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Abstract: People dealing with information in IT-based environments tend to develop a data-driven mindset that 
constitutes shallow engineering knowledge and turns them into tech-savvy information consumers. We 
argue that these consumers can manage data discovery and information sharing on their own without 
explicit support from IT. We argue furthermore that user-driven discovery can even be mandatory when 
mainstream discovery concentrates on facts appearing massively in data and bypasses the little and 
unspectacular facts consumers expect to discover in their data. Finally we argue that tech-savvy users can 
depict blueprints of these facts using a pattern language that combines the user’s work jargon with a simple 
syntax. We present a working solution for such an easy-to-learn pattern language for self-service data 
discovery and information sharing (DISL). The language has been developed in an industry-academia 
partnership and was applied in the area of assessment in the real estate sector in Chile. A prototypical 
discovery service operating on DISL gathers information from contracts and related certificates and 
prepares the discovered facts for information sharing. 

 1  INTRODUCTION 

Information discovery requires, in general, profound 
technical and linguistic skills. Systems designed in 
close cooperation between IT specialists and 
knowledge management experts serve the need for 
mainstream discovery from business and other areas. 
Mainstream discovery addresses facts that are 
massively observable in data and thus commonly 
described in global metadata descriptions like 
schema.org or addressed by the organization's 
master data management. Example addressees are 
named entities like “organization”, or “person”, 
“location”, monetary expressions, or temporal 
expressions. Pattern recognition as well as linguistic 
and probabilistic methods serve to identify candi-
dates in data that match these schemas. Mainstream 
discovery defines also the qualities that make up the 
facts to be discovered. These definitions are not 
quite sensitive to the peculiarities of individual 
discovery requests. They have to serve data patterns 
that are generic enough in order to justify the 
development of the corresponding discovery systems 
from an economic point of view. Industrial practice, 

however, shows that there are many “light-weight” 
discovery requests that are not addressed by 
mainstream discovery. The inclusion of the 
information consumers' individual requirements into 
application development is usually considered as too 
expensive or too time-consuming. Further-more, 
their requests tend to change dynamically. Even 
when addressing the same data collection, different 
users are likely interested in different facts and, 
furthermore, this interest may vary over time. Users 
may analyze complaints of clients about machine 
failures, for instance. One user may be interested in 
the affected part of the machine, while the other one 
wants to explore the cause of the failure. In many a 
case, discovery and its corre-sponding data 
descriptions even serve only a one-time purpose, 
that is, they are disposable artifacts. In short, 
discovery can address very specific, small-scale, and 
ad hoc contexts that lie outside the scope of 
mainstream information discovery. Consequently, 
users have to handle many of their individual 
requests manually, they have to check data and 
extract the required facts by hand. 

 We present here a working solution for self
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-service IT that enables tech-savvy end-users to 
design and manage their discovery processes and to 
share their findings with their colleagues. Its 
objective is merging smoothly two knowledge areas, 
namely domain knowledge and engineering knowl-
edge required for “light-weight” data extraction and 
information sharing. We want to encourage users to 
translate their vision of the facts they expect to 
discover in data directly into machine-processable 
instructions. 

In this article we explain the principles of self-
service information discovery and the role and 
significance of the information consumer’s data-
driven mindset. The practical part outlines our data 
discovery and information sharing language (DISL), 
emerging from the rationale of self-service dis-
covery. It also provides results from the first 
application in the area of assessment in the real 
estate sector and describes how data integration and 
information sharing is supported. Even though DISL 
focuses on discovery in unstructured data in general, 
here we concentrate on its application on texts. 

2 DATA-DRIVEN MINDSET 

What we want to discover in data is facts. For 
instance, we want to know “the birthdate of Bert 
Brecht” or the “the age of the broken machine part, 
as indicated by the customer in his mail”. The facts 
emerge from data that depict certain qualities. With a 
blueprint of these facts in mind we can steer our 
discovery process and detect these facts in structured 
as well as unstructured data.  

People working with information have a data-
driven mindset per se (Pentland, 2013; Viaene, 
2013), that is, they resort to mental models (Norman, 
1987) that abstractly reflect the facts they expect to 
encounter in their information environment (Brandt 
and Uden, 2003). This mindset enables them to 
sketch blueprints of the things they are looking for.  
We argue that their computer literacy helps them to 
express these blueprints in forms that can be 
processed by machines. These expressions are far 
from being programming instructions but reflect the 
users’ “natural” engineering knowledge. The 
machine then takes the blueprints and identifies 
these facts in data, even though the blueprint 
abstracts away many details of the facts. 

Experimenting with data is an essential attitude 
that stimulates data discovery experiences. People 
initiate and control discovery by a certain belief - 
predisposition or bias reinforced by years of 
expertise - and gradually refine this belief. They 

gather data, try their hypotheses in a sandbox first 
and check the results against their blueprints, and 
then, after sufficient iterations, they operationalize 
their findings in their individual world and then 
discuss them with their colleagues. After having 
thoroughly tested their hypotheses, information 
consumers institutionalize them to their corporate 
world, that is, cultivate them in their information 
ecosystem. The language knowledge and their 
mental models constitute shallow knowledge 
necessary and sufficient to engineer statements that 
are processable by the discovery services (Sawyer et 
al., 2005). 

The blueprints thus serve two purposes: they 
reflect semantic qualities of the facts the discovery 
engine shall locate and extract. Simultaneously, they 
are the building blocks of the meta-language that, 
when correctly syndicated, support data integration 
and sharing. While syndicating metadata along their 
domain competence, users foster implicitly active 
compliance with organizational data governance 
policies.  

The design of DISL is guided by the paradigm of 
simplicity in IT (Magaria and Hinchey, 2013). We 
want users to concentrate on discovery and sharing, 
to stick to their data-driven mindset, and to express 
their requests as far as possible in their own 
language. A good starting point therefore is the 
workplace jargon of information consumers. To 
avoid any irritations or ambiguities, people try to be 
quite precise in their descriptions. Even though these 
descriptions are composed of natural language terms 
and statements, humans are quite good in safe-
guarding literal meaning in their descriptions 
(Iwanska, 2000). We avail ourselves of literal 
meaning because we can interpret statements 
correctly in the absence of any further explicit and 
implicit context. This aspect is also important when 
it later comes to machine interpretation of these 
statements. In the end, we need discovery engines 
that support semantic search (Ding et al., 2005; 
Zhao, 2007). They operate on data enriched by 
annotations that make implicit meaning explicit. 
They also set up the semantic skeleton of the 
information ecosystem where search and discovery 
happens. This skeleton represented as a network of 
metadata emerges from the domain knowledge of 
the information consumers. For us, the data-driven 
mindset becomes evident when users can turn their 
domain and shallow engineering knowledge into 
machine instructions suitable for the precise 
detection and extraction of the facts they expect to 
discover. 
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3 SELF-SERVICE DISCOVERY 

Information discovery starts with information 
extraction (IE) (Cowie and Lehnert, 1996) that 
distils text or even scattered documents to a germ of 
the original raw material. IT experts engineer 
information extraction systems that operate on 
templates for the facts to be extracted. Labelled slots 
constitute these templates whereby the labels 
represent annotated terms.  

Self-service information discovery starts with 
user-driven IE. The users first have to engineer their 
extraction templates that can also be considered as 
entity recognizers. This means, a certain amount of 
engineering is indispensable in IE. The key question 
is whether information consumers have the neces-
sary engineering knowledge to handle discovery 
services on their own. This shallow knowledge is 
assumed to be acquire easily and thoroughly specific 
to the task at hand (Fan et al., 2012). The assumption 
in self-service discovery is that users with their 
domain competence and shallow engineering knowl-
edge are in the position to manage a certain level of 
data discovery and information sharing on their own.  

The users' blueprints may be simple and concise, 
but they are comprehensive enough to cover their 
request. This, in turn, fosters the control of the 
discovery process. A template with, say eight to 
twelve slots, can comprehensively cover real-world 
requests in small-scale domains. This low level of 
complexity makes it easy for the information 
consumer to manually control discovery. Whenever 
they encounter unfilled slots or mistakenly filled 
slots they may check the corresponding document 
for obvious errors. On the other hand, they may 
adapt their blueprint if the representation of a fact 
appears to be sound in text, but the slots do not 
consistently correspond to the qualities of the fact. 

3.1 Basic Language Elements 

IE knows a lot of methods to match text excerpts 
(i.e. candidates for information entities) with slot 
keys (i.e. labels) and to fill the slots. In our approach 
we focus on pattern recognition. Each template slot 
is thus linked to a descriptive pattern that is rendered 
as Regular Expression in combination with key 
terms. Regular Expressions are a powerful instru-
ment to precisely detect all kind of patterns in data. 
Their application is in particular useful for the 
detection of facts in unstructured information. 
Furthermore, they offer the opportunity to sketch a 
variety of patterns for a particular fact that may 
appear in  many variant forms. A date, for instance, 

can be expressed in different forms even within the 
same language. Regular Expressions have a partic-
ular advantage, too, if data represent a named entity, 
e.g. as combination of numerical data and words. A 
birthdate may be rendered by keywords (“born on”) 
or symbols (an asterisk) forming a specific pattern 
with an adjacent date. The position within text may 
also suffice to qualify a date as birthday: “Franz 
Kafka (3 July 1883 – 3 June 1924)”. 

In each text we can identify numerous facts of 
different complexities. Many of them can be 
identified in patterns that comprise facts located in 
close proximity. Information on a person may span 
over more basic facts like name, tax payer number, 
birthdate, address, etc. Some fact may comprise 
constituent facts that are widely scattered over a 
broader area of the data, even over more text pages 
or documents for instance. 

Regular Expressions are a powerful, but abso-
lutely not a user-friendly instrument. They require 
special skills and are not easy to handle, in 
particular, when they are addressing complex, i.e. 
real-world, patterns. Besides, Regular Expressions 
representing high level facts are extremely complex 
and barely manageable, even for professionals. Their 
application also has limitations, when relevant 
elements (qualities) of facts are too dispersed over 
the data set, that means when too much “noise” 
appears between facts or their qualities. We therefore 
propose a language for discovery and sharing that 
adopts Regular Expressions but shields users from 
their complexity. IT provides  users with a stock of 
labelled Regular Expressions addressing entities like 
“word”, “tax payer number”, “phrase”, “decimal” 
etc. (see Figure 1). Instead of defining Regular 
Expressions, the users compose their patterns by 
resorting to these basic patterns or to the patterns 
they have already defined by themselves. The DISL 
syntax serves to describe how facts, as the 
constituent parts of the fact requested by the user,  
appear as sequences of word patterns in data. The 
corresponding descriptive pattern gradually aggreg-
ates into the complex pattern for the requested fact.  
 

 
Figure 1: Examples of basic patterns (entity recognizer). 
Usually, IT experts provide these patterns to information 
consumers that construct their patterns from here. 
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3.2 The Syntax of DISL 

The users achieve the definition of complex 
descriptive patterns by iteratively aggregating their 
pattern definitions starting from the basic patterns 
(see Figure 1) provided by their IT colleagues. This 
means, any pattern (if not a basic pattern) can be 
decomposed into smaller units from top to bottom, 
eventually into basic patterns and key terms. The 
discovery service sees any pattern as more or less 
big Regular Expression. We call the patterns at the 
bottom layer also “connector patterns” because they 
link to the respective data representation technique, 
used by the service, in our case Regular Expressions. 
They act as primitive data types.  

Table 1: Operators of the discovery language. 

. 
The dot indicates strong sequence 
(“followed by”). The fact indicated 
before the dot must be located before the 
one indicated after the dot. 

, 

Comma means weak sequence. Some of 
indicated facts (at least one) shall appear 
sequentially in the data. However, they 
may appear in any order (inclusive 
combination).

; 
The semicolon is used to indicate an 
exclusive combination. Just one of the 
facts ought to be located. 

: 

Labeling operator: the name after the 
colon is assigned to facts or a group of 
facts. Labeling serves the implicit 
introduction of (local) nested patterns. 

(...) 
Parentheses serve to indicate a group of 
facts. Grouping only makes sense 
together with the labeling operator.

? 

The question mark indicates that a fact or 
group of facts can be optional, that is, the 
corresponding fact can but need not be 
located in the data sources. 

“keyword” 

The discovery service treats keywords 
indicated between quotation marks as 
fixed expressions. If it represents a verb, 
the keyword is reduced to its principal 
part. Each noun or adjective is expanded 
to a Regular Expression covering their 
possible grammatical forms (flections).  
Three dots (...) within a constant indicate 
that there may appear a small number of 
irrelevant terms between the elements of 
the fixed expressions. 

 

The syntax for the definition of patterns is quite 
simple. It supports a handful of operators the users 

employ to define a descriptive pattern as a sequence 
of constituent elements, i.e. word patterns.  

The following generic definition of a descriptive 
pattern summarizes the syntax of our DISL for 
discovery and integration, Table 1 explains in more 
detail the functionality of the operators: 
concept, concepts = element1.element2; 
element3.(element4,element5):name.?elem
ent6 

On the left side of the equation the user defines 
the name of the pattern. The right side of the 
equation lists the sequence of pattern elements. The 
pattern can be assigned to a singular term and 
optionally also to its corresponding plural term. 
When defining their own patterns, people intuitively 
apply both forms. 

4 EXPERIMENTS AND RESULTS 

4.1 Illustrative Example 

To illustrate DISL we delegated a request to our 
discovery engine and let it operate on the (English) 
Wikipedia collection. We wanted to extract birth and 
death dates of German writers and to list their works 
with their original title and the corresponding 
English translation of the title. By checking a sample 
 

 

Figure 2: Original text sections from a larger sample of 
texts. The snippets contain the requested information on 
the authors’ birth and death date and on the titles of their 
works. 
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of Wikipedia pages, we familiarized ourselves with 
the way how these facts are represented (Figure 2) 
and defined the corresponding descriptive patterns 
using DISL (Figure 3). The discovery engine applied 
our blueprints on this collection and returned the 
extracted information in XML format (Figure 4). 

The example illustrates also the rationale for data 
integration and information sharing behind DISL 
that supports the collaborative development of a 
metadata schema. This schema can constitute the 
semantic skeleton of an information ecosystem on  
group or organizational level. In this context, self-
service discovery and integration supports “active 
compliance”, that is, the collaborative agreement on 
a unified overarching metadata schema. 

 

 

Figure 3: Patterns to discover information on birth and 
death dates of (German) writers and the titles of their 
works (original title and English translation). On the left 
side appear the labels of the patterns. 

 
Figure 4: Example of the results rendered in XML. The 
discovery engine takes the patterns as defined by the users 
(similar to those in Figure 3), detects the corresponding 
data in the texts (like the ones shown in Figure 2), extracts 
these data and stores them in XML. The tags of the XML 
elements (or slots) correspond to the pattern labels. 

As already said, self-service discovery addresses, 
among other things, ad hoc requests for discovery 
that, like in the example above, are not too complex. 
The integration in terms of consolidating metadata 
schema on a broader organizational level is thus not 
the only issue in integration. Many blueprints for 
small-scale and ad hoc requests are disposable 
artifacts for individual purposes. The integration into 
the technical environment is more important for 
discovery requests that need to be shared. What kind 
of input formats are supported by the discovery 
service, how are the results presented? For the time 
being, our service accepts input such as HTML, 
PDF, or plain text documents. The output is simply 
rendered in XML, in order to enable a smooth 
integration into follow-up processes for data 
analytics, visualization, reporting and the like. The 
slots (with annotated terms) capture the facts 
according to the users’ pattern definitions render 
them by XML elements. Basic patterns are treated 
like primitive data types; entity elements that 
correspond to them are not explicitly tagged. 

4.2 Results from the First Application  

The design of DISL had a highly experimental 
character. The examples above relate to experiments 
we ran with Wikipedia articles on writers. However, 
we applied DISL and our discovery service on legal 
texts addressing real estate contracts and related 
certificates from land registries. The objective was a 
cross-collection search for comprehensive infor-
mation on vendors, purchasers, and real estates. The 
application passed through a number of cycles until 
it reached a sufficient level of maturity and 
acceptance.  At the same time, the language has been 
tested by a mixed group of domain experts (lawyers 
and their assistants), students, and programmers.  

The over-arching objective was and still is to 
ensure that the language has a high level of usability, 
in particular in terms of learnability, memorability, 
and ease of use. During the iterative design we got 
familiar with the shared mental model information 
consumers have about appearance and nature of 
descriptive (word) patterns: entities corresponding to 
an information blueprint can be dispersed over a 
number of text blocks (facts), for instance: [vendor] 
sells [object] to [buyer]. Within each block, terms 
may appear in arbitrary order, like the characteristics 
of a person or organization. Some terms are optional 
and there are keywords like “sell” or “buy” that 
essentially characterize the fact “transaction pur-
chase”. The question then was, how the appearance 
of terms and term blocks can be expressed by
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operators. 
The operators as listed above (see Table 1) and 

their functionality turned out to be “intuitive”, i.e. 
matching the information consumers’ mental model. 
There were syntax elements considered as highly 
intuitive, like the quotation marks indicating some 
sort of fixed text in an otherwise parametric 
presentation of a pattern. The users immediately 
perceived dots as separators of building blocks of 
their patterns. The role of the comma was apparent, 
too. However, there were also things to learn, the 
difference between comma and semicolon, for 
instance. Some had to learn that the question mark 
has to be put ahead of the expression to mark it as 
optional rather than thereafter. For others, however, 
it was more intuitive for this purpose to have a 
leading question mark than a trailing one. 

 We ran our experiments with about 2000 
documents (real estate contracts with related 
certificates) distributed over 18 data sources. In the 
first place, this sample may seem small to validate 
our approach or to underpin its scalability. However, 
the inherent character of basically unstructured data 
distributed over different sources reflects the nature 
of the challenge we face in data discovery, even 
within the context of Big Data. The language applied 
in contracts and related certificates is quite uniform 
and not narratively complex. We are convinced that 
our document sample covers this language in its 
entirety, and thus scales for even larger collections. 
In many information ecosystems we barely have to 
deal with highly complex narrative forms. Due to 
this fact, we consider our approach as scalable also 
towards thematic areas outside legal information as 
long as the narrative nature is relatively uniform, 
such as is the case for legal texts. 

5 CONCLUSION 

Our work-in-progress demonstrates the feasibil-ity 
of self-service data discovery and information 
sharing. With a simple instrument like DISL the 
information consumers can leverage their shallow 
engineering knowledge for managing discovery 
services on their own. Over the time, information 
consumers naturally develop a data-driven mindset 
and with their computer literacy a certain level of 
“natural” engineering knowledge that enables them 
to handle these discovery tools, including the tools’ 
command language. Our experiments indicate that 
users can develop shallow engineering knowledge 
without much effort. If the discovery tool requires 
not more than that level of knowledge they can 

transform their domain knowledge easily into 
machine instructions. This smooth integration of 
domain and tool knowledge completes the picture of 
self-service discovery that meanwhile is also 
demanded by the industry (Sallam et al., 2014). 

There are many discovery tasks that serve 
individual, ad hoc, and transient purposes. Main 
stream discovery, in contrast, supports reoccurring 
discovery requests commonly shared by large user 
communities and operates on large data collection, 
including sometimes the entire Web. We can 
conceive manifold scenarios for non-mainstream 
discovery. Users may have to analyse from time to 
time dozens of failure descriptions or complaints, for 
instance. The corresponding data collections are 
personal or shared among small groups and consist 
of bunches of PDF files or emails, for instance, 
barely documents on the Web. Dynamically 
changing small-scale requests would mean 
permanent system adaptation, which is too intricate 
and too expensive in the majority of cases. With a 
flexible self-service solution like DISL information 
consumers can reap the benefits of automatic 
information discovery and sharing and avoid the 
drawbacks of mainstream discovery.  
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