
On Error Probability of Search in High-Dimensional Binary Space 
with Scalar Neural Network Tree 

Vladimir Kryzhanovsky1, Magomed Malsagov1, Juan Antonio Clares Tomas2 and Irina Zhelavskaya3 

1Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, Russia 
2Institute of secondary education: IES SANJE, Alcantarilla, Murcia, Spain 

3Skolkovo Institute of Science and Technology, Moscow, Russia 

Keywords: Nearest Neighbor Search, Perceptron, Search Tree, High-Dimensional Space, Error Probability. 

Abstract: The paper investigates SNN-tree algorithm that extends the binary search tree algorithm so that it can deal 
with distorted input vectors. Unlike the SNN-tree algorithm, popular methods (LSH, k-d tree, BBF-tree, 
spill-tree) stop working as the dimensionality of the space grows (N > 1000). The proposed algorithm works 
much faster than exhaustive search (26 times faster at N=10000). However, some errors may occur during 
the search. In this paper we managed to obtain an estimate of the upper bound on the error probability for 
SNN-tree algorithm. In case when the dimensionality of input vectors is N≥500 bits, the probability of error 
is so small (P<10-15) that it can be neglected according to this estimate and experimental results. In fact, we 
can consider the proposed SNN-tree algorithm to be exact for high dimensionality (N ≥ 500). 

1 INTRODUCTION 

The paper considers the problem of nearest-neighbor 
search in a high-dimensional (N > 1000) configura-
tion space. The components of reference vectors 
take either +1 or -1 equiprobably, so the vectors are 
the same distance apart from each other and distrib-
uted evenly. We measure the distance between two 
points with the Hamming distance. In this case 
popular algorithms become either unreliable or 
computationally infeasible. 

In (Kryzhanovsky, 2013) we investigated the fol-
lowing algorithms: k-dimensional trees (k-d trees) 
(Friedman, 1977), spill-trees (Ting, 2004), LSH 
(Locality-sensitive Hashing) (Indyk, 1998). We have 
found that k-d trees for N > 100 requires one or two 
orders of magnitude more computations than ex-
haustive search (BBF-trees (best bin first) (Beis, 
1997) were used). As dimensionality N grows, the 
error probability of the LSH algorithm approximates 
one. In the event when the working point coincides 
with a reference, the spill-tree algorithm works fast-
er than the exhaustive search (by an order of magni-
tude), but slower than the binary tree by approxi-
mately five orders of magnitude. The paper exam-
ines the case when the distance between query point 

and reference one is greater than 0.1N. In these con-
ditions the spill-tree algorithm is slower than the 
exhaustive search and thus its use makes no sense. 

In (Kryzhanovsky, 2013) we offered a tree-like 
algorithm with perceptrons at tree nodes. Going 
down the tree is accompanied with the narrowing of 
the search area. The tree-walk continues until the 
stop criterion is satisfied. The algorithm works faster 
than the exhaustive search even when the dimen-
sionality increases (for example, at N = 2048 it is 12 
times faster). 

In this paper we estimated the upper bound on 
the error probability of the algorithm. The error 
probability drops exponentially as the dimensionali-
ty of the problem N grows. For example, at N≥500 
the error probability cannot be measured, i.e. the 
proposed algorithm can be considered exact in this 
range. Thus, the exact algorithm that excels exhaus-
tive search in speed was obtained. 

2 PROBLEM STATEMENT 

The algorithm we offer tackles the following prob-
lem. Let there be M  binary N-dimensional patterns: 
 

   , 1 , 1; .N
iR x M     X  (1) 
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A binary vector X  is an input of the system. It is 
necessary to find any reference vector X  belonging 

to a predefined vicinity of input vector X . In math-
ematical terms the condition looks like:  

 

 max1 2 ,b N  XX  (2) 
 

where  max 0;0.5b   is a predefined constant that 

determines the size of the vicinity.  
We will show below that the algorithm solves a 

more complex problem from a statistical point of 
view: it can find the closest pattern to an input vec-
tor. The Hamming distance is used to determine the 
closeness of vectors. 

In this paper we consider the case when refer-
ence vectors are bipolar vectors generated randomly. 
Generated independently of one another, the compo-
nents of the reference vectors take +1 or -1 with 
equal probability (density coding). 

3 THE POINT OF THE 
ALGORITHM 

The idea of the algorithm is that the search area 
becomes consecutively smaller as we descend the 
tree. In the beginning the whole set of patterns is 
divided into two nonoverlapping subsets. A subset 
that may contain an input vector is picked using the 
procedure described below. The subset is divided 
into another two nonoverlapping subsets, and a sub-
set that may contain the input vector is chosen again. 
The procedure continues until each subset consists 
of a single pattern. Then the input vector is associat-
ed with one of the remaining patterns using the same 
procedure. 

The division of the space into subsets and the 
search for a set containing a particular vector can be 
quickly done using a simple perceptron with a “win-
ner takes all” decision rule. Each set is controlled by 
a perceptron trained on the patterns of corresponding 
subset. Each output of the root perceptron points to a 
tree node of the next level. The perceptron of the 
descendant node is trained on a subset of patterns 
corresponding to one output of the root perceptron. 
The descent down a particular branch of the tree 
brings us to a pattern that can be regarded as a solu-
tion. At each stage of the descent we pick a branch 
that corresponds to the perceptron output with the 
highest signal. It is important to note that the same 
vector X is passed to each node rather than the result 
of work of the preceding-node perceptron. 

 

4 THE PROCESS OF LEARNING 

Each node of the tree is trained independently on its 
own subset of reference points. A root perceptron of 
the tree is trained on all M  patterns. Each descend-
ent of a root node is trained on 2M  patterns. The 

nodes of the i-th layer are trained on 12iM   pat-

terns, 21,2, ; logi k k M   is the number of lay-

ers in the tree. 
All nodes have the same structure – a single-

layer perceptron (Kryzhanovsky, 2010) that has N  
input bipolar neurons and two output neurons each 
of which takes one of the three values 

 1,0, 1 , 1,2iy i    . 

Let us consider the operation of one node using a 
root element as an example (all nodes are identical 
to each other). The Hebb rule is used to train the 
perceptron: 

 

1

ˆ ,
M

T
 



W Y X  (3) 
 

where Ŵ  is a 2 N -matrix of synaptic coefficients, 
and Y  is a two-dimensional vector that defines the 

required response of the perceptron to the  -th 

reference vector X . Y may take one of the follow-

ing combinations of values: (-1,0), (+1,0), (0,-1), and 
(0,+1). If the first component of Y  is nonzero, the 

reference vector X  is assigned to the left branch. 

Otherwise, it is assigned to the right branch. Since 
the patterns are generated randomly (and therefore 
distributed evenly), the way they are divided into 
subsets is not important. The set of patterns is al-
ways divided into two equal portions corresponding 
to the left and right branches of the tree during the 
training so that the four possible values of Y should 

be distributed evenly among all patterns, i.e. 

1
0

M


 Y . 

The perceptron works in the following way. The 
signal on output neurons is first calculated: 

 

ˆ .h WX  (4) 
 

Then the “winner takes all” criterion is used: a 
component of vector h  with the largest absolute 
value is determined. If it is the first component, the 
reference vector should be sought for in the left 
branch, otherwise in the right branch. 

The number of operations needed to train the 
whole tree is 

 

22 log .MN M   (5) 
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5 THE SEARCH ALGORITHM 

Before we start describing the search algorithm, we 
should introduce a few notions concerning the algo-
rithm. 

Pool of losers. When vector X is presented to a 
perceptron, it produces certain signals at the outputs. 
An output that gives the largest signal is regarded as 
a winner, the others as losers. The pool of losers 
keeps the value of the output-loser and the location 
of the corresponding node. 

Pool of responses. After the algorithm comes to 
a solution (tree leaf), the number of a pattern associ-
ated with the leaf and the value of the output signal 
of a perceptron corresponding to the solution are 
stored in the pool of responses. So each pattern has 
its leaf in the tree. 

Search stopping criterion. If the algorithm comes 
to a tree leaf and the signal amplitude becomes 
greater than a threshold value, the search stops. It 
means that condition (2) holds. 

Location of a node is a unique identifier of the 
node. 

Descending the tree is going down from one 
node to another until the leaf is reached. The branch-
ing algorithm is as follows: 

1. The input neurons of a perceptron associated with 
a current tree node are initiated by input vector 
X . Output signals of the perceptron Lh  and Rh  

are calculated. 

2. The output with the highest signal and the de-
scendent node related to this output (descendent-
winner) are determined. The signal value of the 
loser output and location of the corresponding de-
scendent-node are stored in the pool of losers. 

3. If a tree leaf is reached, go to step 5, otherwise to 
step 4. 

4. Steps 1 to 4 are repeated for the descendent-
winner. 

5. The result is put in the pool of responses. At this 
point the branching algorithm stops. 

Now we can formulate our algorithm. Process of 
descending different tree branches is repeated until 
the stopping criterion is met. The stages of the algo-
rithm are: 

1. We descend the tree from the root node to a leaf. 
The pool of losers and pool of responses are filled 
in during the process. 

2. We check the stopping criterion (2) for the leaf, 
i.e. we check if the scalar product of vector X  
and the pattern related to the leaf is greater than a 

predefined threshold. If the criterion is met, we go 
to step 4, otherwise to step 3. 

3. If the criterion fails, we pick a node with the 
highest signal amplitude from the pool of losers 
and repeat steps 1 to 3 starting the descend from 
this node now. 

4. We pick a pattern with the highest signal value in 
the pool of responses, and regard it as a solution. 

6 EXAMPLE OF THE 
ALGORITHM OPERATION 

Let us exemplify the operation of the algorithm. 
Figure 1 shows a step-by-step illustration of the 
algorithm for a tree built for eight patterns  8M  . 

Step 1: the tree root (node 0) receives input vector 
X . The root perceptron generates signals Lh  and Rh  

at its outputs. Let L Rh h , then Rh  and the loca-

tion of the descendant-node connected to the right 
output (node 2) are placed in the pool of losers. Step 
2: vector X  is fed to the node-winner (node 1). A 
winning node is determined again and the loser is 
put in the pool (e.g. LLh  and node 3). Step 3: after 

reaching the leaves, we put patterns ( 3X  and 4X ) 

associated with the leaves and signal values 

3LRLh  XX  and 4LRRh  XX  in the pool of respons-

es. Then we check if the patterns meet criterion (2). 
In our case the criterion is not met, so the algorithm 
continues its work. Step 4: if none of the patterns  
satisfies the solution, we pick the highest-signal 
node from the pool of losers (for example, node 2 
 

 

Figure 1: An example of the algorithm operation. 
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with signal Rh ). Step 5: now the descent starts from 

this node (node 2) and continues until we reach the 
leaves while the pool of losers taking new elements. 
At that pair  ;2Rh  is moved away from the pool of 

losers. Here RLL RLRh h  and  max1 2 RLRb N h  , 

i.e. criterion (2) is true for pattern 6X . The pattern 

becomes the winner and the algorithm stops. If the 
criterion never works during the operation of the 
algorithm, the pattern from the pool of responses 
with the highest signal value is regarded as winner. 

7 ESTIMATION OF THE ERROR 
PROBABILITY  

It is hard to obtain a precise estimate of the error 
probability for the proposed algorithm as for now. 
However, it is possible to get its upper bound.  

SNN-tree algorithm can fail in case when there is 
more than one pattern that satisfies criterion (2) in 
the set. Formally, the probability of this event can be 
written as:  

 

1
*

max
1

1 Pr (1 2 ) .
M

m
m

P b N




 
    

 
XX  (6) 

 

Presence of such patterns does not always lead to 
the algorithm failure. Therefore, probability (6) can 
be used as an estimation of the upper bound on the 
proposed algorithm failure.  

Equation (6) can be calculated exactly by formu-
la:  

 

max
1

*
1

0

1 1 .
2

Mkb N
N

N
k

C
P






 
   

 
  (7) 

 

However, it is not possible to use formula (7) at 
large values of N (N>200). For high dimensions, it is 
better to use approximation: 

 

* 2
exp

22

M N
P

N

 
  

 



 ,    
2

max(1 2 ) .N N b   (8) 

 

Equation (8) shows that the error probability ex-
ponentially decreases as the problem dimensionality 
N grows. For example, at N=500 and bmax=0.3 power 
of the exponent is -40, which explains the fact that 
experimental error probability for high dimensions 
could not be measured in work (Kryzhanovsky, 
2014). In fact, SNN-tree can be considered exact for 
high dimensional problems. 

Figure 2 shows dependence of the error probabil-
ity on dimensionality N at bmax=0.3 and M=N. As 
 

 
Figure 2: The algorithm error probability. 

expected, the error probability of the algorithm 
(markers) is smaller than probabilities calculated 
using (7) and (8) (solid lines). Therefore, expres-
sions (7) and (8) can be used for algorithm reliability 
estimation. Moreover, it can be seen that expression 
(8) is a sufficient approximation of (7). 

8 ESTIMATION OF THE  
COMPUTATIONAL 
COMPLEXITY  

Estimation of the proposed algorithm computational 
complexity is a quite sophisticated problem that was 
not solved yet. In this section, results of computa-
tional modeling are presented. 

It was shown in work (Kryzhanovsky, 2014) that 
the problem in hand could be solved using only 
these two algorithms: exhaustive search and SNN-
tree. Conducted research shows that the proposed 
algorithm works faster than exhaustive search, how-
ever it errors may occur. According to the results 
from the previous sections, the error probability at 
dimensionality N≥500 is so small that it can be ne-
glected. Therefore, even a small speed advantage of 
SNN-tree over exhaustive search makes it prefera-
ble. 
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Figure 3: The speed advantage of SNN-tree over exhaus-
tive search (markers - experiment; solid lines – estima-
tion). 
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Experiments show (Fig. 3) that as dimensionality N 
grows the speed advantage of SNN-tree over ex-
haustive search increases. For example, at 
N=M=2 000 and b=0.2 SNN-tree is faster than ex-
haustive search in 12 times, and at N=M=10 000 
acceleration reaches 26 times. Note bmax is a fixed 
value, but b is a number of distorted components in 
the input vector. Using experimental result, we esti-
mated the average number of scalar product opera-
tions needed for SNN-tree search: 

 

  2exp 1.3 0.44 0.4 log .M b b N      (9) 
 

Solid lines in figure 3 were built using equation 
(9). This equation allows estimating average speed 
advantage of SNN-tree over exhaustive search. Us-
ing (9), it is possible to predict advantage of SNN-
tree at large values of parameters (table 1). 

Table 1: The speed advantage of SNN-tree over exhaus-
tive search for M=N=105 and bmax=0.3 using equation (9). 

b M / θ 

0.1 189 

0.2 88 

0.3 41 

9 CONCLUSIONS 

The paper considers the problem of nearest-neighbor 
search in a high-dimensional configuration space. 
The use of most popular methods (k-d tree, spill-
tree, BBF-tree, LSH) proved to be inefficient in this 
case. We offered a tree-like algorithm that solves the 
given problem (SNN-tree).  

In this work, theoretical estimate of the upper 
bound on the error probability of SNN-tree algo-
rithm was obtained. This estimate shows that the 
error probability decreases as the dimensionality of 
the problem grows. Since even at N>500 the error is 
less than 10-15, it does not seem possible to measure 
it experimentally. Therefore, it is safe to say that 
SNN-tree is an exact algorithm. Research investiga-
tions of the computational complexity of the algo-
rithm shows that the speed advantage of SNN-tree 
algorithm over exhaustive search increases as the 
dimensionality N grows. 

So, we can conclude that SNN-tree algorithm 
represents an efficient alternative to exhaustive 
search.
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APPENDIX A 

It is necessary to calculate the following probability:  
 

1
*

max
1

1 Pr (1 2 ) .
M

m
m

P b N




 
    

 
XX  (А1) 

 

Let scalar products mXX  and XX  be inde-

pendent random quantities, m  .  
 

1
*

max
1

1 Pr (1 2 ) .
M

m
m

P b N




       XX  (А2) 
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Now, it is necessary to calculate the probability that 
the product of each pattern by input vector is smaller 
than the threshold.  

Scalar product mXX  is a discrete quantity, which 

values lie in [ ; ]N N . Let k be the number of com-

ponents with the opposite sign in vectors X  and 

mX . Then its probability function is:  
 

 Pr ( 2 ) .
2

k
N

m N

C
N k  XX  (А3) 

 

Random variable mXX  is symmetrically distrib-

uted with zero mean, so  
 

max

max
0

Pr (1 2 ) 1 2 .
2

kb N
N

m N
k

C
b N



       XX  (А4) 

 

From А2 and А4 we can conclude that   
 

max
1

*

0

1 1 2 .
2

Mkb N
N
N

k

C
P





 
   

 
  (А5) 

APPENDIX B 

Scalar product  
 

1

.
N

m i mi
i

x x


 XX  (B1) 

 

consists of a large number of random quantities. 
Therefore, at big dimensions (N>100) its distribution 
can be approximated by Gaussian law with the fol-
lowing probability moments:  
 

0       и     2 N   . (B2) 
 

Therefore, probability (А1) can be described by 
integral expression:  
 

2
max

1(1 2 )
* 2

2
~ 1 1 .

2

Mb N

NP e d
N






 




    
  

  (B3) 

 

Using the following approximation  
 

2

2

, 1,
2

x
t

x

e
e dt x

x

 
  �  (B4) 

 

obtain the final estimation of probability (А1.1):  
 

* 2
exp

22

M N
P

N

 
  

 



 ,  
2

max(1 2 ) .N N b   (B5) 
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