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Abstract. An accepted model for the saccade signal of ocular motor neurons
comprises two components in the form of a pulse and a step. In this contribution,
an assessment of two fitting functions for the saccadic pulse component is made,
in order to obtain a reduced set of descriptors that could be used for the early
diagnosis of ataxia. Results show that both models have achieved to describe the
waveform of the saccadic pulse signal, revealing higher performance of Gauss
series over the gamma function.

1 Introduction

Ocular movements are affected by inherited spinocerebellar ataxias [3, 1, 2, 4], spe-
cially the behavior of saccadic system is modified, patients show increased latencies
to respond to visual stimulation with slower saccades among other impairments of this
system [5].

An accepted model for saccades generation involves two components, oculomotor
plant is driven by a pulse-step to produce a saccade [6]. Several works have been using
independent component analysis to isolates pulse and step components in saccadic and
vergence ocular movements [7, 9, 8]. Based in these results in a precedent work we
have applied independent component analysis to noisy electro-oculographic records of
patients, of ataxia SCA2, characterized by severely deformed saccades and the pulse
and step components were obtained [10]. In order to evaluate the pulse component
several of its parameters has been used, as duration, amplitude, the time to reach a
determined percent of the final value (not including the latent period) [12, 9, 11] among
others. An important limitation common in the estimation of these variables is the need
to use thresholds to identify onset and offset of the pulse.

In the present work an evaluation of two fitting functions for the pulse component is
made in order to obtain a reduced set of descriptors to be used for classification purposes
of ataxia patients and presymptomatics with respect to healthy subjects.
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2 Materials and Methods

All the experiments and material were handled by the medicalstaff of the Centre for the
Research and Rehabilitation of Hereditary Ataxias (CIRAH)at Holguı́n (Cuba). A two-
channel electronystagmograph (Otoscreen, Jaeger-Toennies, Hochberg, Germany) was
used to record saccadic ocular movements. Subjects were seated on chair with special
fixation accessory to avoid head movements, and asked to follow a divergence stimuli
conformed by a white circular target in a blank screen. The target appeared suddenly
at each side of the screen at random time slots between 1s and 3s, the distance from
subject to screen was adjusted to obtain an angular distanceof 30 degrees.

A group of 19 records of patients of ataxia was collected and the 29 records of
presymptomatic individuals with genetic evidence of the disease but without detected
symptoms and a third group of 23 records of healthy subjects.Saccades were identified
using an automated algorithm based in a velocity threshold of 10 degrees per second,
after this step a manual process of visual inspection was made to eliminate saccades
considered anticipatory (latencies lower than 100 ms) or with artifacts like blinkings,
excessive noise, muscle or extra ocular movements in the close time before onset, or
in the next fixation. In the next step the mean of amplitude, duration and latency were
calculated and saccades with deviations higher than 20% were excluded, in similar way
as it is described in [10].

2.1 Obtaining Pulse and Step Components

Independent component analysis (ICA) is a well known methodfor estimation of under-
lying components in mixtures of non gaussian and statistically independent variables.
The aim of ICA is to find the linear matrixW which mixes thex independent compo-
nents to produce a set ofy observed signals, as it is shown in the equation 1:

y = W × x. (1)

To apply ICA as observations are considered an ensemble of saccades after the
process of identification and exclusion of non valid saccades, where each row is a vector
containing a saccade:
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An Infomax ICA [13] algorithm implemented inmatlab[14] was used accordingly
to the procedure described in [10]. Figure 1 shows the pulse and step obtained for a
patient of ataxia.

2.2 Pulse Component Fitting

The fitting of step component using a sigmoid function was treated in a precedent work
[10], four coefficients were estimated and used in conjunction with the value and latency
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Fig. 1. Pulse and step components.

of the maximum of the pulse component for classification purposes. The best results of
experimental tests with several functions to fit the pulse components were achieved
with the gamma function, previously used to model the velocity behavior of saccadic
movements [15], and gaussian series with diferent numbers of terms. The equation of
the gamma function is the following:

f(x) = a
[x

b

]c− 1

e−
x

b (3)

Wherea, b, c andd are the coeficients to be adjusted.
While the gaussian series is expressed by:
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Where the coefficients for each term areai, bi, ci
The function fitting procedure was made by means of thefit function implemented

in matlab. Prior to the fitting process the active pulse segment was identified, in order to
consider only this part of the signal. The onset and offset points were marked examining
the first derivative of the signal at left (onset point) and right (offset point) sides of the
central maximum value, until a value of 0 was found. Figure 2 shows a segmented pulse
fitted by gamma function (left) and using a two terms Gauss series (right).
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Fig. 2.Pulse component fitted using a gamma (left) and Gauss1 (right) function.

3 Results

The fitting was applied to all the records, using gamma function and Gauss series from
one up to five terms. A visual inspection of the graphics for every record and fitting
function was done to rank the results, when no differences were seen among several
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Table 1.Ranking of fitting functions.

Fitting functions 1 2 3 4 5 6
Gamma 0.97% 28.64% 49.51% 11.65% 1.94% 0.49%
Gauss1 3.88% 38.83% 32.04% 19.9% 5.34% 0%
Gauss2 62.14% 28.16% 6.8% 2.43 % 0% 0%
Gauss3 80.01% 7.28% 2.43% 0% 0% 0%
Gauss4 82.04% 1.46% 0% 0% 0% 0%
Gauss5 73.79% 1.46% 0.49% 0% 0% 0%

functions, same rank was assigned to them for this record. This is summarized in Table
1.

Results from Table 1 reveal gamma function worse performance when compared
with the Gauss series. Best results are achieved by Gauss2 and highers. Table 2 shows an
analysis of the success in fitting of each function, gamma function is below Gausss1 and
Gauss2, from Gauss3 this indicator deteriorates. An overall evaluation of both tables
points to Gauss2 as the best, with a very low percent of failedfittings and ranked first
or second about 80% of the cases, while gamma is in general sense worst than Gauss
series.

Table 2.Failures of fitting functions.

Fitting functions Number of failed fittings Percent of failed fittings
Gamma 14 6.8%
Gauss1 0 0%
Gauss2 1 0.49%
Gauss3 21 10.19%
Gauss4 34 16.5%
Gauss5 50 24.27%

Gauss series of higher order has the inconvenience of the increased number of coef-
ficients (three per term), otherwise gamma and Gauss1 with only three coefficients. An
analysis of the correlation coefficient of Pearson (Figure 3left) and root medium square
error (Figure 3 right) as metrics for the goodness of th fit accounts for gamma as the
worst function, while the Gauss series has sustained improvements with the increment
in the number of terms.
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Fig. 3. Pearson’s correlation coefficients (left) and RMSE (right)results of fitting functions.

3.1 Analysis of Fitting Coefficients

The fitting procedure for gamma functions failed for 5 records of patients of ataxia (14
well fitted), six presymtomatics (23 well fitted) and 3 healthy subjects (20 well fitted),
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Gauss1 showed no failures and Gauss2 failed for one patient (not coincident with those
ones failed by gamma). Given the limited quantity of available records it was decided
to compare gamma and Gauss1 fitting functions. A random selection of the resultant
records of presymtomatics and healthy subjects was made to obtain fourteen records
in each class of subjects for this preliminary analysis of the relationships among fitting
coefficients and classes of subjects.

Figure 4 represents the coefficients of gamma function versus the category of the
subjects, it can be seen overlapping among categories for the three variables. Otherwise,
in Figure 5 is possible to observe better defined clusters in the categories of healthy sub-
jects and patients of ataxia for coefficientsb andc, while presymptomatics are located
between these categories, probably depending on their progression in the disease. It
must be noticed the bigger separation between means and similar dispersion observed
for coefficientb, this is confirmed by the values of the mean and standard deviation of
each coefficient (Table 3).
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Fig. 4.Coefficientsa (left), b (center) andc (right) of gamma fitting functionvs category.
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Fig. 5. Coefficientsa (left), b (center) andc (right) of Gauss1 fitting functionvs category.

Table 3.Means and standard deviations of coefficients of Gauss1 fitting function.

Category Coefficients
a b c

mean std mean std mean std
Healthy 14,1 3,1 22,8 6,0 11,8 4,2
Presimptomatics 14,2 2,5 30,6 8,3 18,3 6,3
Patient 15,8 2,4 57,910,2 36,4 9,1

4 Discussion

Simple visual inspection reveals higher performance of Gauss series over gamma func-
tion. Regardless of the number of terms, Gauss series are better valued in terms of the
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fitting performance. Additionally Gauss1 and Gauss2 have very low failing rates, as
compared to gamma function or Gauss series of higher orders,an appropriate selection
of initial is very difficult when the number of coefficients increases.

This superiority is consistent with the numerical results of two of the most used
parameters to assess the goodness of fit: the Pearson’s correlation coefficient and the
RMSE value. For both parameters gamma function has a poorer performance with
respect to Gauss series. Although the Pearson’s correlation coefficient is above 0.95,
which can be considered an expression of a good fitness for allthe functions, there exist
an considerable difference of gamma and one term Gauss series with respect to Gauss
of 2 terms or higher. The lack of an enough number of records inhibits to do a consistent
analysis of the behaviour of the fitting coefficients for the studied functions, this is more
evident for Gauss series with a higher number of terms. However a comparison with a
limited set of register for Gauss1 and gamma could be made, inorder to evaluate the
clustering ability of the coefficients taken separately. For gamma function onlyb seems
to be able to identify between healthy subjects and patientsof ataxia, presymptomatics
are located in a middle overlap zone with respect to the two extreme groups.

Similar results were found for coefficientsb and c of the Gauss1 series. The vi-
sual inspection and the analysis of mean and standard deviation were in coincidence to
identify coefficientb of Gauss1 as the best to classify subjects. No data was available
concerning other significant medical variables to correlates the condition of presymp-
tomatics with the value ofb, but it is reasonably to believe thatb could be a significant
marker of the progression of the disease, even before other symptoms are to be present.
These results were not improved when more than one coefficient was used for cluster-
ing, in fact visual inspection revealed the presence of linear correlation betweenb and
c for Gauss1.

5 Conclusions

In this contribution two fitting function has been evaluatedfor modelling of saccadic
pulse component obtained by the application of ICA to electro-oculographic records,
gamma function and Gauss series. Both models have achieved to describe the wave-
form of the signal in its active area, confirmed by the analytical results. Accordingly to
the trade off between successful fittings and quality Gauss2could be considered as the
best choice, although the presence of two terms implies the need of 6 coefficients. On
the other hand the use of only one of the coefficients of Gauss1proved to be a good
feature to classify subjects in the extreme categories of patients and healthy subjects,
and as a probable indicator of the condition of presymptomatics, however these results
must be considered preliminaries and further research is necessary to explain relation-
ships between the condition of the subjects and the coefficients derived from modelling.
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