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Abstract: Analysis of behaviour of large neuronal ensembles using mean-field equations and similar approaches was 
an important instrument in theory of spiking neural networks during almost all its history. However, it often 
implies dealing with complex systems of integro-differential equations which are very hard not only for 
obtaining explicit analytical solution but also for simpler tasks like stability analysis. Building empirical 
models on the basis of experimental data gathered in process of simulation of small size networks is 
considered in the paper as a practical alternative to these traditional methods. A methodology for creation 
and verification of such models using decision trees, multiple adaptive regression splines and other data 
mining algorithms is discussed. This idea is illustrated by the two examples – prediction of probability of 
avalanche-like excitation growth in the network and analysis of conditions necessary for development of 
strong firing frequency oscillations. 

1 INTRODUCTION 

At present, large spiking neural networks (SNN) 
(Gerstner and Kistler, 2002) are considered not only 
as plausible models of neuronal ensembles in 
various sections of mammalian brain but also as a 
technological basis for creation of intelligent robots, 
learnable automated control systems, biometric and 
multimedia processing devices as well as for many 
other breakthrough technologies of near future. 
Probably, even in this decade it will be possible to 
build computational systems capable of real time 
simulating populations of 107 – 108 (or even 109) 
neurons that is close to size of human brain. At least, 
the ambitious all-European Human Brain Project 
declares it as one of its main targets. Impressive 
advances of neuromorphic hardware (Monroe, 2014) 
(see, for example, the SpiNNaker project 
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/) 
also make believe that it is quite realistic. However, 
availability of these powerful computers with 
massive parallelism is only necessary but not 
sufficient condition. It would be unreasonable to 
expect that building huge neural network with 
certain (even biologically realistic) parameters and 
pressing the button “Start” we will observe some 

desired or interesting (or even simply non-trivial) 
network behaviour. Therefore, the second crucial 
and still unsolved problem is synthesis of network 
with required characteristics for realization on these 
future super-parallel computers. Since these 
networks are very big, the exact specification of 
their detailed structure is absolutely impossible. 
Instead, only general statistics determining 
distribution of synaptic weights, delays, interneuron 
connection probabilities and other structural 
properties of network as a whole will be specified, 
while exact detailed network configuration will be 
generated randomly accordingly to these distribution 
laws. Therefore, the discussed problem can be 
formulated as follows. How, knowing parameters of 
the neuron model used, the distribution laws of 
network structural characteristics and the general 
properties of input signal, could we predict 
properties of the whole network in terms of neuron 
firing frequency, firing correlations, reaction to input 
signal variation and other values determining target 
behaviour of the network? This problem is very 
difficult even for simplest neuron models and 
completely homogenous networks. 

The most popular approach to its solution is 
based on mean-field equations (Baladron et al., 
2012). Undoubtedly, the mean-field approach has 
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proven to be a valuable tool for theoretical analysis 
of correlated and chaotic network activity, stability 
and other large-scale network properties. However, 
in my opinion, its application to the above 
mentioned problem will be very limited for the 
following reasons: 

 

 Even for relatively simple neuron models the 
mean-field equations may take form of system 
of complex integro-differential equations, which 
cannot be solved analytically (for example, 
when synaptic delays are non-zero and vary 
from synapse to synapse). Although their 
general solution is not required for some 
purposes (e. g. for stability analysis) in most 
cases it has to be obtained by numeric methods. 

 The mean-field approach is based on the 
assumptions which are often unrealistic. It is 
assumed that number of neurons is infinite. But 
consequences of network size finiteness, so 
called finite size effects, may be very significant 
even for large networks making estimations 
obtained by classic mean-field equations 
imprecise (Touboul & Ermentrout, 2011). There 
are other situations violating basic conditions 
for application of this method – for example, 
presence of numerous small populations of 
neurons with highly correlated activity like in 
Izhikevich’s models of neural information 
processing and memory based on 
polychronization effect (Izhikevich, 2006). 

 As a rule, creation and analysis of mean-field 
equations require substantial research efforts. In 
fact, it is a small (or even large) research project 
in every case. A minor complication of explored 
problem – say, addition of some correlations in 
originally Poisson external signal may lead to 
dramatic complication of the equations 
analyzed. If demand for this kind of study will 
be great then much simpler alternative methods 
will be required. 

 
The main idea of this paper is that the basic 

instrument for creation of networks with specified 
required parameters should be empirical models – 
formulae expressing dependences of the parameters 
describing network activity (the output parameters) 
on the variables controlled by network designers – 
such as number of excitatory and inhibitory neurons 
and synapses, constants in distribution laws for 
synaptic weights and delays, individual neuron 
parameters etc. (the input parameters). These models 
are obtained as a result of automated analysis of 
experimental data by data mining algorithms. It is 
assumed that the routine semi-automated procedure 

for finding these empirical dependences should 
include the following steps: 

1. Determination of input and output parameters 
which could enter the sought models. For the input 
parameters it is also necessary to set their possible 
variation ranges. The input parameters should not 
include extensive variables directly depending on 
network size. For example, percent of inhibitory 
neurons should be used instead of absolute number 
of inhibitory neurons. It is necessary in order to 
make the built models scalable. 

2. Performing experiments with moderate size 
networks and various combinations of the input 
parameter values. Number of these experiments 
should be sufficient to cover all interesting regions 
of the input parameter space and to avoid possible 
model overfitting. The good starting point for this 
choice is the rule that number of experiments should 
be at least 2 orders of magnitude greater than 
number of model degrees of freedom. The very 
important factor is size of networks used in these 
experiments. Since many interesting processes in 
SNNs are statistical by their nature it is senseless to 
experiment with small networks and expect that the 
obtained results will be valid for large SNNs as well. 
On the other side, the network should be much 
smaller than the target simulated network – 
otherwise the whole process would not make sense. 
Probably, networks consisting of thousands neurons 
would be a good trade-off in many cases. Input 
parameter values in these experiments can be set in 
accordance with various strategies – random setting, 
placement on a grid and so on. 

3. Analysis of the tables consisting of input 
parameter values and corresponding output 
parameter magnitudes measured in the experiments. 
It can be done using various data mining algorithms 
– this step is considered in next sections. 

4. Model scalability verification. Even in case 
when the models do not include variables directly 
depending on network size, it may be that size of 
networks used in these experiments series is 
insufficient to reveal important statistical effects or 
causes too strong fluctuations distorting the 
dependencies sought. In order to test model 
scalability a limited number of experiments with 
larger networks should be carried out.  

This scheme has a number of obvious 
advantages. It is semi-automatic and can be 
routinely used for a great variety of network 
architectures, input signals etc., it produces the 
results in the explicit analytical form which can be 
used for further analysis (possible by means of 
symbolic math software because the found empirical 
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formulae may be huge). Besides, in many cases the 
found dependencies can be interpreted by a 
researcher and can improve her or his intuitive 
understanding of the processes in SNNs. 

In the rest of the paper I present an example of 
application of this methodology for solution of the 
following quite general problem. It is natural that 
SNNs performing different functions should behave 
differently. However there are at least 3 network 
behavior patterns which are useless in any situation: 
complete silence – when neurons do not fire at all; 
spike avalanche – when firing frequency 
demonstrates explosive growth to its maximum 
possible level; and strong global oscillations – when 
(almost) all neurons fire inside short time intervals 
separated by periods of (almost) complete silence. 
Our task is to find conditions under which network 
has good chances to avoid these negative scenarios 
and, therefore, has a chance to demonstrate some 
non-trivial reaction to external signal. 

2 LIF NEURON WITH DYNAMIC 
THRESHOLD AND  
SHORT-TERM SYNAPTIC 
DEPRESSION 

At first, let us consider the neuron model used in this 
study. It is a simple generalization of the commonly 
used leaky integrate-and-fire (LIF) neuron model. It 
has two additional features, whose purpose is to help 
keeping firing frequency in necessary limits. These 
are dynamic threshold (Benda et al, 2010) and short-
term synaptic depression (Rosenbaum et al., 2012) 
(although, I utilize a simpler realization of this 
mechanism than models considered there and in 
many other works). This model has efficient 
computational realization due to its simplicity but 
can reproduce many interesting non-linear effects. I 
have been used the similar neuron models in several 
simulation experiments (Kiselev, 2009, 2011) 
however include here only its short formal 
description because it is used only for illustration of 
the proposed idea. 

Neuron state includes two components: dynamic 
part of threshold )0( hh  and contributions of 

individual synapses to current membrane potential 
value iv  ( nivi  1,10 , where n is the total 

number of synapses). If we denote weight of ith 
synapse as wi then the actual value of membrane 

potential can be written as  iivwu . Membrane 

potential is rescaled so that its rest value equals to 0 

while the firing threshold value after long period of 
inactivity is taken equal to 1. Beside wi, neuron 
properties are described by the two time constants: 

h  and v  - the time constants of exponential decay 

of h and iv , respectively. 

Thus, neuron dynamics obeys the rules: 
 

v

ii

h

v
dt
dvh

dt
dh

  , ; 

1iv  when the ith synapse receives spike;

if hvw ii  1  the neuron fires and 

0,1  ivhh . 

(1) 

We see that effect of a presynaptic spike received 
by the synapse on membrane potential is less than wi 
if the same synapse received a presynaptic spike 
recently. All synapses are non-plastic. 

3 NETWORK 

We study completely homogenous and chaotic 
network consisting of excitatory and inhibitory 
neurons. Their amounts always correspond to the 
ratio 10:3 – relative strength of excitation and 
inhibition in the network is controlled by 
modification of numbers of excitatory and inhibitory 
synapses and their weights. All excitatory (E) and 
inhibitory (I) neurons have the same parameters. 
Thus, there are 4 kinds of synapses: 

IIEIIEEE  ,,, . Every excitatory 

neuron has the same number of EE and IE synapses. 
The similar rule is valid for inhibitory neurons. All 
synapses of the same type have the same weight. 
Synaptic delays are distributed randomly using 
lognormal distribution with standard deviation of 
logarithm of delay equal to 1. Excitatory 
connections are slow (mean delay = 5 msec) while 
inhibitory connections are much faster (mean delay 
= 1.5 msec) – it is known that inhibitory connections 
are really faster in the brain. Set of presynaptic 
neurons is absolutely random for every neuron in the 
network. 

Thus, the network is characterized by the twelve 
parameters: the time constants vIvEhIhE  ,,, , the 

numbers of synapses nEE, nEI, nIE, nII, and the 
synaptic weights wEE, wEI, wIE, wII. 

4 EXTERNAL SIGNAL 

We explore the situation when network receives 
pure Poisson external signal. Its source is a set of 
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network input nodes emitting spikes with certain 
constant mean frequency uniform for all input 
nodes. All excitatory neurons are connected to 
randomly selected subsets of input nodes via 
excitatory synapses (we will call them afferent 
synapses). We set number of the afferent synapses 
equal to 30 in all experiments – we vary the total 
external stimulation strength using the mean external 
signal frequency. 

5 GOAL: AVOIDING NEGATIVE 
SCENARIOS 

The preliminary experiments show that if all the 
parameters are set randomly then with great 
probability one of the three things happens: network 
does not react on stimulation at all; neurons begin 
firing with maximum possible frequency; “zebra-
like” activity when network switches between short 
periods of collective hyperactivity and periods of 
almost complete silence. The network cannot 
perform any useful task in any of these states so that 
our aim is to find the conditions when they are 
impossible or at least unlikely. 

Avoiding the first situation is easy – it is only a 
question of sufficient stimulation strength so that let 
us consider the 2nd one. We will study satisfaction of 
the stronger condition, namely, it is required that 
network reaction to any stimulation would either 
fade away completely after stimulation end or return 
to certain not very high baseline firing frequency 
level – let it be 30Hz. To test it the experiments are 
designed in the following way. The network 
received the constant stimulation during some time 
interval which was significantly longer than any of 

vEhIhE  ,,  or vI . After that the external signal is 

switched off and network activity is monitored 
during next long interval. If the mean firing 
frequency in this period does not exceed 30 Hz (for 
any value of stimulation strength) then the network 
is declared as “good” or belonging to the class S+. 
Otherwise, it belongs to the class S-. 

Situation with super-strong oscillations is not so 
evident because firing frequency oscillation strength 
can be evaluated in many different ways. I chose the 
following measure (which will be referred to as 
Relative Oscillation Strength – ROS).  

 

1. For every discrete time step t the number of 
emitted spikes F(t) is fixed. 
 

2. The autocorrelation function A(t) is calculated 
for F(t). 

3. Let T be the least value of t for which A(t) 
becomes negative. Then the dominating oscillation 
period TOSC corresponds to maximum of A(t) on 

),( T . 
 

4. Assume that the total experiment time equals 
to nTOSC, where n is integer. Then, the function  
 





n

i
OSCiTtFtC

1

)()(  is calculated for 0 < t < 

TOSC. 
 

5. The interval (0, TOSC) is broken to 10 equal 
parts; the mean values of C(t) are calculated in each 
of these 10 parts. If the minimum of these 10 values 
is cmin, and the maximum is cmax, then ROS = (cmax - 
cmin) / cmax. 

 

Thus, we have the two problems to solve: 
 

 to classify a network to S+/S- or, better, to 
evaluate conditional probability P(A| S-) that 
for the given vector of input parameters A the 
network belongs to S-; 

 to predict its ROS value. 

6 MAIN SERIES OF 
EXPERIMENTS 

I performed main series of experiments with 
networks consisting of 1000 excitatory neurons and 
300 inhibitory neurons. The input parameters were 
varied in the following ranges: 3 – 100 msec – for all 
time constants, 10 – 300 – for number of excitatory 
synapses, 3 – 100 - for number of inhibitory 
synapses, 0.03 – 0.3 – for weights of excitatory 
synapses, 0.1 – 10 - for weights of inhibitory 
synapses. Values of stimulation intensity and 
afferent synapse weights were selected to satisfy the 
requirement that mean firing frequency of isolated 
neuron should lay in the range 2 – 300 Hz.  

The stimulation duration was 3 sec that is at least 
30 times greater than any neuron time constant. 
Network activity was also monitored during next 3 
sec after stimulation end – in order to place the 
network in class S+ or S-. Also, ROS value was 
calculated in every experiment. 

The whole series contained 202332 experiments 
– it took about 1 day of computation on a powerful 
multi-core PC. 27572 different combinations of 
network parameters were tested for different 
stimulation intensity values. 
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7 CREATION OF EMPIRICAL 
MODELS 

7.1 S+/S- Classification 

Thus, we have 27572 training cases, 9255 of them 
belong to S-. Since the result should obviously 
depend on total strength of excitation and inhibition 
in the network, the following useful derivative 
parameters ABABAB wns   are produced, where A 

and B belong to {E, I}. 
Having experimented with different 

classification methods I discovered that the best 
results are obtained by one of the most popular data 
mining algorithms, decision tree. I tested only those 
methods which are able to represent their results in 
an explicit analytical form – for this reason, such 
methods as support vector machines or neural 
networks were not considered. The resulting tree-
like classification model has 105 non-terminal nodes 
and gives 7.21% classification error. It is important 
that decision tree can also estimate P(A| S-). 
Examples of its dependence on the strength of 
positive feedback in the network for 3 different 
combinations of other parameters are depicted on 
Figure 1. The good model quality is illustrated by 
the sharp transition of this probability from 0 to 1.  

 

 

Figure 1: Examples of dependence of P(A| S-) on strength 
of positive feedback in the network for 3 different 
combinations of its other parameters. 

sEE hE sEI sIE vE sII nII nIE

Figure 2: Relative importance of network parameters for 
its classification into S+ or S-. 

The model can be represented in symbolic form or 
as C code (they can be obtained from me by 
request). Moreover, the used implementation of 
decision tree algorithm is able to evaluate the 
relative influence of different network parameters on 
classification result. It is presented in form of 
histogram on Figure 2. 

7.2 ROS Value Prediction 

This time we had to use data mining algorithms 
finding numeric interdependencies. In this case the 
multiple adaptive regression splines algorithm 
(Friedman, 1991) was found to be a champion 
among all methods which express obtained model in 
a symbolic form. This algorithm represents found 
dependence in form of piecewise continuous 
polynomials. In our case the built model includes 59 
degrees of freedom. Its accuracy estimation 
(standard deviation = 0.28, R2 = 0.45) is not very 
impressive. Nevertheless, it happened to be quite 
useful. For example, the condition ROS < 0.1 
guarantees with high probability that time course of 
firing intensity in the network will not take form of 
strong oscillations. Similar to decision tree, the 
considered algorithm evaluates relative contributions 
of independent variables. They are shown on Figure 
3. Examples of dependence of ROS on the main 
factor, hE , for various combinations of other 

factors are displayed on Figure 4. 

hE wIE nIE vE nEE nII wII nEI wEE wEI

Figure 3: Relative contribution of network parameters in 
ROS value prediction model variability. 

  

Figure 4: Examples of dependency of ROS value on hE  

for various combinations of other network parameters. 

NCTA�2014�-�International�Conference�on�Neural�Computation�Theory�and�Applications

268



 

8 SCALABILITY TEST 

Since the created models do not contain explicitly 
absolute amounts of excitatory and inhibitory 
neurons, it is reasonable to hope that their results 
may be valid for much larger networks. 

As a practical criterion to classify a network to 
S+ I use the rule that decision tree estimation of P(A| 
S-) should not exceed 0.3. For small networks (1300 
neurons) it gives about 3% of errors. This rule was 
tested on 114 10 times greater networks with 
combinations of parameters randomly selected in 
accordance with the same distribution laws but 
retaining only the networks satisfying this criterion. 
Surprisingly, none of these networks belonged to S-. 
Probably, the greater accuracy of this classification 
rule for larger networks can be explained by lower 
relative magnitude of statistical fluctuations. 

The situation with ROS value prediction is 
similar. From my experience I selected critical value 
of ROS equal to 0.3. For small networks 15% of 
parameter combinations with predicted ROS less 
than 0.3 show real value of ROS greater than 0.3. 
This error for the greater networks drops to 10.5%. 

Although the performed tests may be 
insufficient, they can be considered as evidence that 
empirical models obtained for smaller size networks 
may be at least equally accurate for larger ones and 
possibly even more accurate due to weaker impact 
of statistical fluctuations. 

9 CONCLUSIONS 

By the present paper I would like to remind 
researchers working in the field of SNN simulation 
that empirical models obtained from experiments 
with small size networks can be a valuable tool for 
design, analysis and monitoring of large (and even 
huge) SNNs realized on massively parallel 
supercomputers. The term “monitoring” is used here 
in relation to the stability problems typical for many 
synaptic plasticity models. For example, it is known 
that STDP mechanism can easily lead network to an 
uncontrolled hyperactivity state because of its 
inherent positive feedback. In this case, the 
parameters calculated on the basis of empirical 
models could signal that network is approaching the 
dangerous regions. 

This approach is a practical alternative to 
complicated theoretical analysis based on mean-field 
equations because these equations (also being only 
more or less realistic approximation) often take form 

of complex integro-differential equations excluding 
possibility of their analytical solution. Attractiveness 
of the proposed methodology is especially evident in 
circumstances when great number of various 
network models in combination with changing 
external signal properties should be analysed in a 
limited time. 

The typical strategy of creation of such models is 
considered in the paper and illustrated by simple but 
practically applicable examples. The reported 
empirical dependences were found using 
PolyAnalyst™ data mining system developed by 
Megaputer Intelligence Ltd. 
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