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Abstract. An accepted model for the saccade signal of ocular motor neurons
comprises two components in the form of a pulse and a step. In this contribution,
an assessment of two fitting functions for the saccadic pulse component is made,
in order to obtain a reduced set of descriptors that could be used for the early
diagnosis of ataxia. Results show that both models have achieved to describe the
waveform of the saccadic pulse signal, revealing higher performance of Gauss
series over the gamma function.

1 Introduction

Ocular movements are affected by inherited spinocerebellar ataxias [3, 1, 2, 4], spe-
cially the behavior of saccadic system is modified, patients show increased latencies
to respond to visual stimulation with slower saccades among other impairments of this
system [5].

An accepted model for saccades generation involves two components, oculomotor
plant is driven by a pulse-step to produce a saccade [6]. Several works have been using
independent component analysis to isolates pulse and step components in saccadic and
vergence ocular movements [7, 9, 8]. Based in these results in a precedent work we
have applied independent component analysis to noisy electro-oculographic records of
patients, of ataxia SCA2, characterized by severely deformed saccades and the pulse
and step components were obtained [10]. In order to evaluate the pulse component
several of its parameters has been used, as duration, amplitude, the time to reach a
determined percent of the final value (not including the latent period) [12,9, 11] among
others. An important limitation common in the estimation of these variables is the need
to use thresholds to identify onset and offset of the pulse.

In the present work an evaluation of two fitting functions for the pulse componentis
made in order to obtain a reduced set of descriptors to be used for classification purposes
of ataxia patients and presymptomatics with respect to healthy subjects.
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2 Materials and Methods

All the experiments and material were handled by the mediedi of the Centre for the
Research and Rehabilitation of Hereditary Ataxias (CIRAH)olguin (Cuba). A two-
channel electronystagmograph (Otoscreen, Jaeger-Eittochberg, Germany) was
used to record saccadic ocular movements. Subjects wetesds@ma chair with special
fixation accessory to avoid head movements, and asked twfalldivergence stimuli
conformed by a white circular target in a blank screen. Thgetaappeared suddenly
at each side of the screen at random time slots between 1s sintthé distance from
subject to screen was adjusted to obtain an angular distdr3edegrees.

A group of 19 records of patients of ataxia was collected ded29 records of
presymptomatic individuals with genetic evidence of theedse but without detected
symptoms and a third group of 23 records of healthy subj8etscades were identified
using an automated algorithm based in a velocity threshioldalegrees per second,
after this step a manual process of visual inspection wasrnt@eéliminate saccades
considered anticipatory (latencies lower than 100 ms) ¢ aitifacts like blinkings,
excessive noise, muscle or extra ocular. movements in thse ¢ime before onset, or
in the next fixation. In the next step the mean of amplitudeation and latency were
calculated and saccades with deviations higher than 20% exaluded, in similar way
as itis described in [10].

2.1 Obtaining Pulse and Step Components

Independentcomponent analysis (ICA) is a well known methodstimation of under-
lying components in mixtures of non gaussian and statiticadependent variables.
The aim of ICA is to find the linear matrild” which mixes ther independent compo-
nents to produce a set gfobserved signals, as it is shown in the equation 1:

y=W x z. (1)

To apply ICA as observations are considered an ensemblecofidas after the
process of identification and exclusion of non valid saceadéere each row is a vector
containing a saccade:

S$11 S12 ... Sin
S=|: : (2)
Sml Sm2 -+ Smn

An Infomax ICA [13] algorithm implemented imatlab[14] was used accordingly
to the procedure described in [10]. Figure 1 shows the pulsestep obtained for a
patient of ataxia.

2.2 Pulse Component Fitting

The fitting of step component using a sigmoid function waated in a precedent work
[10], four coefficients were estimated and used in conjematiith the value and latency
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Fig. 1. Pulse and step components.

of the maximum of the pulse component for classification pags. The best results of
experimental tests with several functions to fit the pulsmponents were achieved
with the gamma function, previously used to model the vé&joeehavior of saccadic
movements [15], and gaussian series with diferent numbfdesms. The equation of
the gamma function is the following:

€T c—1 B
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Whereq, b, ¢ andd are the coeficients to be adjusted.

While the gaussian series is expressed by:
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Where the coefficients for each term areb;, c;

The function fitting procedure was made by means offittfeinction implemented
in matlah Prior to the fitting process the active pulse segment wastiftks, in order to
consider only this part of the signal. The onset and offsettpavere marked examining
the first derivative of the signal at left (onset point) arghti(offset point) sides of the
central maximum value, until a value of 0 was found. Figurb@ws a segmented pulse
fitted by gamma function (left) and using a two terms Gausgséright).

Fig. 2. Pulse component fitted using a gamma (left) and Gauss1 X figittion.
3 Results
The fitting was applied to all the records, using gamma famctind Gauss series from

one up to five terms. A visual inspection of the graphics fargwecord and fitting
function was done to rank the results, when no difference® ween among several
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Table 1. Ranking of fitting functions.

Fitting functions 1 2 3 4 5 6
Gamma 0.97% | 28.64%]| 49.51%)| 11.65%| 1.94%] 0.49%
Gaussl 3.88% | 38.83%] 32.04%| 19.9% |5.34%| 0%
Gauss2 62.14%]| 28.16%| 6.8% |2.43%| 0% | 0%
Gauss3 80.01%| 7.28% | 2.43% | 0% 0% | 0%
Gauss4 82.04%| 1.46% | 0% 0% 0% | 0%
Gaussb5 73.79%| 1.46% | 0.49% | 0% 0% | 0%

functions, same rank was assigned to them for this record.i¥summarized in Table
1.

Results from Table 1 reveal gamma function worse performavieen compared
with the Gauss series. Best results are achieved by Gaudsiginers. Table 2 shows an
analysis of the success in fitting of each function, gammatfan is below Gausss1 and
Gauss2, from Gauss3 this indicator deteriorates. An ovevaluation of both tables
points to Gauss2 as the best, with a very low percent of fdittdgs and ranked first
or second about 80% of the cases, while gamma is in generse seorst than Gauss
series.

Table 2. Failures of fitting functions.

Fitting functions | Number of failed fittings | Percent of failed fittings
Gamma 14 6.8%
Gaussl 0 0%
Gauss2 1 0.49%
Gauss3 21 10.19%
Gauss4 34 16.5%
Gauss5 50 24.27%

Gauss series of higher order has the inconvenience of thesised number of coef-
ficients (three per term), otherwise gamma and Gauss1 wiyhtloree coefficients. An
analysis of the correlation coefficient of Pearson (Figueft3 and root medium square
error (Figure 3 right) as metrics for the goodness of th fitbacts for gamma as the
worst function, while the Gauss series has sustained ingpnewts with the increment
in the number of terms.

Fig. 3. Pearson’s correlation coefficients (left) and RMSE (rigk8ults of fitting functions.

3.1 Analysis of Fitting Coefficients

The fitting procedure for gamma functions failed for 5 resonéi patients of ataxia (14
well fitted), six presymtomatics (23 well fitted) and 3 hegltlubjects (20 well fitted),
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Gaussl showed no failures and Gauss?2 failed for one patiehtdincident with those
ones failed by gamma). Given the limited quantity of avd@aiecords it was decided
to compare gamma and Gaussl1 fitting functions. A randomtsateof the resultant
records of presymtomatics and healthy subjects was madet&indourteen records
in each class of subjects for this preliminary analysis efriflationships among fitting
coefficients and classes of subjects.

Figure 4 represents the coefficients of gamma function eeltse category of the
subjects, it can be seen overlapping among categoriesddntee variables. Otherwise,
in Figure 5 is possible to observe better defined clustetsicategories of healthy sub-
jects and patients of ataxia for coefficieatandc, while presymptomatics are located
between these categories, probably depending on theirgssign in the disease. It
must be noticed the bigger separation between means ardrsitispersion observed

for coefficientd, this is confirmed by the values of the mean-and standard titaviaf

each coefficient (Table 3).
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Fig. 5. Coefficientsa (left), b (center) ana: (right) of Gauss1 fitting functioms category.

Table 3. Means and standard deviations of coefficients of Gaussddfiftinction.

Category Coefficients
a b c
mean|std|mean(std |mean|std
Healthy 14,113,1] 22,8 6,0 11,84,2
Presimptomatigs 14,22,5 30,6 8,3| 18,36,3
Patient 15,82,4 57,910,2 36,49,1

4 Discussion

Simple visual inspection reveals higher performance ofSSaearies over gamma func-
tion. Regardless of the number of terms, Gauss series ager katued in terms of the
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fitting performance. Additionally Gaussl and Gauss2 haveg l@v failing rates, as
compared to gamma function or Gauss series of higher oraleieppropriate selection
of initial is very difficult when the number of coefficientsireases.

This superiority is consistent with the numerical resulkdveo of the most used
parameters to assess the goodness of fit: the Pearson’atorreoefficient and the
RMSE value. For both parameters gamma function has a poerésrmance with
respect to Gauss series. Although the Pearson’s cornelegiefficient is above 0.95,
which can be considered an expression of a good fitness finedilinctions, there exist
an considerable difference of gamma and one term Gauss sétierespect to Gauss
of 2 terms or higher. The lack of an enough number of recotibits to do a consistent
analysis of the behaviour of the fitting coefficients for thedsed functions, this is more
evident for Gauss series with a higher number of terms. Hewaxcomparison with a
limited set of register for Gaussl and gamma could be mad&dier to evaluate the
clustering ability of the coefficients taken separately. d@mma function only seems
to be able to identify between healthy subjects and patifrataxia, presymptomatics
are located in a middle overlap zone with respect to the tvieme groups.

Similar results were found for coefficientsand ¢ of the Gaussl series. The vi-
sual inspection and the analysis of mean and standard aewiatre in coincidence to
identify coefficientb of Gaussl as the best to classify subjects. No data was laleaila
concerning other significant medical variables to coresdhe condition of presymp-
tomatics with the value dof, but it is reasonably to believe thiatould be a significant
marker of the progression of the disease, even before ofhgtems are to be present.
These results were not improved when more than one coeffisizh used for cluster-
ing, in fact visual inspection revealed the presence oflireorrelation betweeh and
c for Gaussl.

5 Conclusions

In this contribution two fitting function has been evaluatedmodelling of saccadic
pulse component obtained by the application of ICA to eteoitulographic records,
gamma function and Gauss series. Both models have achiewestribe the wave-
form of the signal in its active area, confirmed by the anehftiesults. Accordingly to
the trade off between successful fittings and quality Gaaes®l be considered as the
best choice, although the presence of two terms implieseld nf 6 coefficients. On
the other hand the use of only one of the coefficients of Gapesded to be a good
feature to classify subjects in the extreme categories émia and healthy subjects,
and as a probable indicator of the condition of presymptasaiowever these results
must be considered preliminaries and further researchcisssary to explain relation-
ships between the condition of the subjects and the coeffgderived from modelling.
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