
Information Extraction from Legacy Spreadsheet-based
Information System

An Experience in the Automotive Context

Domenico Amalfitano1, Anna Rita Fasolino1, Porfirio Tramontana1, Vincenzo De Simone1,
Giancarlo Di Mare2 and Stefano Scala2

1Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione, Università Federico II, Via Claudio 21, Naples, Italy
2Fiat Group Automobiles S.p.A.,Pomigliano Technical Center,Via ex Aeroporto, Pomigliano d’Arco, Italy

Keywords: Information Extraction, Legacy Systems, Spreadsheets, Automotive.

Abstract: Nevertheless spreadsheets were originally designed for computing purposes and for commercial
applications, they are often used in industry to implement Information Systems, thanks to the functionalities
offered by integrated scripting languages and ad-hoc frameworks (e.g., Visual Basic for Applications). This
technological solution allows the adoption of Rapid Application Development processes for the quickly
development of Spreadsheets-based Information Systems, but the resulting systems are quite difficult to be
maintained and very difficult to be migrated to other architectures such as Database-oriented Informative
Systems or Web applications. In this paper we present an approach for reverse engineering the data model
from an Excel spreadsheet-based information system. The approach exploits a set of heuristic rules that are
automatically applied in a seven-steps process. The applicability of the process has been shown in an
industrial context where it was used to obtain the UML class diagrams representing the conceptual data
models of three spreadsheet-based information systems.

1 INTRODUCTION

Spreadsheets are interactive software applications
designed for collecting and analyzing data in tabular
form. In a spreadsheet, data are organized in
worksheets, any of which is represented by a matrix
of cells each containing either data or formulas.
Modern spreadsheets applications (e.g. Microsoft
Excel) are integrated with scripting languages (e.g.,
Microsoft Visual Basic for Applications). These
languages allow the realization of interactive
functionalities for the management of the underlying
data by adopting Rapid Application Development
processes. In these scenarios, spreadsheets have left
behind their original role of calculation sheets,
becoming instead core business tools. As a recent
analysis showed, the usage of spreadsheets is
diffused in a relevant community made by many
millions of end-user programmers (Scaffidi, 2005).

Although it is possible to build Spreadsheets-
based Information Systems very quickly and without
high development costs, their quality is often low.
The data often present replication problems; data
management tends to be error prone due to the lack

of native consistency checking or data visibility
restriction mechanisms. Therefore, the user
dissatisfaction when working with these systems
may increase as the size and the complexity of data
increases, so business organizations may be
compelled to look for more effective solutions.

Migrating a legacy Spreadsheets-based
Information System towards new technologies and
platforms often provides an effective solution to
these problems. In the last years, several processes,
techniques and tools to support the migration of
legacy software systems have been proposed in the
literature (De Lucia, 2008; Bovenzi, 2003; Canfora,
2008).

The first and more critical step in a migration
process consists in the reverse engineering of the
data model of the information scattered in the cells
of different spreadsheets and worksheets. The
reverse engineered model will provide a useful
abstraction about the analyzed data and can be
considered the starting point for planning any
reengineering activity.

In (Amalfitano, 2014a) we presented a process for
migrating a legacy Spreadsheets-based Information

389Amalfitano D., Fasolino A., Tramontana P., De Simone V., Di Mare G. and Scala S..
Information Extraction from Legacy Spreadsheet-based Information System - An Experience in the Automotive Context.
DOI: 10.5220/0005139603890398
In Proceedings of 3rd International Conference on Data Management Technologies and Applications (KomIS-2014), pages 389-398
ISBN: 978-989-758-035-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

System to a new Web application. This process was
defined in an industrial context where we
reengineered a legacy system used in a tool-chain
adopted by an automotive company for the
development of embedded systems. According to
this company, such system was affected by many
maintenance and usability issues, which motivated
the migration process.

The first step of the migration process was
devoted to the reverse engineering of a data model
and of the business rules embedded in the
spreadsheet system. The successive steps regarded
the reengineering and reimplementation of the
system according to the target platform. The first
step was performed using a set of heuristic rules that
we described in (Amalfitano, 2014b).

In this paper we present a further refinement of
our work: we propose a structured reverse
engineering process that can be used to analyze
spreadsheet-based information systems and to infer a
UML class diagram from them. The class diagram
provides a conceptual model of the data embedded
in the spreadsheets and is comprehensive of classes,
class names, class attributes, association and
composition relationships. The process is based on
the execution of seven sequential steps that can be
automatically performed.

The effectiveness of the proposed process has
been assessed by a wider experimentation involving
more spreadsheets-based information systems from
the same industrial domain. In this paper we present
the proposed process and the results of the
experiment we performed.

The paper is organized as it follows: Section 2
presents related works, while Section 3 illustrates
the proposed data model reverse engineering
process. Section 4 shows an example of using the
process. Section 5 illustrates the experiment we
performed to evaluate the approach, while Section 6
presents some conclusive remarks.

2 RELATED WORKS

Due to the wide diffusion of spreadsheets in
business and in industry, a great interest in
spreadsheet analysis has been recently recorded.
Several authors addressed this problem and
proposed techniques and tools supporting the
automatic analyses of spreadsheets.

Several works in the literature aimed at inferring
a data model from spreadsheets. Some of them are
based on explicit extraction and transformation rules

that need to be provided by the users, such as the
technique proposed by Hung et al. (Hung, 2011).

The works of Abraham, Erwig et al. (Abraham,
2004; Abraham, 2006; Abraham, 2007; Abraham,
2009) exploit the existence of the shared template
underlying a given spreadsheet corpus, and propose
techniques for automatically inferring the templates.
The inferred template is hence exploited for safe
editing of the spreadsheets by end-users, avoiding
possible errors.

Two other approaches with similar purposes are
the ones of Mittermeir and Clermont (Mittermeir,
2002) and Ahmad et al. (Ahmad, 2003) that exploit
specific information about the type of data contained
in the spreadsheet cells.

Cunha et al. (Cunha, 2010), on the basis of the
previous results of Abraham and Erwig, propose
reverse engineering techniques to derive ClassSheet
models from existing spreadsheets by using data
mining techniques and infer functional dependencies
among columns.

Recently, Chen et al. (Chen, 2013) propose
automatic rules to infer some information useful in
the migration of a spreadsheet into a relational
database. They evaluated the effectiveness of the
proposed rules on a very large set including more
than 400 thousands of spreadsheets crawled from the
Web.

The work by Hermans et al. (Hermans, 2010)
addresses a problem very similar to ours that is the
recovery of a conceptual data model from
spreadsheets. That paper indeed presents a technique
for reverse engineering a data model from
spreadsheets that is based on two-dimensional
patterns. These patterns regard layout, data and
formulas included in the spreadsheets and can be
specified, recognized and transformed into class
diagrams. Some patterns were proposed by the
authors, as well as other ones were found in the
literature (e.g. Janvrin, 2000; Panko, 1994; Ronen,
1989). The technique has been validated with
respect to the spreadsheets corpus proposed by
Fisher and Rothermel (Fisher, 2005). Successively,
Hermans et al. (Hermans, 2011) evaluated the
usefulness of this approach by involving end users
from industry and abstracting leveled dataflow
diagrams, too.

However, these techniques are mainly applicable
to spreadsheets that are used as calculation sheets,
and that perfectly follow the predefined patterns. On
the contrary these techniques may not be effective
for analyzing spreadsheets not conforming to that
patterns or used as information systems. In the latter
case, indeed, no formula is present in the sheets and

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

390

the rules used by the authors to classify cells may be
misleading.

The spreadsheets developed in the considered
industrial context were used as information systems
too and were not calculation sheets. As a
consequence, we were not able to reuse the
techniques found in the literature as-are, but we had
to adapt them to the specific context. In particular,
we had to look for heuristic rules applicable to the
considered types of spreadsheets and we had to
define a process made of a sequence of steps for
applying the selected rules. The process we defined
will be illustrated in the following section.

3 THE CONCEPTUAL DATA
MODEL REVERSE
ENGINEERING PROCESS

The industrial context of our work included a large
number of spreadsheets, implemented by Excel files,
used in the development process of Electronic
Control Units (ECU) in the automotive company.
They supported the Verification & Validation
activities (V&V) and the management of Key
Performance Indicators (KPI) about the development
process. The spreadsheets inherited from a same
template and included some VBA functionalities
providing data entry assistance. Moreover, their
cells followed well-defined formatting rules (i.e.,
font, colors, and size of cells) that improved the
readability and usability of the spreadsheets, and
complied to the following layout rule: all the data
concerning the same topic in a single spreadsheet
file were grouped together in rows or columns
separated by empty cells or according to specific
spreadsheets patterns (Hermans, 2010).

Taking the cue from other works proposed in the
literature (Cunha, 2010; Hermans, 2010; Abraham,
2006), we founded our data model reverse
engineering process on a set of heuristic rules. We
defined a process made of seven steps that can be
automatically performed in order to infer, with
gradual refinements, the UML class diagram of the
considered information system. In each step, one or
more heuristic rules are executed. Each rule is based
on the analysis of one or more spreadsheets
belonging to the corpus of spreadsheet files
composing the subject information system. In the
following we describe the steps of the process.

Step 1: in this step we preliminarily apply Rule 1
that abstracts a class named Sp whose instances are
the Excel files that comply to a same template.

Step 2: in this step we exploit the Rule 2 that is
executed on a single spreadsheet file of the corpus.
The rule associates each non empty sheet of the
Excel file with a class Si, having the same name of
the corresponding sheet. Moreover, an UML
composition relationship between the Sp class and
each Si belonging to the file is inferred. The
multiplicity of the association on each Si side is
equal to 1. Figure 1 shows an example of applying
this rule on an example spreadsheet.

Figure 1: Example of Step 2 execution.

Step 3: in this step we exploit the Rule 3 that is
executed on a single spreadsheet file of the corpus.
This heuristic, according to (Abraham, 2006;
Hermans, 2010), associates a class Aj for each non
empty cell area Areaj of a sheet already associated to
a class Si by the Rule 2. Each class Aj is named as
follows: Name of the sheet_Areaj. Moreover an
UML composition relationship between the Si class
and each Aj class is inferred. The multiplicity of the
association on each Aj side is equal to 1. Figure 2
shows an example of Step 3 execution.

Step 4: In this Step two rules Rule 4.1 and Rule
4.2 are sequentially executed.

The Rule 4.1 is applied to discriminate the
header cells (Abraham, 2004) of each area Areaj that
was inferred in the previous step. Rule 4.1 analyzes
the content of the spreadsheet files belonging to the
corpus in order to find the invariant cells for each
area Areaj. An invariant cell of an area is a cell
whose formatting and content is the same in all the
analyzed spreadsheets.

The set of invariant cells of an area Areaj
composes the header of that area. Figure 3 shows
how the Rule 4.1 works. In a first phase (Figure 3-A)
all the spreadsheets are queried to select, for each of
them, the cells of a given area. In the next phase
(Figure 3-B) all the selected cells are analyzed to
recognize the invariant cells for the considered area.
Intuitively, if we imagine to overlap the contents of

Information�Extraction�from�Legacy�Spreadsheet-based�Information�System�-�An�Experience�in�the�Automotive�Context

391

Figure 2: Analysis of non-empty cell areas belonging to
Sheet1 executed in Step 3.

of all the spreadsheets for a given area Areaj, then
the header is given by the cells that, for the
considered area, are invariant in all the files, as
shown in Figure 3-B.

Rule 4.2 is executed on the headers inferred by
Rule 4.1. For each area Areaj, this heuristic analyzes
the style formatting properties of the cells
composing its header. It permits to discriminate
subareas SubAream having header cells satisfying
specific patterns. Rule 4.2 associates a class SAm for
each SubAream. Each class SAm is named as follows:
Name of the sheet_SubAream, if no name could be
associated to the class according to the recognized
patterns. The names of the attributes of the class are
inferred from the values contained into the header
cells.

Moreover, an UML composition relationship
between the class Sj and each related SAm class is
inferred. The multiplicity of the association on each
class SAm side is equal to 1. Some examples of Rule
4.2 executions are reported in Figure 4, 5, 6 and 7.

As an example in Figure 4 a UML class, having
the default name Sheet1_Area1, is inferred since
three consecutive header cells have the same
formatting style. The attributes of the class are
named after the values contained into the header
cells.

Figure 5 shows a variant of the example reported
in Figure 4. In this case two UML classes are
inferred since two groups of consecutive cells
having the same formatting characteristics were
found.

A further pattern is shown in Figure 6 where the
header is structured in two different levels. The
upper level, composed of merged cells, permits to
infer a class named ClassA, while its attributes are
named after the values contained in the header cells
of the lower level.

In the example shown in Figure 7, the previous
pattern is applied twice and a composition

relationship is inferred between the two obtained
classes.

Step 5: in this step we exploit Rule 5 that is
applied on the whole corpus of spreadsheets.

Figure 1: Execution of Step 3.

Figure 4: Example of header cells pattern inferring a
single class and its attributes.

Rule 5 is applied to all the subareas SubAream to
find possible sub-subareas made by group of data
cells having the same style formatting properties. If
a subarea SubAream is composed by two or more
sub-subareas then the heuristic associates a class,
SSAk for each sub-subarea. Each class SSAk is named
as follows: Name of the sheet_SubSubAreak.

Moreover, the new classes substitute the class
associated to the SubAream, and an UML
composition relationship between the Ai class and
each SSAk class belonging to the area is inferred. The
multiplicity of the association on each class SSAk
side is equal to 1. Figure 8 shows an example of how
Step 5 works.

Step 6: in this step the Rule 6 is exploited. This
heuristic is applied to the overall corpus of
spreadsheets. It analyzes the formatting properties of
the cells belonging to consecutive subareas and sub-
subareas in order to infer association relationships
and multiplicities between the classes that were
associated to these areas in the previous steps.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

392

An example of how this rule works is reported in
Figure 9. In this case two consecutive subareas are
considered, i.e., SubArea1 related to columns A and
B and SubArea2 corresponding to columns C and D.
The classes named Sheet1_SubArea1 and
Sheet1_SubArea2 were associated to SubArea1 and
SubArea2, respectively. Since for each spreadsheet a
tuple of SubArea1 is composed by a number of
merged cells that is an integer multiple of the
number of merged cells related to a tuple of
SubArea2, then Rule 6 infers a UML association
between the two classes related to the two subareas.

The multiplicity of the association on the class
side related to the class Sheet1_SubArea1 is equal to
1 whereas the one on the other side is 1..*.

Step 7: in this step the Rule 7 is exploited. This
heuristic is applied to the overall corpus of
spreadsheets. It analyzes the value of the cells in
order to infer association relationships between
classes. As an example, if in all the spreadsheets, for
each cell of a column/row that was exploited to infer
an attribute of a class A there is at least a cell of a
column/row that was exploited to infer an attribute
of a class B having the same value, then it is
possible to define a UML relationship between the
UML Class A and the UML Class B.

Moreover, if the cells of the column A have
unique values then the A side and B side
multiplicities of the inferred UML relationship are 1
and 1..* respectively, as shown in Figure 10.

Figure 5: Example of header cells pattern inferring two
classes and their attributes.

Figure 6: Example of header cells pattern inferring a
single class with attributes and class name.

Figure 7: Example of header cells pattern inferring two
classes with attributes, class names and their composing
relationship.

Figure 8: Example of Step 5 Execution.

Figure 9: Example of Step 6 Execution.

Figure 10: Example of Step 7 Execution.

Information�Extraction�from�Legacy�Spreadsheet-based�Information�System�-�An�Experience�in�the�Automotive�Context

393

4 CASE STUDIES

To analyze the effectiveness of the proposed
process, we performed a series of case studies
involving more spreadsheets-based information
systems from the same industrial domain. The goal
of these case studies was to evaluate the
applicability of the process and the acceptability and
precision of the inferred models.

In the first case study we used the proposed
process to reverse engineer the conceptual data
model from a legacy Spreadsheets-based
Information System implemented in Microsoft
Excel. This system was used by the HIL
(Hardware-in-the-Loop) Validation Team of Fiat
Group Automobiles and provided strategic support
for the definition of high-level testing specifications,
named Test Patterns. Test Patterns represent
essential artifacts in the overall testing process
(Shokry, 2009) since they allow the automatic
generation of test cases, the Test Objects, necessary
to exercise the Electronic Control Units (ECUs) of
automotive vehicles. The generation process is
carried out thanks to a lookup table that embeds both
the translation of high-level operations to the
corresponding set of low-level instructions, and the
mapping between input and output data to the set of
ECU pins.

Test Patterns were implemented by means of a
predefined Excel template file organized into 7
worksheets, referred to different phases of the
testing process.

The worksheets embedded the model of the data.
In the considered context, such template has been
adopted to instantiate a set of 30,615 different Excel
files, constituting the overall spreadsheets-based
informative system. These spreadsheets contained
on average 2,700 data cells.

All of these files inevitably shared the same
structure (i.e., the data model) with a high rate of
replicated data (about 20% of data cells recurred
more than 1,300 times, while about the 50% more
than 100 times). This high rate of replication was
mainly due to the fact that data were scattered
among multiple spreadsheets. Therefore the
underlying model was not normalized, with any
information about related data. In addition, the
automatic verification of data consistency and
correctness was not natively supported.

At the end of the process execution we obtained
a UML class diagram composed of 36 classes, 35
composition relationships and 23 association
relationships. Seven of these classes are associated
with the worksheets composing each spreadsheet

file, while the remaining ones are related to the areas
and subareas of each worksheet. Figure 11 shows the
conceptual data model class diagram that was
automatically inferred by executing the process. For
readability reasons, we have not reported all the
association relationships and the associations’
multiplicities, whereas we reported all the classes
and the composition relationships that were inferred.

Figure 12 shows an example of rules execution
on the Test Patterns sheet that is the most complex
one. By executing the rules we were able to infer
five classes, 4 association relationships and 5
composition relationships. Moreover, it shows how
the Rule 4 were able to infer the two classes Test
Step and Expected Results and Rule 6 proposed the
association relationship between them.

In the second and third case study, we analyzed

two further systems used by the company. The
systems included a Software Factory Test Case
(called SW TC) repository and a KPI repository
(hereafter KPI).

The SW TC repository contains essential
artifacts of the overall testing process in the
considered company, since they allow the automatic
generation of executable MATLAB test scripts
necessary to validate the ECU models. This
information system is composed by 14,000 Excel
files inheriting from a common template composed
by 10 sheets. These spreadsheets contained 4,000
data cells on average. About the 75% of data cells
are replicated in the spreadsheets.

KPI repository contains the key performance
indicators of each development project regarding a
software component belonging to a specific type of
vehicle. The information system is composed by
1,500 Excel files inheriting from a common template
composed by 8 sheets. These spreadsheets contained
1,370 data cells on average. About the 77% of data
cells are replicated in the spreadsheets.

Table 1 shows the results of the conceptual data
model reverse engineering process involving the
three case studies. It shows the number of classes
and relationships that were automatically inferred
for each information system.

After the analysis, we performed a validation
step in order to assess the acceptability and the
precision of the models inferred by the reverse
engineering process. To this aim we enrolled three
experts from the company belonging to the
application domains of the information systems.

We submitted them: (1) the inferred data models,
(2) a report containing the description of each
inferred UML item and one or more traceability

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

394

Table 1: Reverse Engineering Results.

Information
System

#Classes
#Association
Relationships

#Composition
Relationships

SW TC 49 33 48
Test

Pattern
36 23 35

KPI 25 12 24

links towards the spreadsheet’s parts from which it
was extracted, (3) a set of questions in order to
collect the expert judgments about the validity of the
UML item proposals. We asked the experts to
answer the questions and thus we were able to assess
the effectiveness of the overall reverse engineering
process by means of the Precision metric reported
below:

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
|ܸ. .ܫ .ܧ |
.ܫ| .ܧ |

ൈ 100

I.E. is the set of the UML elements, i.e., classes,
class names, class attributes, relationships between
classes and multiplicities of the relationships, that
were inferred by the process. |ܫ. .ܧ | is the cardinality
of the I.E. set.

ܸ. .ܫ .ܧ 	 ⊆ .ܫ	 is the number of the inferred .ܧ
UML elements that were validated by the industrial
expert and |ܸ. .ܫ .ܧ | is the cardinality of this set.
Table 2 shows the precision values we obtained for
each information system.

Table 2: Evaluation Results.

Information System Precision
SW TC 81%

Test Pattern 84%
KPI 92%

The precision values reported showed that more
than 80% of the inferred elements were validated by
the experts.

In the remaining cases, the experts proposed
some minor changes to the candidate classes. As an
example, with respect to the first system, the Test
Patterns one, the expert decided to candidate
additional classes by extracting their attributes from
the ones of another candidate class, or to merge
some of the proposed classes into a single one.

In particular, with respect to the class diagram
reported in Figure 12, he proposed to (1) discard the
PlotOutput class and to move its attributes into the
ExpectedResult one and (2) to extract a new class,
named Repetition, having the attributes repetition
and eventTime that were given from the candidate
class named Test Step. Definitely, the expert
proposed 1 class split and 2 classes merges
operations. Similar changes were proposed also in
the other two case studies we performed.

Moreover, we further analyzed the results of the
validation steps, in order to assess the applicability
of the rules used throughout the process. In this way,
we were able to learn some lessons about the
heuristic rules.

Figure 11: Inferred conceptual UML class diagram for the Test Pattern Information System.

Information�Extraction�from�Legacy�Spreadsheet-based�Information�System�-�An�Experience�in�the�Automotive�Context

395

Figure 12: Example of class proposal and its mapping with the spreadsheet file.

As to the rules regarding the identification of
classes, we observed that they were always
successful except for three cases. In two cases, the
expert decided to merge two candidate classes into a
single one. These classes had been considered as
different by Rule 4.2, since they derived from two
subareas having headers with different colors but
actually belonging to the same concept.

In a single case the expert decided to extract an
additional class from a candidate one and assigned it
a subset of the attributes of the inferred one. In this
case the Rules 4.2, 5 and 6 were not able to identify
this extra class since the cells associated to these two
concepts had the same formatting and layout style.
As a consequence, our process was not able to
discriminate between them. In both cases the process
failed because the spreadsheet did not comply with
the formatting rules exploited by our process.

As to the rules we used to associate the candidate
classes with a name, only in 21 over 110 cases they
failed, since the spreadsheets did not include
meaningful information to be exploited for this aim.

Furthermore we observed that in some cases the
expert decided to discard some of the proposed
composition relationships between the inferred
classes. This fact occurred when the proposed
conceptual class diagram presented a particular
pattern like the one showed in Figure 13. In this
case, the expert decided to move the attributes of the

leaf class (Sheet_SubArea1) to the Sheet1 class and
to remove the remaining classes, as shown in Figure
14. This specific pattern occurred 8 times and in 6
cases the expert decided to make these changes. This
result showed us the need to introduce new rules
aimed at reducing the complexity of the class
diagram that may be used in the occurrence of this
particular pattern.

Figure 13: Conceptual class diagram inferred from a sheet
having a single area containing only one subarea.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

396

Figure 14: Class Diagram reduction proposed by the
domain expert.

5 CONCLUSIONS

In this paper we presented a process for inferring a
conceptual data model from a spreadsheet-based
information system. The process has been defined in
an industrial context and validated by an experiment
involving three different spreadsheets-based
information systems from the considered automobile
industrial domain. The results of the experiment
showed the applicability of the process and the
acceptability of the inferred models, according to the
judgment of experts about the application domain of
the spreadsheets.

Our work differ from other ones described in the
literature, since the proposed approach has been
tailored to spreadsheets used to implement
information systems, rather than calculation sheets.

In future work, we plan to perform further
experimentations involving other spreadsheets-based
systems belonging to different application domains.
Moreover, we want to extend our approach further,
by proposing reverse engineering techniques aimed
at inferring the functional dependencies between the
data embedded in the spreadsheets by analyzing the
VBA functionalities they include.

ACKNOWLEDGEMENTS

This work was carried out in the context of the
research project IESWECAN (Informatics for
Embedded SoftWare Engineering of Construction
and Agricultural machiNes - PON01-01516),
partially founded by the Italian Ministry for
University and Research (MIUR).

REFERENCES

Abraham R. and Erwig M., Header and unit inference for
spreadsheets through spatial analyses. In Proceedings
of the IEEE International Symposium on Visual
Languages and Human-Centric Computing
(VL/HCC), 2004, pages 165–172.

Abraham R. and Erwig M., Inferring templates from
spreadsheets. In Proceedings of the 28th International
Conference on Software Engineering (ICSE), ACM,
New York, NY, USA, 2006, pages 182–191.

Abraham R., Erwig M. and Andrew S., A type system
based on end-user vocabulary. In Proceedings of the
IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Washington, DC,
USA, IEEE Computer Society, 2007, pages 215–222.

Abraham R. and Erwig M., Mutation operators for
spreadsheets. IEEE Transactions on Software
Engineering, 35(1):94–108, 2009.

Ahmad Y., Antoniu T., Goldwater S. and Krishnamurthi
S., A type system for statically detecting spreadsheet
errors. In Proceedings of the IEEE International
Conference on Automated Software Engineering,
2003, pages 174–183.

Amalfitano D., Fasolino A.R., Maggio V., Tramontana P.,
Di Mare G., Ferrara F., Scala S., Migrating legacy
spreadsheets-based systems to Web MVC architecture:
An industrial case study, Proceedings of CSMR-
WCRE, 2014, pages 387-390.

Amalfitano D., Fasolino A.R., Maggio V., Tramontana P.,
De Simone V., Reverse Engineering of Data Models
from Legacy Spreadsheets-Based Systems: An
Industrial Case Study, Proceedings of the 22nd Italian
Symposium on Advanced Database System, 2014,
pages 123-130.

Bovenzi D., Canfora G., Fasolino A.R., Enabling legacy
system accessibility by Web heterogeneous clients. In
proceedings of the Seventh European Conference on
Software Maintenance and Reengineering, IEEE CS
Press, 2003, pages 73-81.

Canfora G., Fasolino A.R., Frattolillo G., Tramontana P.,
A wrapping approach for migrating legacy system
interactive functionalities to Service Oriented
Architectures. Elsevier, Journal of Systems and
Software, 2008, vol. 81(4):463–480,

Chen Z. and Cafarella M., Automatic web spreadsheet
data extraction. In Proceedings of the 3rd International
Workshop on Semantic Search Over the Web (SS@
'13). ACM, New York, NY, USA, 2013, 8 pages.

Cunha, J., Erwig M., Saraiva J., Automatically Inferring
ClassSheet Models from Spreadsheets. In IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), IEEE CS Press, 2010, pages
93-100.

De Lucia A., Francese R., Scanniello G., Tortora G.,
Developing legacy system migration methods and
tools for technology transfer. In Software Practice and
Experience 38(13), Wiley,2008, pages 1333-1364.

Di Lucca G.A., Fasolino A.R., De Carlini U., Recovering
class diagrams from data-intensive legacy systems. In

Information�Extraction�from�Legacy�Spreadsheet-based�Information�System�-�An�Experience�in�the�Automotive�Context

397

Proceedings of International Conference on Software
Maintenance, ICSM, IEEE CS Press, 2000, pages 52-
62.

Fisher M. and Rothermel G., The EUSES spreadsheet
corpus: A shared resource for supporting
experimentation with spreadsheet dependability
mechanisms. In In 1st Workshop on End-User
Software Engineering, 2005, pages 47–51.

Hermans F., Pinzger M., van Deursen A., Automatically
extracting class diagrams from spreadsheets. In
proceedings of the 24th European conference on
Object-oriented programming (ECOOP'10). Springer-
Verlag, Berlin, Heidelberg, 2010, pages 52-75.

Hermans F., Pinzger M. and van Deursen A., Supporting
professional spreadsheet users by generating leveled
dataflow diagrams. In Proceedings of the 33rd
International Conference on Software
Engineering (ICSE '11). ACM, New York, NY, USA,
2011, pages 451-460.

Hung V., Benatallah B. and Saint-Paul R., Spreadsheet-
based complex data transformation. In Proceedings of
the 20th ACM international conference on Information
and knowledge management (CIKM '11). ACM, New
York, NY, USA, 2011, pages 1749-1754.

Janvrin D. and Morrison J., Using a structured design
approach to reduce risks in end user spreadsheet
development. Information & Management, 37(1):1–
12, 2000.

Mittermeir R. and Clermont M., Finding high-level
structures in spreadsheet programs. In Proceedings of
the Ninth Working Conference on Reverse
Engineering (WCRE), IEEE Computer Society,2002,
pages 221-232.

Panko R.R. and Halverson R.P., Individual and group
spreadsheet design: Patterns of errors. In Proceedings
of the Hawaii International Conference on System
Sciences (HICSS), 1994, pages 4–10.

Ronen B., Palley M.A. and Lucas H.C., Spreadsheet
analysis and design. Communications of the ACM,
32:84–93, 1989.

Scaffidi C., Shaw M., Myers B., Estimating the Numbers
of End Users and End User Programmers. In
Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing, 2005,
pages 207-214.

Shokry H., Hinchey M., Model-Based Verification of
Embedded Software. In IEEE Computer, 42(4), 2009,
pages 53-59.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

398

