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Abstract: In order to detect vehicles on the road reliably, a vehicle detector and tracker should be integrated to work in 
unison. In real applications, some of the ROIs generated from a vehicle detector are often ill-fitting due to 
imperfect detector outputs. The ill-fitting ROIs make it difficult for tracker to estimate a target vehicle 
correctly due to outliers. In this paper, we propose a stereo-based visual tracking method using a 3D feature 
clustering scheme to overcome this problem. Our method selects reliable features using feature matching 
and a 3D feature clustering method and estimates an accurate transform model using a modified RANSAC 
algorithm. Our experimental results demonstrate that the proposed method offers better performance 
compared with previous feature-based tracking methods. 

1 INTRODUCTION 

Robust object detection and tracking are very 
important for driving assistance systems and safe 
driving. Recognizing a vehicle’s surroundings can 
reduce the number of traffic accidents caused by 
careless driving. In the field of intelligent vehicles, 
many researchers have worked on detecting and 
tracking various objects, such as vehicles, 
pedestrians, and traffic signs. Many researchers have 
made their best efforts to improve the reliability of 
object detection methods (Sivaraman and Trivedi, 
2013). However, no state-of-the-art detection 
method can detect all objects on the road without 
false detections. In order to enhance the detection 
performance, the best way is to integrate detection 
and tracking algorithms. Even if the detector misses 
a target object in the current frame, visual tracking 
can localize the target object using the motion 
information in the previous frames. 

In visual tracking methods, the traditional and 
fundamental approach is template matching, but its 
limitation is a high computational cost due to its 
repetitive comparison process. A mean shift (MS) is 
a simple iterative nonparametric density analysis 
that is essentially a gradient ascent algorithm with an 
adaptive step size (Cheng, 1995). The kernel-based 
tracking method uses a spatially smoothing 

similarity function with a Bhattacharyya coefficient 
and a gradient optimization method with mean shift 
for target localization (Comaniciu et al., 2008). A 
combined method with an adaptive Kalman filter 
(KF) and a mean shift was proposed to localize the 
target position accurately when the object undergoes 
a large degree of displacement or occlusion (Xiaohe 
et al., 2010). Particle filter-based tracking 
approaches compare appearance similarities such as 
color, edge, and texture within candidate regions and 
select the most likely ROI (Adam et al., 2010).  

Feature-based tracking methods estimate the 
state of a target while calculating the displacement 
of distinctive features and estimating a transform 
model using the random sample consensus 
(RANSAC) algorithm (Rodrigo et al., 2010). The 
Kanade-Lucas-Tomasi (KLT) method (Jianbo and 
Tomasi, 1994) employs an iterative optimization 
scheme that finds distinct features in the current 
frame and then attempts to find a correspondence in 
the next frame. In order to handle any large 
displacement due to abrupt motion, a pyramidal 
KLT method estimates the motion vector by 
computing the iterative optical flow (Bouguet, 
2010). A modified KLT method uses conventional 
KLT in conjunction with a symmetric-based tracker 
for tracking bilaterally symmetric planar objects 
such as pedestrians and vehicles on the road 
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(Schreiber, 2009). Feature based-tracking methods 
deteriorate the matching accuracy due to intensity 
ambiguities in pixels, and some researchers have 
introduced a combined method which utilizes the 
advantages of appearance and feature matching 
(Khan and Gu, 2010). 

Visual tracking aims to find the movement of an 
object onto a current image from a previous image. 
Recent feature-based visual tracking methods have 
focused on enhancing robustness against very poor 
conditions, as characterized by abrupt motions, 
appearance and rotation changes, illumination 
changes, and partial occlusion, for instance. The way 
to evaluate these approaches is to determine how 
well the tracker estimates the ROI after the first 
image is manually annotated by a well-fitting ROI. 
In real applications, the ROI is generally generated 
by a detector, and the ROI is often ill-fitting due to 
noisy detector outputs. There may be many outliers 
in an ill-fitting ROI, which cause a track drifting 
problem. In order to track an ill-fitting target object 
robustly, it is necessary to remove the outliers. In 
this paper, a feature-based visual tracking method 
using 3D feature clustering is proposed and shown 
to be robust against an ill-fitting ROI.   

The rest of our paper is organized as follows. In 
Section 2, we give an overview of our feature-based 
tracking method. Section 3 explains the 3D feature 
clustering scheme using position and motion 
displacement in global coordinates. Experimental 
results and analyses of real-world image sequences 
are presented in Section 4. Finally, Section 5 
concludes this paper with suggestions for future 
works. 

2 OVERVIEW OF OUR VISUAL 
TRACKING METHOD 

Our feature-based visual tracking method is 
proposed to be robust against an ill-fitting ROI. The 
method consists of pre-processing, feature extraction, 
feature tracking, feature matching, 3D feature 
clustering, and ROI estimation, as shown in Figure 1. 
The feature matching and 3D feature clustering steps 
are used to select reliable inlier features. 

In real road environments, the illumination 
condition is very poor. Pre-processing methods such 
as Gaussian smoothing and histogram equalization 
are very efficient to ensure robustness against a poor 
illumination condition. A features from accelerated 
segment test (FAST) detector (Rosten et al., 2010) is 
used to extract distinctive features due to its good 

 

Figure 1: Architecture of the proposed feature tracking 
method.  

speed and high level of accuracy. The FAST 
detector determines a point as a distinctive feature if 
n contiguous pixels exist in the circle of the point. 
The n pixels should all be brighter or darker than the 
intensity of the point. Each of the 16 surrounding 
pixels has one of three states which are represented 
by darker (d), brighter (b), and similar (s) pixels. In 
the feature tracking module, the KLT tracker 
localizes the correspondences of features extracted 
from the previous image. Erroneous corresponding 
feature pairs are removed by a feature matching 
method which utilizes binary feature matching. The 
census transform method (Zabih and Woodfill, 1994) 
and the Hamming distance are used to measure the 
similarity between the feature pairs which are 
estimated by the feature tracker. Census transform 
converts the pixel intensity to a binary pattern using 
the relative order of the local intensity. The 
similarity between binary patterns of the feature 
pairs are measured by the Hamming distance. This 
matching method is much more robust than the 
normalized cross-correlation (NCC) matching 
method near object boundaries (Zabih and Woodfill, 
1994). Many features extracted from the FAST 
detector exist in the object boundaries. The feature 
matching algorithm is executed in the intensity 
image to remove incorrectly estimated feature pairs. 

ቊ݂݅ ቂܦு ቀ ஼ܶ൫ ௧݂ିଵ
௜ ൯, ஼ܶ൫ ௧݂

~௜൯ቁ ൏ ቃߛ , ݀݁ݐ݈ܿ݁݁ݏ

݁ݏ݈݁ 									, ݀݁݀ݎܽܿݏ݅݀
 (1)

where Tc(x) denotes the census transform function of 
feature x, and DH(a,b) indicates the Hamming 
distance between the a and b vectors. ௧݂ିଵ

௜  and ௧݂
~௜   

denote the ith feature in the previous frame and the 
paring feature in the current frame, respectively. ߛ is 
a fixed threshold value for selecting the features. In 
order to find outlier features, the 3D feature 
clustering module selects features corresponding to 
only the target object among selected features. The 
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Figure 2: Outliers in an ill-fitting ROI. 

mean and covariance of the features in terms of the 
global position and motion are iteratively updated by 
the Mahalanobis distance. The feature clustering 
step is finished when the mean of the feature 
position converge. The clustering features are used 
to estimate a transform model parameter. An affine 
transform is used for motion estimation of the target 
object in this work. Finally, the current ROI is 
estimated by the transform model and the previous 
ROI position. 

3 3D FEATURE CLUSTERING 

One of the difficult problems with feature-based 
visual tracking involves selecting the features 
corresponding to the target object. When a target 
object is estimated by an ill-fitting ROI from an 
object detector, there may be many outliers that 
correspond to background or other objects in the 
ROI, as shown in Figure 2. Consequently, the 
outliers make it difficult to estimate the transform 
model parameters accurately. The 3D feature 
clustering method tackles this problem while 
minimizing the number of these outliers. The 
features are clustered in a 3D global position and 
motion spaces using an iterative scheme. In this 
clustering method, the features are projected onto 
the 3D global coordinate using an inverse 
perspective mapping (IPM) model (Lim et al, 2010), 
where  ௜ܲ

௚  denotes the 3D global position of the ith 
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feature. Xg, Yg, and Zg are feature positions on the 
global coordinates. xdl and xdr are horizontal 
positions on the left and right image coordinates. yd 
indicates the vertical position in both image 
coordinates. d is the integer disparity of the feature. 
 and b are the focal distance expressed in units of ߙ
pixels and a baseline that denotes the distance 
between the stereo cameras, respectively. h and ߠ 
denote the height of the cameras above the ground 
and the angle between the Z direction and the optical 
axis of the cameras, respectively. The Mahalanobis 
distance (dm) is used for clustering the features in the 
3D global coordinates.   

൜
݂݅൫݀௠൫ ௜ܲ

௚൯ ൐ ௣ܶ൯, ,݀݁ݐ݈ܿ݁݁ݏ		
݁ݏ݈݁ , ,݀݁݀ݎܽܿݏ݅݀			

 

݀௠൫ ௜ܲ
௚൯ ൌ ൫ ௜ܲ

௚ െ ௠ܲ
௚൯

்
௣ିଵ൫ߜ ௜ܲ

௚ െ ௠ܲ
௚൯, 

(3)

where  ௠ܲ
௚  and  ߜ௣ denote the mean and covariance 

of the features in the 3D global position. Tp is a 
threshold value for discarding the outliers. The 
displacement of selected features is calculated for 
3D global motion clustering in the global 
coordinates. 

൜
݂݅ሺ݀௠ሺܯ௜ሻ ൐ ெܶሻ, ,݀݁ݐ݈ܿ݁݁ݏ		
݁ݏ݈݁ , ,݀݁݀ݎܽܿݏ݅݀			

 

݀௠ሺܯ௜ሻ ൌ ሺܯ௜ െ ெߜ௠ሻ்ܯ
ିଵሺܯ௜ െܯ௠ሻ, 

(4)

where ܯ௜  indicates the motion vector of the ith 
feature in the global coordinate, ܯ௠ and ߜெ are the 
mean and covariance of the motion vectors in the 
global coordinate. TM is a threshold value related to 
the motion vector. The mean and covariance of 
features are updated by the clustered features at each 
iterative epoch. The features are iteratively selected 
and rejected until the mean of the motion vector 
converges to the global coordinate. The finally 
selected features are used to estimate an optimal 
transform matrix ෠ܶ௧  with the modified RANSAC 
method. 

Table 1: Summary of the test datasets. 

 # of frame characteristics 

Scene 1 101 Size change 

Scene 2 177 Poor illumination condition 

Scene 3 100 Partial occlusion on a rainy day

Scene 4 200 
Pose change in a cluttered 

environment 
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Figure 3: Test datasets for feature-based visual tracking. (a) 
Size change, (b) Illumination change, (c) Partial occlusion 
on a rainy day, (d) Pose change in a cluttered environment. 

Table 2: Processing time (ms) of visual trackers. 

 KLT 2D-SFVT SURF 3D-SFVT

Scene 1 7.5 7.3 216.4 7.8 

Scene 2 7.7 7.4 122.4 7.2 
Scene 3 7.0 10.2 216.5 6.5 
Scene 4 8.3 7.8 204.5 6.9 

෠ܶ௧ ൌ argmax
೟்

෍ ெ݂ோ

௉

௞ୀଵ

ሺ ௧ܶ ௞݂
௧ିଵ, ௞݂

௧ሻ ,	

ெ݂ோ൫ መ݂௞, ௞݂൯ ൌ ݁ିఒ೘
ට൫௙መೖି௙ೖ൯

೅
൫௙መೖି௙ೖ൯ 

(5)

where P is the number of selected features, ௞݂
௧  is the 

kth feature position in t frame, and ߣ௠ has a constant 
value. The current ROI is estimated by the transform 
matrix  ෠ܶ௧ and the previous ROI. 

4 EXPERIMENTAL RESULTS 

Our feature-based visual tracking method was 
implemented with Visual C++ 9.0 and the OPENCV 
2.2 library. Four test datasets were used for a 
quantitative evaluation and a qualitative analysis. 
They were captured from real road environments, as 
shown in Figure 3. 

In Scene 1, the vehicle size grows steadily in the 
image while a distant vehicle is gradually 
approaching. In Scene 2, a target vehicle passes 
through a tunnel. An abrupt illumination change 
occurs when entering and exiting the tunnel. The test 
dataset contains a very dark lighting condition when 
the vehicle passes in the tunnel. In Scene 3, the test 
dataset was captured on a rainy day. The target 
vehicle was often occluded by the windshield wiper, 
and the target vehicle contains noisy regions due to 

raindrops. In Scene 4, the pose of the target vehicle 
changes in a road environment with heavy traffic, 
and many outliers exists in the ROI. A summary of 
test scenes is described in Table 1. 

The target vehicle is manually annotated in the 
first frame, after which the trackers estimate the ROI 
of the target vehicle from the next frame. The 
annotated ROIs are ill-fitting while shifting the ROIs 
to the left and right to verify robustness against an 
ill-fitting ROI. The performances of the KLT tracker 
(Jianbo and Tomasi, 1994), SURF tracker (Bay et al., 
2010), 2D selected-feature-based visual tracker (2D-
SFVT) (Lim et al., 2010), and 3D selected feature-
based tracker (3D-SFVT) are measured by the 
overlap ratio between ground truth regions and 
estimated regions. 

As shown in Figure 4, the experimental results 
show that all trackers can estimate the ROIs well 
without errors when the ROI is initially well-fitting. 
However, most vehicle detectors often provide an 
inaccurate ROI. When the ROI is ill-fitting, previous 
tracking methods often provide poor tracking 
performance.  

The tracking performances of all of the methods 
are similar in Scene 1. The 2D-SFVT method 
provides slightly better tracking performance when 
the ROI is well-fitting. In experimental results for 
Scene 2, the 3D-SFVT method provides the best 
tracking performance, especially when the ROIs are 
ill-fitting. In Scene 2, the pre-processing methods of 
a Gaussian smoothing fil ter and histogram 
equalization make the trackers robust against the 
poor illumination condition in the tunnel, as shown 
in Figure 5. Similar performances for all the trackers 
resulted for Scene 3. Although there are many 
feature matching errors occur due to occlusion and 
noisy pixel intensity in Scene 3, a modified 
RANSAC algorithm can estimate the correct 
transform matrix using only part of the selected 
features. When the ROI is ill-fitting in Scene 4, 
previous tracking methods generate track-drifting 
problems due to outliers. However, the 3D-SFVT 
method removes the outliers using feature matching 
and the 3D clustering method, and reliable tracking 
results can be achieved (Figure 6). In the test of the 
SURF tracker in Scene 4, track drifting problems 
occur, but the ROIs are fortunately readjusted to the 
target vehicle due to the field of view (FOV) of the 
camera. Table 2 shows the processing time of each 
visual tracker. The processing time of the SURF 
tracker is high, and the other visual trackers achieve 
similar runtimes.  
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Figure 4: Experiment results of feature-based visual 
trackers. The ROI shift indicates that the ROI moves to the 
left (negative) and right (positive) directions, and the value 
denotes the shift proportion with regard to the width of 
ROI. (a) Scene 1, (b) Scene 2, (c) Scene 3, and (d) Scene 4. 

 
(a) 

 
(b) 

Figure 5: Feature matching results in Scene 2. (a) before 
pre-processing, and (b) after pre- processing. 

5 CONCLUSIONS 

In this paper, we proposed a stereo-based visual 
tracking method using 3D feature clustering. The 
features are projected onto a 3D global coordinate 
and reliable feature pairs are selected by feature 
matching and iterative 3D clustering schemes. 

Model parameters and the ROI are estimated 
using the selected features and a modified RANSAC 
algorithm. The experimental results demonstrate that 
our  method  outperforms  previous  methods  in  the 
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Figure 6: Feature matching results when the ROI shift is -
0.4 in Scene 4. 

presence of an ill-fitting ROI with reasonable 
processing times. In the future, we will combine the 
proposed tracker with a vehicle detector to enhance 
its vehicle detection performance. 
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