can make it very ineffective in matter of time and cost.
Goal of this study is to put saving data into elements in contrast with saving into attributes of XML files and
compare final results. In order to receive the best overview, three applications in different selected
programming languages were tested and results were compared.

1 INTRODUCTION

XML data transmission is based on many steps. It
starts with creating data, which is mostly printed
directly from relational database Speed of this step is
limited only by actual database settings. Next step
means sending or downloading data file from
exporter to importer. Time spent on this step is
determined by connection speed therefore network
settings. In final destination file is processed by a
XML parser and then again sent into database or
directly to frontend of some web portal.

Let’s focus on data parsing. Assuming that XML
is valid (Grijzenhout and Marx, 2013) it can contain
basically unlimited count of nodes, a single
millisecond can cause a lot of time lapse during the
file processing. In case of 60 thousand nodes in file,
one millisecond per each can lead up to one minute
delay. If we had couple of this sized files, simple
math can tell us how big delay would we get during
parsing.

This consideration can make us wonder. What if
there is a difference in time required for parsing
elements and attributes which would cause delay
while reading big XML file containing hundreds
thousands nodes or even millions of them. Finding
out that there is difference in data saving approach
could save many resources for companies in which
XML data transmission is one of the key processes.

2 TESTING CONDITIONS

In order to be able to test our assumption, we need to
set up an environment with equal conditions. That
way we are able to get objective results. Nowadays
applications are written and created in many
different programming languages. It would be the
best to test them all, but in this phase of study we
will settle with sample of the most popular and the
most used languages.

2.1 Programming Languages

TIOBE programming community is doing monthly
statistics and creating list of most popular
programming languages (TIOBE Software BV,
2014). These statistics are based on number of
skilled engineers world-wide, courses and third party
vendors. Results are calculated using popular search
engines such as Google, Bing Yahoo!, Wikipedia
and many others.

It’s not a chart of either the best programming
languages or those in which most lines of code have
been written. Main purpose of this chart is overview
which should serve for programmers to check if
their skill are still up to date. In spite of the fact, we
will use this index to determine which languages are
the most commonly used for creating applications.

354 Bureš O..
Technical Aspects of XML Format – Case Study - Differences between Saving Data into Element and Attribute.
DOI: 10.5220/0005154503540359
In Proceedings of the International Conference on Knowledge Management and Information Sharing (KMIS-2014), pages 354-359
ISBN: 978-989-758-050-5
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Table 1: TIOBE index for June 2014
(http://www.tiobe.com/index.php/content/paperinfo/tpci/in
dex.html).

Language Rating
1 C 16.191%
2 Java 16.113%
3 Objective-C 10.934%
4 C++ 6.425%
5 C# 3.944%
6 (Visual) Basic 3.736%
7 PHP 2.848%
8 Python 2.710%
9 Javascript 2.000%

10 Visual Basic .NET 1.914%

Out of programming languages mentioned above,

this study includes testing in applications written in
three of them, which are Java, Visual Basic and
PHP. Unfortunately we don’t have C or any of its
modifications on the list, but for needs of case study
it is not so important.

Each programming language has different
conditions to be able to run it locally on machine
using Windows operating system.

In order to be able to run Java program, it is
important to have Java Development Kit (also
known as JDK) installed. This package is provided
directly on Oracle website.

Visual Basic requires Internet Informational
Services server (also known as IIS) which is usually
part of Windows OS default installation. All what
user needs is to enable this service on control panel
as a feature.

PHP programming language requires Apache
server to be installed. There are many solutions that
avoid whole process of installing and setting up
whole server, one of them is EasyPHP package that
was used during tests.

2.2 Testing XML File

It is important to give both elements and attributes
the same starting conditions in order to achieve
comparable values. As a starter, files for testing
elements and for testing attributes must be same
sized. Only that way we’d avoid time difference
caused by loading file.

Next important feature is string length. We need
to be sure to avoid time differences while loading
strings of different lengths.

We will achieve both objectives by using only
one file in which we will have both elements and
attributes while in one row we have same values for

both element and attribute.

<item param="32781.00">32781.00
</item>

Values are generated randomly so we would

avoid any caching issues. XML also needs to be
fully valid, so we will include proper header at the
beginning of the file:

<?xml version="1.0" encoding="utf-8" ?>

Next we will try to figure out if file size matters

during the whole process. That’s why three different
files were created. The first one contains one
hundred thousand records, second contains five
hundreds thousands and the third one contains one
million records.

Table 2: File sizes.

Records count File size (bytes)
100 000 3 898 783
500 000 19 206 579

1 000 000 38 495 351

2.3 Testing Environment

As last parameter we have to mention, that all three
languages were tested with the same computing
power. Only that way we are able to compare every
application with each other. Configuration of the
used computer is 2 GHz dual core Intel processor
and 2 GB memory operated by OS Windows 7
Professional edition.

3 TESTING APPLICATIONS

All of programming languages selected for testing
differences between parsing elements and attributes
have its own XML parser in default so there is no
need in installing any additional libraries.

3.1 Application in PHP

PHP in its default settings uses memory of only 128
megabytes, which is not enough for processing file
containing one million records. Therefore we need
to enlarge this parameter to 1024 megabytes using
designated command right inside the application:

ini_set("memory_limit","1024M")

Technical�Aspects�of�XML�Format�-�Case�Study�-�Differences�between�Saving�Data�into�Element�and�Attribute

355

PHP itself has XML parser called SimpleXML
and the source code for processing elements in the
file is following:

$source = simplexml_load_file

('export_1m.xml');
$items = $source->xpath

("/root/item");
foreach ($items as $item) {
$array[$i] = (string)$item;
$i++;
}

We are saving every line into array just to be sure

that this line is processed. Script for parsing data
from param attribute looks very similar:

$source = simplexml_load_file

('export_1m.xml');
$items = $source->xpath

("/root/item");
foreach ($items as $item) {
$array[$i] = (string)$item['param'];
$i++;
}

Start time and end time of application is tracked

with function microtime(), which is called before
loading XML file and after loading the last node in
XML file.

3.2 Application in Java

According to TIOBE index, this programming
language was the most popular world-wide until
year 2012. Java uses 256 megabytes of memory in
default, which is sufficient for only around 150
thousands records. Therefore it is also required to
enlarge memory limit up to 1024 megabytes to be
limitless in our testing using Xmx parameter.

Java has its default XML parser called XPath API
which is part of basic Java package since version 5,
but thanks to its popularity, wide variety of libraries
extending and improving work with XML files is
available all over community forums.

Source code of application processing elements is
following:

XPath xpath =
XPathFactory.newInstance().newXPath();

NodeList nodes = (NodeList)
xpath.evaluate("/root/item/text()";,
new InputSource('export_1m.xml'),
XPathConstants.NODESET);

int size = nodes.getLength();
String[] valueArr = new String[size];

for (int i = 0; i < size; i++) {
valueArr[i] =

nodes.item(i).getNodeValue();
}

And with slight modification we get source code

of application which parses attributes of given XML
file:

XPath xpath =

XPathFactory.newInstance().newXPath();
NodeList nodes = (NodeList)

xpath.evaluate("/root/item/@param", new
InputSource('export_1m.xml'),
XPathConstants.NODESET);

int size = nodes.getLength();
String[] valueArr = new String[size];
for (int i = 0; i < size; i++) {
valueArr[i] =

nodes.item(i).getNodeValue();
}

Duration of running application is in this case
monitored using function nanoTime() which is again
called twice, once before file is loaded and nodes
parsed and once after whole process is finished.

3.3 Application in Visual Basic

The youngest of all used languages is Visual Basic
developed by Microsoft Company. According to the
TIOBE index this language is losing its popularity
since year 2010.

Unlike the two already mentioned languages, this
one does not have any memory limitation in default,
so there is no need for initial settings modification.
Application used for parsing elements has following
source code:

xml.LoadXmlFile('export_1m.xml')
Dim item = xml.FirstChild()
While Not (item Is Nothing)
Dim value As String = item.Content
item = item.NextSibling()
End While

While again with slight modifications we get an

application which parses attributes from XML file.
xml.LoadXmlFile('export_1m.xml')
Dim item = xml.FirstChild()
While Not (item Is Nothing)
Dim value As String =

item.GetAttrValue("param")
item = item.NextSibling()
End While

KMIS�2014�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

356

Time required for code execution is in case of
Visual Basic tracked with function now().Ticks.

4 RESULTS

While running every application in testing mode,
each returned different time results for every try of
processing XML file. Because of this observation
every application ran 10 times for both cases
meaning parsing elements and attributes.

4.1 Results of PHP Application

For the first language we got quite interesting
results. Values are in milliseconds:

Table 3: Values collected from PHP application.

 Element Attribute
100 000 397.7 468.3
500 000 1900.4 2278.5

1 000 000 3800.0 4633.6

From initial view we can see that element
processing hundred thousands of elements is 70
milliseconds faster than processing same number of
attributes. For a better overview data collected from
all three counts of nodes in XML file were counted
to hundred thousand and put into a graph.

Figure 1: Graph of values collected from PHP application.
On y axis duration of processing 100 000 elements, on x
axis number of nodes in tested file.

We can see that in PHP results are approximately
the same regardless number of nodes in the file, but
it is faster to process element that it is to process
attribute. While reading results from the table, it is
obvious that while parsing a million of nodes,
difference is almost one second.

4.2 Results of Java Application

While testing in Java, we got surprising results. First
we take a look on the table with averaged values.

Table 4: Values collected from Java application.

 Element Attribute
100 000 2211.3 2346.8
500 000 30044.2 30362

1 000 000 114047.3 111374.8

Right now we can see that time required for
processing million records is extreme. It takes
almost two minutes and even processing of 100
thousands nodes takes much longer than it does in
PHP (almost 6x in numbers).

This is caused by constant calling garbage
collector even when memory limit is set higher than
default. If we tried only about two thousands nodes,
we would get almost the same time per node as for
one hundred thousand, but with higher greater
number of nodes time increases exponentially.

As mentioned during introducing Java
application, thanks to popularity of this language
there are alternatives for XML parsing. One of the
most suggested is VDT-XML library. In order to be
completely honest with all programming languages
and to get the best and the most reliable results, we
tried testing also using this library while getting
following results:

Table 5: Values collected from Java application using
VDT-XML library.

 Element Attribute
100 000 460.9 455.7
500 000 1377.2 1395.9

1 000 000 2795.2 2555.1

We can see that time required for processing
improved a lot. Again we count collected values for
100 thousands nodes and put them into graph for
better overview.

Interesting fact is that the more nodes we have,
the faster processing time per node is. It means that
application written in Java takes significant time just
for opening and loading the file. This time is
constant and the more nodes file has, the lower
average value of this time is.

Unlike PHP application, in case of Java there is
no such big difference in time required for
processing element and for attribute. At count of 500
thousands the time is almost the same for both
(275.44 milliseconds per hundred thousand elements

0

100

200

300

400

500

Element

Attribute

Technical�Aspects�of�XML�Format�-�Case�Study�-�Differences�between�Saving�Data�into�Element�and�Attribute

357

Figure 2: Graph of values collected from Java application
using VDT-XML library. On y axis duration of processing
100 000 elements, on x axis number of nodes in tested file.

and 279.18 milliseconds per hundred thousand
attributes).

4.3 Results of Visual Basic Application

Using this programming language got us notable
results as well.

Table 6: Values collected from Visual Basic application.

 Element Attribute
100 000 1161.7 1684.2
500 000 5820.0 8216.0

1 000 000 10398.6 15570.0

Just before using graphical data representation we
can see that processing XML in Visual Basic is the
slowest out of all tested languages. Now let’s take a
look on a graph.

Figure 3: Graph of values collected from Visual Basic
application. On y axis duration of processing 100 000
elements, on x axis number of nodes in tested file.

In this case it is obvious, that processing element
is much faster than processing attribute regardless
number of nodes inside the file. As well as in Java
application, average values are decreasing per
number of nodes inside XML file, which again
means that application written in Visual Basic also
needs some time for opening and loading whole file,
but it is not as remarkable as it was while using Java
application.

5 CONCLUSION

As we found out, there is almost no difference using
Java language and only a minor difference using
PHP in behalf of elements. While using these two
languages we don’t need to care that much about
whether to save data into elements or attributes.

On the other hand time difference while using
Visual Basic language is obvious. Processing
attribute takes much more time than processing
element, it is around 1/3 of total time regardless
count, which can lead up to big delay while
processing big file or more smaller files.

If we were exporters and were completely sure
about language used by data importer, we could take
different values per programming languages from
this study in consideration, but when it is very likely
that our data importers may vary in using
technology, it is best to provide them with most of
data saved into elements, because it can lead to
faster data processing, therefore better cooperation
between companies, at least in the area of data
transmission.

At this point it might be very interesting to do
such a research for other languages as well, at least
for the most popular modifications of C language to
find out whether results in Visual Basic are just
some anomaly or not.

ACKNOWLEDGEMENT

This work was supported by the project No.
CZ.1.07/2.2.00/28.0327 Innovation and support of
doctoral study program (INDOP), financed from EU
and Czech Republic funds.

REFERENCES

Bureš, O. (2014) ‘Comparing suggested approaches for
XML design with current situation in Czech Republic

0

100

200

300

400

500

Element

Attribute

0
200
400
600
800

1000
1200
1400
1600
1800

Element

Attribute

KMIS�2014�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

358

(case study).‘ Proceedings of the 23rd International
Business Information Management Association 2014,
481-487

Department of Interior of Czech Republic (2009) The
methodology for creating XML schemas in
information systems of public administration.
Available at: http://www.mvcr.cz/clanek/metodika-
tvorby-xml-schemat-v-oblasti-informacnich-systemu-
verejne-spravy.aspx

Grijzenhout, S. and Marx, M. (2013) ‘The quality of the
XML Web.‘ Journal of web semantics, 19, 59-68

Ogbuji, Uche (2004) ‘Principles of XML design: When to
use elements versus attributes.’ Available at:
http://www.ibm.com/developerworks/xml/library/x-
eleatt/index.html

TIOBE Software BV (2014) TIOBE Index for June 2014.
Available at: http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html (Accessed: 20 June 2014)

Walmsley, Priscilla (2012) Definitive XML Schema.
Prentice Hall PTR

Technical�Aspects�of�XML�Format�-�Case�Study�-�Differences�between�Saving�Data�into�Element�and�Attribute

359

