
On Error Probability of Search in High-Dimensional Binary Space
with Scalar Neural Network Tree

Vladimir Kryzhanovsky1, Magomed Malsagov1, Juan Antonio Clares Tomas2 and Irina Zhelavskaya3

1Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, Russia
2Institute of secondary education: IES SANJE, Alcantarilla, Murcia, Spain

3Skolkovo Institute of Science and Technology, Moscow, Russia

Keywords: Nearest Neighbor Search, Perceptron, Search Tree, High-Dimensional Space, Error Probability.

Abstract: The paper investigates SNN-tree algorithm that extends the binary search tree algorithm so that it can deal
with distorted input vectors. Unlike the SNN-tree algorithm, popular methods (LSH, k-d tree, BBF-tree,
spill-tree) stop working as the dimensionality of the space grows (N > 1000). The proposed algorithm works
much faster than exhaustive search (26 times faster at N=10000). However, some errors may occur during
the search. In this paper we managed to obtain an estimate of the upper bound on the error probability for
SNN-tree algorithm. In case when the dimensionality of input vectors is N≥500 bits, the probability of error
is so small (P<10-15) that it can be neglected according to this estimate and experimental results. In fact, we
can consider the proposed SNN-tree algorithm to be exact for high dimensionality (N ≥ 500).

1 INTRODUCTION

The paper considers the problem of nearest-neighbor
search in a high-dimensional (N > 1000) configura-
tion space. The components of reference vectors
take either +1 or -1 equiprobably, so the vectors are
the same distance apart from each other and distrib-
uted evenly. We measure the distance between two
points with the Hamming distance. In this case
popular algorithms become either unreliable or
computationally infeasible.

In (Kryzhanovsky, 2013) we investigated the fol-
lowing algorithms: k-dimensional trees (k-d trees)
(Friedman, 1977), spill-trees (Ting, 2004), LSH
(Locality-sensitive Hashing) (Indyk, 1998). We have
found that k-d trees for N > 100 requires one or two
orders of magnitude more computations than ex-
haustive search (BBF-trees (best bin first) (Beis,
1997) were used). As dimensionality N grows, the
error probability of the LSH algorithm approximates
one. In the event when the working point coincides
with a reference, the spill-tree algorithm works fast-
er than the exhaustive search (by an order of magni-
tude), but slower than the binary tree by approxi-
mately five orders of magnitude. The paper exam-
ines the case when the distance between query point

and reference one is greater than 0.1N. In these con-
ditions the spill-tree algorithm is slower than the
exhaustive search and thus its use makes no sense.

In (Kryzhanovsky, 2013) we offered a tree-like
algorithm with perceptrons at tree nodes. Going
down the tree is accompanied with the narrowing of
the search area. The tree-walk continues until the
stop criterion is satisfied. The algorithm works faster
than the exhaustive search even when the dimen-
sionality increases (for example, at N = 2048 it is 12
times faster).

In this paper we estimated the upper bound on
the error probability of the algorithm. The error
probability drops exponentially as the dimensionali-
ty of the problem N grows. For example, at N≥500
the error probability cannot be measured, i.e. the
proposed algorithm can be considered exact in this
range. Thus, the exact algorithm that excels exhaus-
tive search in speed was obtained.

2 PROBLEM STATEMENT

The algorithm we offer tackles the following prob-
lem. Let there be M binary N-dimensional patterns:

   , 1 , 1; .N
iR x M     X (1)

300 Kryzhanovsky V., Malsagov M., Clares Tomas J. and Zhelavskaya I..
On Error Probability of Search in High-Dimensional Binary Space with Scalar Neural Network Tree.
DOI: 10.5220/0005152003000305
In Proceedings of the International Conference on Neural Computation Theory and Applications (NCTA-2014), pages 300-305
ISBN: 978-989-758-054-3
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

A binary vector X is an input of the system. It is
necessary to find any reference vector X belonging

to a predefined vicinity of input vector X . In math-
ematical terms the condition looks like:

 max1 2 ,b N  XX (2)

where  max 0;0.5b  is a predefined constant that

determines the size of the vicinity.
We will show below that the algorithm solves a

more complex problem from a statistical point of
view: it can find the closest pattern to an input vec-
tor. The Hamming distance is used to determine the
closeness of vectors.

In this paper we consider the case when refer-
ence vectors are bipolar vectors generated randomly.
Generated independently of one another, the compo-
nents of the reference vectors take +1 or -1 with
equal probability (density coding).

3 THE POINT OF THE
ALGORITHM

The idea of the algorithm is that the search area
becomes consecutively smaller as we descend the
tree. In the beginning the whole set of patterns is
divided into two nonoverlapping subsets. A subset
that may contain an input vector is picked using the
procedure described below. The subset is divided
into another two nonoverlapping subsets, and a sub-
set that may contain the input vector is chosen again.
The procedure continues until each subset consists
of a single pattern. Then the input vector is associat-
ed with one of the remaining patterns using the same
procedure.

The division of the space into subsets and the
search for a set containing a particular vector can be
quickly done using a simple perceptron with a “win-
ner takes all” decision rule. Each set is controlled by
a perceptron trained on the patterns of corresponding
subset. Each output of the root perceptron points to a
tree node of the next level. The perceptron of the
descendant node is trained on a subset of patterns
corresponding to one output of the root perceptron.
The descent down a particular branch of the tree
brings us to a pattern that can be regarded as a solu-
tion. At each stage of the descent we pick a branch
that corresponds to the perceptron output with the
highest signal. It is important to note that the same
vector X is passed to each node rather than the result
of work of the preceding-node perceptron.

4 THE PROCESS OF LEARNING

Each node of the tree is trained independently on its
own subset of reference points. A root perceptron of
the tree is trained on all M patterns. Each descend-
ent of a root node is trained on 2M patterns. The

nodes of the i-th layer are trained on 12iM  pat-

terns, 21,2, ; logi k k M  is the number of lay-

ers in the tree.
All nodes have the same structure – a single-

layer perceptron (Kryzhanovsky, 2010) that has N
input bipolar neurons and two output neurons each
of which takes one of the three values

 1,0, 1 , 1,2iy i    .

Let us consider the operation of one node using a
root element as an example (all nodes are identical
to each other). The Hebb rule is used to train the
perceptron:

1

ˆ ,
M

T
 



W Y X (3)

where Ŵ is a 2 N -matrix of synaptic coefficients,
and Y is a two-dimensional vector that defines the

required response of the perceptron to the  -th

reference vector X . Y may take one of the follow-

ing combinations of values: (-1,0), (+1,0), (0,-1), and
(0,+1). If the first component of Y is nonzero, the

reference vector X is assigned to the left branch.

Otherwise, it is assigned to the right branch. Since
the patterns are generated randomly (and therefore
distributed evenly), the way they are divided into
subsets is not important. The set of patterns is al-
ways divided into two equal portions corresponding
to the left and right branches of the tree during the
training so that the four possible values of Y should

be distributed evenly among all patterns, i.e.

1
0

M


 Y .

The perceptron works in the following way. The
signal on output neurons is first calculated:

ˆ .h WX (4)

Then the “winner takes all” criterion is used: a
component of vector h with the largest absolute
value is determined. If it is the first component, the
reference vector should be sought for in the left
branch, otherwise in the right branch.

The number of operations needed to train the
whole tree is

22 log .MN M  (5)

On�Error�Probability�of�Search�in�High-Dimensional�Binary�Space�with�Scalar�Neural�Network�Tree

301

5 THE SEARCH ALGORITHM

Before we start describing the search algorithm, we
should introduce a few notions concerning the algo-
rithm.

Pool of losers. When vector X is presented to a
perceptron, it produces certain signals at the outputs.
An output that gives the largest signal is regarded as
a winner, the others as losers. The pool of losers
keeps the value of the output-loser and the location
of the corresponding node.

Pool of responses. After the algorithm comes to
a solution (tree leaf), the number of a pattern associ-
ated with the leaf and the value of the output signal
of a perceptron corresponding to the solution are
stored in the pool of responses. So each pattern has
its leaf in the tree.

Search stopping criterion. If the algorithm comes
to a tree leaf and the signal amplitude becomes
greater than a threshold value, the search stops. It
means that condition (2) holds.

Location of a node is a unique identifier of the
node.

Descending the tree is going down from one
node to another until the leaf is reached. The branch-
ing algorithm is as follows:

1. The input neurons of a perceptron associated with
a current tree node are initiated by input vector
X . Output signals of the perceptron Lh and Rh

are calculated.

2. The output with the highest signal and the de-
scendent node related to this output (descendent-
winner) are determined. The signal value of the
loser output and location of the corresponding de-
scendent-node are stored in the pool of losers.

3. If a tree leaf is reached, go to step 5, otherwise to
step 4.

4. Steps 1 to 4 are repeated for the descendent-
winner.

5. The result is put in the pool of responses. At this
point the branching algorithm stops.

Now we can formulate our algorithm. Process of
descending different tree branches is repeated until
the stopping criterion is met. The stages of the algo-
rithm are:

1. We descend the tree from the root node to a leaf.
The pool of losers and pool of responses are filled
in during the process.

2. We check the stopping criterion (2) for the leaf,
i.e. we check if the scalar product of vector X
and the pattern related to the leaf is greater than a

predefined threshold. If the criterion is met, we go
to step 4, otherwise to step 3.

3. If the criterion fails, we pick a node with the
highest signal amplitude from the pool of losers
and repeat steps 1 to 3 starting the descend from
this node now.

4. We pick a pattern with the highest signal value in
the pool of responses, and regard it as a solution.

6 EXAMPLE OF THE
ALGORITHM OPERATION

Let us exemplify the operation of the algorithm.
Figure 1 shows a step-by-step illustration of the
algorithm for a tree built for eight patterns  8M  .

Step 1: the tree root (node 0) receives input vector
X . The root perceptron generates signals Lh and Rh

at its outputs. Let L Rh h , then Rh and the loca-

tion of the descendant-node connected to the right
output (node 2) are placed in the pool of losers. Step
2: vector X is fed to the node-winner (node 1). A
winning node is determined again and the loser is
put in the pool (e.g. LLh and node 3). Step 3: after

reaching the leaves, we put patterns (3X and 4X)

associated with the leaves and signal values

3LRLh  XX and 4LRRh  XX in the pool of respons-

es. Then we check if the patterns meet criterion (2).
In our case the criterion is not met, so the algorithm
continues its work. Step 4: if none of the patterns
satisfies the solution, we pick the highest-signal
node from the pool of losers (for example, node 2

Figure 1: An example of the algorithm operation.

NCTA�2014�-�International�Conference�on�Neural�Computation�Theory�and�Applications

302

with signal Rh). Step 5: now the descent starts from

this node (node 2) and continues until we reach the
leaves while the pool of losers taking new elements.
At that pair  ;2Rh is moved away from the pool of

losers. Here RLL RLRh h and  max1 2 RLRb N h  ,

i.e. criterion (2) is true for pattern 6X . The pattern

becomes the winner and the algorithm stops. If the
criterion never works during the operation of the
algorithm, the pattern from the pool of responses
with the highest signal value is regarded as winner.

7 ESTIMATION OF THE ERROR
PROBABILITY

It is hard to obtain a precise estimate of the error
probability for the proposed algorithm as for now.
However, it is possible to get its upper bound.

SNN-tree algorithm can fail in case when there is
more than one pattern that satisfies criterion (2) in
the set. Formally, the probability of this event can be
written as:

1
*

max
1

1 Pr (1 2) .
M

m
m

P b N




 
    

 
XX (6)

Presence of such patterns does not always lead to
the algorithm failure. Therefore, probability (6) can
be used as an estimation of the upper bound on the
proposed algorithm failure.

Equation (6) can be calculated exactly by formu-
la:

max
1

*
1

0

1 1 .
2

Mkb N
N

N
k

C
P






 
   

 
 (7)

However, it is not possible to use formula (7) at
large values of N (N>200). For high dimensions, it is
better to use approximation:

* 2
exp

22

M N
P

N

 
  

 



 ,
2

max(1 2) .N N b  (8)

Equation (8) shows that the error probability ex-
ponentially decreases as the problem dimensionality
N grows. For example, at N=500 and bmax=0.3 power
of the exponent is -40, which explains the fact that
experimental error probability for high dimensions
could not be measured in work (Kryzhanovsky,
2014). In fact, SNN-tree can be considered exact for
high dimensional problems.

Figure 2 shows dependence of the error probabil-
ity on dimensionality N at bmax=0.3 and M=N. As

Figure 2: The algorithm error probability.

expected, the error probability of the algorithm
(markers) is smaller than probabilities calculated
using (7) and (8) (solid lines). Therefore, expres-
sions (7) and (8) can be used for algorithm reliability
estimation. Moreover, it can be seen that expression
(8) is a sufficient approximation of (7).

8 ESTIMATION OF THE
COMPUTATIONAL
COMPLEXITY

Estimation of the proposed algorithm computational
complexity is a quite sophisticated problem that was
not solved yet. In this section, results of computa-
tional modeling are presented.

It was shown in work (Kryzhanovsky, 2014) that
the problem in hand could be solved using only
these two algorithms: exhaustive search and SNN-
tree. Conducted research shows that the proposed
algorithm works faster than exhaustive search, how-
ever it errors may occur. According to the results
from the previous sections, the error probability at
dimensionality N≥500 is so small that it can be ne-
glected. Therefore, even a small speed advantage of
SNN-tree over exhaustive search makes it prefera-
ble.

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000N

b = 0.3

b = 0.2

b = 0.1

M


Figure 3: The speed advantage of SNN-tree over exhaus-
tive search (markers - experiment; solid lines – estima-
tion).

On�Error�Probability�of�Search�in�High-Dimensional�Binary�Space�with�Scalar�Neural�Network�Tree

303

Experiments show (Fig. 3) that as dimensionality N
grows the speed advantage of SNN-tree over ex-
haustive search increases. For example, at
N=M=2 000 and b=0.2 SNN-tree is faster than ex-
haustive search in 12 times, and at N=M=10 000
acceleration reaches 26 times. Note bmax is a fixed
value, but b is a number of distorted components in
the input vector. Using experimental result, we esti-
mated the average number of scalar product opera-
tions needed for SNN-tree search:

  2exp 1.3 0.44 0.4 log .M b b N     (9)

Solid lines in figure 3 were built using equation
(9). This equation allows estimating average speed
advantage of SNN-tree over exhaustive search. Us-
ing (9), it is possible to predict advantage of SNN-
tree at large values of parameters (table 1).

Table 1: The speed advantage of SNN-tree over exhaus-
tive search for M=N=105 and bmax=0.3 using equation (9).

b M / θ

0.1 189

0.2 88

0.3 41

9 CONCLUSIONS

The paper considers the problem of nearest-neighbor
search in a high-dimensional configuration space.
The use of most popular methods (k-d tree, spill-
tree, BBF-tree, LSH) proved to be inefficient in this
case. We offered a tree-like algorithm that solves the
given problem (SNN-tree).

In this work, theoretical estimate of the upper
bound on the error probability of SNN-tree algo-
rithm was obtained. This estimate shows that the
error probability decreases as the dimensionality of
the problem grows. Since even at N>500 the error is
less than 10-15, it does not seem possible to measure
it experimentally. Therefore, it is safe to say that
SNN-tree is an exact algorithm. Research investiga-
tions of the computational complexity of the algo-
rithm shows that the speed advantage of SNN-tree
algorithm over exhaustive search increases as the
dimensionality N grows.

So, we can conclude that SNN-tree algorithm
represents an efficient alternative to exhaustive
search.

ACKNOWLEDGEMENTS

The research is supported by the Russian Foundation
for Basic Research (grant 12-07-00295a).

REFERENCES

Friedman, J.H., Bentley, J.L. and Finkel, R.A., 1977.An
algorithm for finding best matches in logarithmic ex-
pected time. ACM Transactions on Mathematical
Software. vol. 3. pp. 209–226.

Ting Liu, Andrew W. Moore, Alexander Gray and Ke
Yang., 2004. An Investigation of Practical Approxi-
mate Nearest Neighbor Algorithms. Proceeding of
Conference. Neural Information Processing Systems.

Indyk, P. and Motwani, R., 1998. Approximate nearest
neighbors: Towards removing the curse of dimension-
ality. In Proc. 30th STOC. pp. 604–613.

Beis, J.S. and Lowe, D.G., 1997. Shape Indexing Using
Approximate Nearest-Neighbor Search in High-
Dimensional Spaces. Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition. pp. 1000-1006.

Kryzhanovsky B., Kryzhanovskiy V., Litinskii. L., 2010.
Machine Learning in Vector Models of Neural Net-
works. // Advances in Machine Learning II. Dedicated
to the memory of Professor Ryszard S. Michalski. Ko-
ronacki, J., Ras, Z.W., Wierzchon, S.T. (et al.) (Eds.),
Series “Studies in Computational Intelligence”.
Springer. SCI 263, pp. 427–443.

Kryzhanovsky V., Malsagov M., Tomas J.A.C., 2013.
Hierarchical Classifier: Based on Neural Networks
Searching Tree with Iterative Traversal and Stop Cri-
terion. Optical Memory and Neural Networks (Infor-
mation Optics). vol. 22. No. 4. pp. 217–223.

Kryzhanovsky V., Malsagov M., Zelavskaya I., Tomas
J.A.C., 2014. High-Dimensional Binary Pattern Clas-
sification by Scalar Neural Network Tree. Proceedings
of International Conference on Artificial Neural Net-
works. (in print).

APPENDIX A

It is necessary to calculate the following probability:

1
*

max
1

1 Pr (1 2) .
M

m
m

P b N




 
    

 
XX (А1)

Let scalar products mXX and XX be inde-

pendent random quantities, m  .

1
*

max
1

1 Pr (1 2) .
M

m
m

P b N




       XX (А2)

NCTA�2014�-�International�Conference�on�Neural�Computation�Theory�and�Applications

304

Now, it is necessary to calculate the probability that
the product of each pattern by input vector is smaller
than the threshold.

Scalar product mXX is a discrete quantity, which

values lie in [;]N N . Let k be the number of com-

ponents with the opposite sign in vectors X and

mX . Then its probability function is:

 Pr (2) .
2

k
N

m N

C
N k  XX (А3)

Random variable mXX is symmetrically distrib-

uted with zero mean, so

max

max
0

Pr (1 2) 1 2 .
2

kb N
N

m N
k

C
b N



       XX (А4)

From А2 and А4 we can conclude that

max
1

*

0

1 1 2 .
2

Mkb N
N
N

k

C
P





 
   

 
 (А5)

APPENDIX B

Scalar product

1

.
N

m i mi
i

x x


 XX (B1)

consists of a large number of random quantities.
Therefore, at big dimensions (N>100) its distribution
can be approximated by Gaussian law with the fol-
lowing probability moments:

0  и  2 N   . (B2)

Therefore, probability (А1) can be described by
integral expression:

2
max

1(1 2)
* 2

2
~ 1 1 .

2

Mb N

NP e d
N






 




    
  

 (B3)

Using the following approximation

2

2

, 1,
2

x
t

x

e
e dt x

x

 
  � (B4)

obtain the final estimation of probability (А1.1):

* 2
exp

22

M N
P

N

 
  

 



 ,
2

max(1 2) .N N b  (B5)

On�Error�Probability�of�Search�in�High-Dimensional�Binary�Space�with�Scalar�Neural�Network�Tree

305

