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Abstract: This investigation focuses on design-under-uncertainty problems that employ a probabilistic performance as 
objective function and consider its estimation through stochastic simulation. This approach puts no 
constraints on the computational and probability models adopted, but involves a high computational cost 
especially for design problems involving complex, high-fidelity numerical models. A framework relying on 
kriging metamodeling to approximate the system performance in an augmented input space is considered 
here to alleviate this cost. A sub region of the design space is defined and a kriging metamodel is built to 
approximate the system response (output) with respect to both the design variables and the uncertain model 
parameters (random variables). This metamodel is then used within a stochastic simulation setting 
(addressing uncertainties in the model parameters) to approximate the system performance when estimating 
the objective function for specific values of the design variables. This information is then used to search for 
a local optimum within the previously established design sub domain. Only when the optimization 
algorithm drives the search outside this domain, a new metamodel is generated.  The process is iterated until 
convergence is established and an efficient sharing of information across these iterations is established to 
adaptively tune characteristics of the kriging metamodel.   

1 INTRODUCTION 

In any engineering design application, the 
performance predictions for the system under 
consideration involve some level of uncertainty, 
stemming from the incomplete knowledge about the 
system itself and its environment (Schuëller and 
Jensen, 2008). Explicitly accounting for these 
uncertainties is exceptionally important for 
providing optimal configurations that exhibit robust 
performance and a probability logic approach 
provides a rational and consistent framework for this 
task (Jaynes, 2003). In this setting, the objective 
function corresponds to the expected value 
(probabilistic integral) of some chosen performance 
measure over the adopted probability distributions.  

For complex systems, this probabilistic integral 
can rarely be calculated or accurately approximated 
analytically, and stochastic simulation (i.e. Monte 
Carlo) based techniques are emerging as a popular 
approach  due to their general applicability as well 
as the possibility of exploiting advances in 

parallel/distributed computing (Royset and Polak, 
2004, Taflanidis and Beck, 2008). A challenge 
related to this approach is, though, the significant 
computational cost involved to estimate the 
objective function (Spall, 2003).  

An alternative framework, relying on surrogate 
modeling to approximate the system performance, is 
developed here to alleviate this burden. Kriging 
(Sacks, 1989, Lophaven, 2002) is utilized as 
surrogate model since it has been proven highly 
efficient for approximating complex response 
functions while simultaneously providing gradient 
information. Though, metamodeling approaches for 
design optimization under uncertainty are typically 
implemented for (i) approximating the objective 
function in the design space (Gasser and Schueller, 
1997)  (metamodel is used to guide optimization) or 
for (ii) approximating the system performance for 
specific design configurations (Gavin and Yau, 
2007) (metamodel is used to calculate the objective 
function for these design configurations), a different 
approach is investigated here by considering an 
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augmented input space. The approach is similar to 
the ideas in (Dubourg et al., 2011), a study that was 
constrained, though, to reliability based design 
optimization problems and investigated 
implementation within the entire design domain 
(gradually converging to smaller subsets). Here, a 
sub region of the design space is defined and a 
kriging metamodel is built to approximate the 
system response with respect to both the design 
variables and the uncertain model parameters. High-
fidelity model evaluations are obtained at properly 
selected support points, and the kriging model is 
then developed employing this information. This 
metamodel is then used within a stochastic 
simulation setting to approximate the system 
performance when estimating the objective function 
and its gradient for specific values of the design 
variables, where the stochastic simulation is 
ultimately established with respect to the random 
model parameters. This information (i.e. estimate of 
objective function and gradient) is then used to 
search for a local optimum within the previously 
established design sub domain. Only when the 
optimization algorithm drives the search outside this 
sub domain, a new metamodel is generated, and the 
process is iterated until convergence is obtained. 
This framework provides great computational 
savings, since the high-fidelity model is only utilized 
for calculating the response for the chosen support 
points (as long as the design choices remain within 
the initial sub domain).  

Additionally, an adaptive tuning of some 
characteristics of the kriging metamodel is 
established by sharing information across the 
iterations of the numerical optimization. For 
selecting the basis functions of the metamodel, a 
recently developed probabilistic global sensitivity 
analysis (Jia and Taflanidis, 2011) is seamlessly 
integrated, quantifying the importance of each model 
parameter and design variables towards the overall 
probabilistic performance. Higher order basis 
functions are assigned to the more important 
variables, contributing to increased approximation 
accuracy. Furthermore, an hybrid, adaptive sampling 
approach is developed for selecting the support 
points (design of experiments, DoE), populating 
more densely those regions in the random variable 
space that have higher contribution to the integrand 
quantifying the probabilistic performance. This DoE 
leads to a kriging model with enhanced accuracy in 
those regions, something that ultimately improves 
the accuracy of the objective function estimates. The 
overall framework is demonstrated with an example 
considering the optimization of semi-active dampers 

for a half-car model. Within this example the 
influence of explicitly including the kriging 
prediction error in the evaluation of the performance 
function is investigated.  

2 PROBLEM FORMULATION 

Consider a system with design vector x=[x1 x2 … xnx] 
xnX   , where X is the admissible design space, 

and uncertain model parameters (random variables) 

θ=[θ1 θ2 … θnθ] 
nΘ    , where Θ denotes the set 

of their possible values. Α Probability Density 
Function (PDF) p(θ), which incorporates our 
available knowledge about the system is assigned to 

these parameters. Let ( , ) znz x θ  be the response 

vector of the system model dependent upon both x 

as well as θ, and let ( , ) : xn nh  x θ     be the 

performance function characterizing the favorability 
of that response. The probabilistic performance is 
then given by the expected value under p(θ) 

 

                 ( ) ( , ) ( )
Θ

H h p d x x θ θ θ                  (1) 

 
and corresponds to the objective function for a 
robust to uncertainties design. Assuming that lower 
values for h(x,θ) correspond to more favorable 
performance (i.e. h(x,θ)  represents a cost function) 
the robust to uncertainties design problem is  

 
                       *x arg min ( )X H x x   (2)

             
 

 
where any deterministic constraints have been 
incorporated in the definition of the admissible 
design space X.  

Utilizing stochastic simulation and sample set 

{ : 1,..., }j j Nθ  from a proposal density q(θ) the 

objective function in Eq. (1) is estimated as 
 

                 
1

1 ( )ˆ ( ) ( , )
( )

jN j
jj

p
H h

N q
  θ

x x θ
θ

      (3) 

 
where the proposal density is chosen to improve the 
accuracy of the approximation by concentrating the 
computational effort in regions of the model 
parameter space that have higher contribution to the 
integrand defining the probabilistic performance, an 
idea corresponding to the concept of importance 
sampling (IS) (Robert and Casella, 2004). The 
optimal design in Eq. (2) is then solved by 
substituting the approximation of Eq. (3) as the 
objective function. This leads to a challenging 
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simulation-based optimization problem because of 
the existence of an unavoidable estimation error, the 
high computational cost associated with each 
objective function evaluation (requiring N 
evaluations of the system model response) and the 
inability to obtain gradient information for problem 
with complex, black-box models (Taflanidis and 
Beck, 2008). This paper considers an approach, 
utilizing kriging metamodeling for approximating 
the model response, that addresses these problems.           

3 DESIGN OPTIMIZATION 
THROUGH KRIGING IN 
AUGMENTED SPACE 

The augmented input space for development of the 
kriging metamodel is defined as a tensor product 
between the design and uncertain spaces  X Θ , 
whereas to improve accuracy of the metamodel a 
smaller set of the design domain is considered 
instead of the entire domain, establishing the 
iterative approach 

 
                     1 ( | { } )j

k krig k kG x x θ      (4) 
 
where the function Gkrig represents the kriging-based 
optimization recursive relations and the notation 

{ }j
kθ  is used to denote the sample set (in the 

stochastic simulation) used within the kth  iteration. 
Note that this sample set will ultimately change from 
iteration to iteration so that there is no dependence 
of the solution on the sample set used, an approach 
corresponding to the concept of exterior sampling 

(Spall, 2003). The design sub-domain in the thk  
iteration, also known as trust region, of the 
optimization algorithm will be denoted Xk herein.  

Thus, the input vector y  for the kriging 

metamodel is composed of the design and uncertain 
model parameter vectors y=[x θ] whereas the output 
vector corresponds to the system response vector 

( , )z x θ . Note that the computational complexity of 

the performance evaluation model for estimating 
( , )h x θ  based on ( , )z x θ  is typically small for most 

practical engineering applications. Establishing an 
approximation for ( , )z x θ , and then using the actual 

performance evaluation model to estimate ( , )h x θ  

circumvents one level of approximations and can 
ultimately offer significant improvements in 
accuracy (Jin et al., 2001). This approach further 
allows, as will be demonstrated in the illustrative 

example, the explicit consideration of the local 
kriging prediction error within the definition of the 
performance function.  

The kriging model ultimately will provide an 
approximation for the response vector 

( ) ( , )z y z x θ , and through this, an approximation 

to the performance function is established, denoted 

by ( ) ( , )h hy x θ . Simultaneously, gradient 

information can be also obtained for both of these 
quantities as will be demonstrated in the next 
section. Using this information the numerical 
optimization scheme Gkrig can be formulated. In this 
step, the objective function and its gradient are 
approximated as 

 

                 ( ) ( , ) ( )krig
Θ

H h p d x x θ θ θ       (5) 

 
 

( ) ( , ) ( )

   ( , ) ( ) ( ) ( , )

krig
Θ

Θ Θ

H h p d

h p d p h d

  

   


 

x x θ θ θ

x θ θ θ θ x θ θ
  (6) 

 
where for obtaining the second equation we assume 

that the functions ( , ) ( )h px θ θ  and 

( ( , ) / ) ( )ih x p x θ θ  are continuous in the domain 

X    and bounded, thus the differentiation and the 
expectation operators can commute (Spall, 2003). 
These probabilistic integrals can be then evaluated 
through stochastic simulation, leading to 

 

           
1

1 ( )ˆˆ ( ) ( , )
( )

jN j
krig jj

k

p
H h

N q
  θ

x x θ
θ

      (7) 

          

          
1

1 ( )ˆˆ ( ) ( , )
( )

jN j
krig jj

k

p
H h

N q
   θ

x x θ
θ

      (8) 

 
where the notation qk(θ) is used herein to represent 
the ability to choose the proposal density different at 
each iteration of the numerical optimization (more 
details on this later). Due to the computational 
efficiency of the kriging metamodel a large number 
of samples can be utilized within this setting to yield 
high accuracy for the stochastic simulation 
estimates.   

Utilizing this information, especially the gradient 
approximation in Eq. (6), an appropriate gradient-
based algorithm is adopted to establish a local search 
within Xk. Two possible outcomes can occur for this 
optimization: (i) converge to a local optimum within 

kX  or (ii) reach the boundary of the search domain, 

which means that the local search should stop to 
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avoid extrapolations. The latter prompts the 
optimization algorithm to advance to the next 
iteration xk+1, and generate a new kriging model if 
the overall optimization has not converged. Note 
that the local search optimization identifying the 
optimal solution within Xk has evidently its own 
inner iterations, but we are interested here in the 
iterations of the exterior optimization algorithm 
characterized by Eq. (4).  

4 ADAPTIVE KRIGING  

4.1 Review of Kriging Metamodeling 

For forming the kriging metamodel a database with 
n observations is utilized that provides information 
for the y-z pair. For this purpose n samples for {yl 
l=1,…,n}, also known as support points, are created 
and the model response z(yl) is evaluated for each of 
them. Using this dataset the kriging model is then 
obtained, providing ultimately approximation for 
each response quantity 

 

( ) ( ) ( )i i iz z  y y y  (9) 
 

where iz   stands for the mean prediction whereas i  

is a Gaussian variable with zero mean and standard 
deviation σi(y) (Lophaven, 2002). The fundamental 
building blocks of kriging are the np dimensional 
basis vector, f(y), and the correlation function 
R(yj,yk). Selection of the former will be discussed 
later whereas for the latter the popular generalized 
exponential correlation is used  
 

1

1

1 1

( , ) exp[ | | ]

                        [   ]

y ny

y

n sj k j k
i i ii

n

R s

s s







  


y y y y

s 
     (10) 

 
Then for the set of n observations with input 

matrix Y=[y1 … yn]T and corresponding output 
matrix Z=[z1 … zn]T, we define the basis matrix 
F=[f(y1) … f(yn)]T and the correlation matrix R  
with the jk-element defined as R(yj,yk), j,k=1, …, n. 
Also for every new input y, we define the correlation 
vector r(y)=[R(y,y1) … R(y,yn)]T between the input 
and each of the elements of Y. The kriging mean 
prediction for vector z is given by (Lophaven, 2002) 

* *

* 1 1 1 * 1 *

                   ( ) ( ) ( )

( ) ;  ( )

T T T

T T   

 

  

z y f y α r y β

α F R F F R Z β R Z Fα
 (11) 

 
Through the proper tuning of the parameters s of 

the correlation function, kriging can efficiently 

approximate very complex functions. The optimal 
selection of s is based on the Maximum Likelihood 
Estimation (MLE) principle, where the likelihood is 
defined as the probability of the n observations, and 
maximizing this likelihood with respect to s 
ultimately corresponds to the optimization problem  

 

         
1 2

1
arg min n

n

ii



    

s
s R       (12) 

 
where |.| stands for determinant of a matrix and 2

i , 

i = 1,.., nz correspond to the diagonal elements of 
matrix  (Z-Fα*)ΤR-1(Z-Fα*). Beyond the mean 
kriging predictions the error can be also explicitly 
considered in the optimization as will be illustrated 
in the example considered later. This requires 

estimation of the prediction error variance 2 ( )i y for 

zi and input y which is given by 
 

2 2 1 1 1

1

( ) [1 ( ) ( ) ( )]

( ) ( )

T T T
i i

T

    



  

 

y u F R F u r y R r y

u F R r y f y

  (13)

 
Gradient information can be also easily derived 

by differentiating directly Eqs. (11) and (13) and 
noting that vectors α* and β* are independent of y . 

For example, for the mean kriging predictions, and 
denoting Jf and Jr are the Jacobian matrices with 
respect to y of f and r, respectively, this leads to  

 
              * *( ) ( )T T

r
T

f  y α yJ J βz   (14) 

4.2 Adaptive Formulation 

In the proposed framework, a kriging approximation 
is developed in the augmented input space by 
sharing information across the iterations of the 
optimization algorithm described through Eq. (4). 
Within such a setting, the focus is on the adaptive 
Design of Experiments (DoE) to select the support 
points as well as the adaptive selection of the 
polynomial order of basis functions. 

To formalize these concepts, let xk denote the 
design variable vector that has been identified at the 
end of the kth iteration of the numerical optimization 
of Eq. (4). Evaluation of the approximation to the 
system performance will be also available for xk, 

{ ( , ); 1,..., }j
kh j Nx θ  for the sample set {θj}k used 

to estimate the objective function through Eq. (7).  A 
localized box-bounded design sub-domain (trust 
region) is then defined  Xk; this domain is centered 
on xk and has an appropriate length  for each design 
variable  (defining the length vector Lk) that 
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ultimately prescribes the upper and lower bounds for 

the design vector l
kx  and u

kx , respectively. Any 

appropriate technique may be adopted for selecting 
the length vector Lk (Rodrı́guez et al., 2000). A 
relevant recommendation for this is that the length is 
gradually reduced as iterations progress to regions 
closer to a minimum, where one needs higher 
accuracy approximations. A kriging metamodel is 
then established within sub-domain Xk for the 
augmented input vector y  and then used within the 

optimization given in Eq. (4). 

4.2.1 Design of Experiments 

Space filling techniques or adaptive design of 
experiments (Wang and Shan, 2007, Picheny et al., 
2010) are commonly preferred for the design of 
experiments in kriging metamodeling applications. 
However, the former may not provide the necessary 
accuracy in regions of importance, while the latter 
may significantly increase the computational cost for 
selecting the support points. Therefore, a hybrid 
DoE is proposed in this investigation instead. 

Due to their distinct nature, the two different 
components of the input vector y have different 
characteristics/demands related to their accuracy. 
For instance, in the case of x, accurate 
approximations are needed within the entire domain 
Xk since the metamodel is ultimately used to 
compare different design choices within this entire 
domain to converge towards the optimal design 
configuration. This indicates that a space filling 
technique should be considered and Latin hypercube 
sampling (LHS) is adopted here for this purpose.  

On the other hand, for θ an accurate 
approximation is needed over the domain in the 
uncertain model parameters space Θ that provides 
higher contribution towards the integrand in the 
evaluation of the objective function. Thus for θ a 
target region DoE is needed and an approach with 
minimal computational overhead is developed here 
for this purpose. The basis of the approach is the 
approximation of the target region as the important 
region for the integrand of the objective function 
through the definition of the auxiliary density  

 
| ( , ) | ( )

( | ) | ( , ) | ( )
ˆ ( )krig

h p
h p

H
  

x θ θ
θ x x θ θ

x
       (15) 

 
Since this requires knowledge of h(x,θ) an 

approximation is established considering the 
density ( | ) θ x , for which h(x,θ) is replaced by the 

kriging prediction ( , )h x θ .  

The density ( | )k θ x  may be then taken to 

represent the region of importance for the kriging 
metamodel to be developed in the next iteration. An 
efficient approximation for this density can be 

established  through sample set, denoted { }a
kθ , that 

can be obtained utilizing the readily available 

evaluations of ( , )j
kh x θ  for the sample set { }j

kθ  

(established in the previous iteration) for the 
proposal density used in that iteration qk(θ). Such 
samples can be obtained through rejection sampling 
by accepting the samples for which the following 
relationships holds (Medina and Taflanidis, 2014) 

                       

| ( , ) | ( ) | ( , ) | ( )
max

( ) ( )

j j j j
k k

j j jj
k k

h p h p

u q q

 
  

  

x θ θ x θ θ

θ θ
  (16) 

  

where { ; 1,..., }ju j N  are independent uniformly 

distributed random samples in range [0 1]. The 

sample set { }a
kθ  corresponds to the samples of 

{ }j
kθ  for which the above equation holds and 

ultimately represents the region in the Θ space that 
contributes more towards the probabilistic 
performance for xk and as such corresponds to a 
good approximation for the target region where 
higher accuracy is sought after in the kriging 
metamodel. Any sample-based density 
approximation approach can be utilized to 
approximate the target region utilizing these 

samples. This density will be denoted ( )s
kf θ  herein.  

Because of the importance of this approximation 
and ultimately of the number of samples in the set 

{ }a
kθ  for providing sufficient information for this 

approximation, a further modification is introduced 
to guarantee that a sufficient number of samples is 
available. Upon convergence to xk, an additional 
sample set, beyond the N samples in { }j

kθ , is 

generated to obtain a large sample set consisting of  
Np samples for which ( , )kh x θ  is evaluated. The 

rejection sampling in Eq. (16) is then performed 
over this larger sample set.  Given that evaluation of 

( , )kh x θ  involves a small computational effort this 

modification creates a small only additional burden, 
but guarantees that sufficient samples will be 

obtained to provide a good approximation of ( )s
kf θ .  

Finally it is important to consider that the kriging 
metamodel needs to have sufficient accuracy even in 
regions beyond this specific target region, since 
erroneous approximations in such regions can 
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impact the estimation result (these regions may 
become erroneously important because of such 
errors). This consideration leads to the following 
two stage hybrid DoE with the first stage aiming to 
obtain satisfactory global accuracy in the broader 
domain Θ and the second stage aiming to obtain 
higher accuracy in the target region. Initially (first 

stage) 1
sn  samples are obtained adopting a space 

filling approach (LHS) within the domain of 
importance based on p(θ)  (for example 4-5 standard 
deviations away from the median values for each 

model parameters). Then, additional 2
sn  are obtained 

from the density approximation ( )s
kf θ . The total 

number of support points is, thus, 1 2
s sn n n  . 

4.2.2 Selection of Basis Functions 

Another feature for the kriging approximation is the 
selection of basis functions. Typically polynomials 
of some lower order are used and then the important 
question is the exact polynomial order of the basis 
functions for each component of the input vector y. 
Selecting the same higher order for all components 
might reduce the accuracy of the kriging metamodel; 
ultimately components that exhibit higher sensitivity 
should have higher order associated with them but 
the optimization to identify the best basis function 
selection is in general a challenging task (Jia and 
Taflanidis, 2013). This challenge is circumvented 
here by integrating the global sensitivity analysis 
proposed recently by Jia and Taflanidis (2011), and 
selecting second order polynomial functions only for 
the most important components and linear 
polynomial functions for the rest.  

For vector y  this sensitivity analysis is 

established by considering the density function  
 
     ( ) ( , ) | ( , ) | ( ) ( )h p p  y x θ x θ θ x           (17) 

where p(x) corresponds to a uniform density in Xk , 
and by comparing this density to the prior joint 
distribution ( ) ( )p pθ x  for each component of y 

separately (comparison of the marginal 
distributions).  Bigger differences correspond to 
higher importance towards the overall probabilistic 
performance (Jia and Taflanidis, 2011). This 
comparison is efficiently performed utilizing 
samples for π(y); such samples can be readily 
obtained utilizing the support points within Xk  from 
the second DoE stage, using again rejection 
sampling. They corresponds to the samples (out of 

the larger set of samples utilizing distribution ( )s
kf θ  

for θ) for which the following relationship holds 

 

 
21,...,

| ( , ) | ( ) | ( , ) | ( )
max

( ) ( )

j

s

j j j j j

j s j s jj nk k

h p h p

u f f

 
 
  

x θ θ x θ θ

θ θ
(18) 

   
This approach leads to total of Ns samples, 

denoted  {  }i
sy  for each component of y, and to the 

following approximation for marginal distributions 
of interest utilizing kernel density approximation 
(Jia and Taflanidis, 2011) 

 

          
=1

1 1
( ) =

N ss
i i

i
s i is

y y
y K

N t t


            
   (19) 

 
where K is a Gaussian kernel and  bandwidth ti is 

given by 1/51.06· s iN   with σi corresponding to the 

standard deviation of the samples { }s
iy .  

The importance of the different model 
parameters (Jia and Taflanidis, 2011) is quantified 
based on the relative entropy of the marginal 
distributions, which utilizing the kernel density 
approximation can be calculated as 

 

     ( )
( ) || ( ) ( ) log

( )

ui

li
i

b

i
i i

i

b

iD p dy
y

y y y
yp


 

 
  

 


  (20) 

 
where bui  and bli are the upper and lower bounds, 

respectively, for the sample set {  }i
sy  and the 

integral in this equation can be readily obtained 
through one-dimensional numerical integration.  

A threshold  min
reD   can be then set to determine 

the importance of the input vector components. Only 
if the value of relative entropy is larger than this 
threshold, then that particular parameter will be 
assigned a higher order basis function. This 
threshold is adaptively selected to correspond to a 
fraction of the highest relative entropy value. If the 
allowable percentage reduction of the maximum 

entropy among the entire input vector is re
es , then 

     min max ( ) || ( )re re
e i i

i
D s D y p y               (21) 

and this formulation ultimately leads to 
consideration of higher order basis functions for 
parameters that correspond to relative entropy values 

higher or equal to re
es  of the maximum entropy over 

the entire input vector. 
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4.3 Optimization under Uncertainty 
with Adaptive Kriging 

4.3.1 Considerations for Implementation 
Across Iterations 

For the proposed implementation of kriging across 
the iterations of the numerical optimization the 
following questions need to still be answered: (a) 
How is the IS density qk(θ) for the estimations in 
Eqs. (7) and (8) established? (b) How is convergence 
evaluated? (c) What are the recommendations for the 
selection of the length vector kL   defining the trust 

region? 
Starting with the IS density, this density may be 

selected based on the information from the sample 

set { }a
kθ  from distribution π(θ|xk) which 

corresponds actually to the optimal IS density for 
design configuration xk (Robert and Casella, 2004).  
The density π(θ|xk)  is expected to provide a 
satisfactory accuracy for the entire domain Xk if, as 
discussed previously, xk provides an adequate 
representation about the behavior of the integrand 
for different design configurations within Xk. Recall 
that exploiting the efficiency of the kriging 
metamodel, a large number of samples N can be 
used in this case for the stochastic-simulation-based 
evaluation of the objective function and its gradient, 
described in Eqs. (7) and (8),  respectively. As such, 
no special attention needs to be placed on a highly 
efficient IS formulation; improvement in accuracy is 
primarily sought after by adopting a larger number 
of N, though considerable advantages are also 
expected from the IS implementation. For example, 
a simple parametric density approximation can be 
implemented, although more advanced approaches 
have been also recently proposed (Medina and 
Taflanidis, 2014).  

Moving now to the convergence of the 
algorithm, this is established when the new 

identified optimum k
x  is a local optimum of the 

trust region Xk. To further improve the quality of the 
obtained solution, a second optimization stage is 
proposed: upon convergence, the number of support 
points is increased to establish a higher accuracy 
kriging metamodel and the optimization described 
by Eq. (4) is repeated. This allows the use of smaller 

number of support points 1 2
s sn n n   in the initial 

iterations, until convergence is established. 
Ultimately we are not concerned with obtaining high 
accuracy estimates for the kriging metamodel at the 
initial iterations; establishing an approximate 

descend direction in the design domain towards the 
optimal design is sufficient (greedy optimization 
approach).  

Finally, with respect to the length vector 
selection Lk, initially it can be considered as a 

specific fraction 1
ls  of the design domain X , i.e. 

1 1
ls XL . At each iteration a specific reduction, 

rs ,  of this proportionality can be implemented 

leading to selection 1
1( )l r k l

ks s s  and l
k ks XL . 

Upon initial convergence, a further reduction by r
fs  

can be established to localize the search around the 
candidate optimum. Figure 1 provides an example of 
how the algorithm progresses through the design 
space. The squares are the trust regions Xk for each 
iteration. The gray dots show the intermediate steps 
needed to find a local optimum within the trust 
region (only using evaluations of the kriging model). 
The dash-dot line shows the second stage of the 
optimization that starts when the first stage has 
encountered an interior point local optimum. This 
stage has a significantly more reduced length and the 
number of support points within the domain is 
increased in order to improve the accuracy of the 
kriging model near the optimum point. 

 

x1

x2

x1

x2

x3 x*
x4

 

Figure 1: Evolution of trust region. 

4.3.2 Algorithm for Adaptive Kriging 
Implementation 

When combining the previous ideas, one can 
formulate the following optimization algorithm 
utilizing adaptive kriging. First, define the bounded 
design space X, the starting point of the algorithm x1, 
the number of support points for the hybrid DoE 

approach, 1
sn  and 2

sn , respectively, as well as the 

respective numbers when the second optimization 

stage (convergence) has been reached, 1
fn  and 2

fn .  

Select the number of samples N for the estimation of 
the objective function and its gradient utilizing 
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stochastic simulation, the number of samples Np for 
which ( , )kh x θ  will be obtained, the allowable 

percentage entropy reduction for the basis function 

formulation 1re
es  . Finally choose the fraction 

parameter 1
ls  defining the initial trust region as well 

as its reduction rs  per iteration and the final 

reduction upon convergence r
fs .  

At iteration k  of the numerical optimization 
algorithm [Eq. (4)] perform the following steps: 

 
Step 1 (trust region definition): Define box-

bounded search domain Xk centered around xk with 

length vector given by 1
1( )r k l

k s s XL . If 

convergence has been established (last iteration) 

further reduce length vector by r
fs . Adjust (truncate) 

trust region if it exceeds the design domain bounds 
X.  

Step 2 (support points): Employing the hybrid 

DoE for θ, obtain 1
sn  ( 1

fn  if convergence has been 

established) samples using a space filling approach 
(LHS) in the region of importance for p(θ), then 

obtain 2
sn  ( 2

fn  if convergence has been established) 

samples from density ( )s
kf θ  [p(θ) in first iteration]. 

For x  obtain 1 2
s sn n n   ( 1 2

f fn n n   if 

convergence has been established) samples using a 
space filling approach (LHS) in kX .  

Step 3 (Evaluation of model response). For all 
the support points evaluate the model response 
{z(xj,θj); j=1,…,n} and ultimately the system 
performance function {h(xj,θ 

j); j=1,…,n}.  
Step 4 (Selection of basis functions):  Based on 

the evaluations on the performance function on the 
support points from the second stage                 

{h(xj,θ 

j);j=1,…, 2
sn }, obtain samples from ( , ) x θ  

through rejection sampling as in Eq. (18). Then 
calculate the entropy for each component of the 
output vector D(π(yi)||p(yi)) using the approximation 
in Eq. (20) obtained through these samples. Consider 
higher order (quadratic) basis functions only for 
components of the input vector with relative entropy 
higher than the value given by Eq. (21) and lower 
order (linear) basis functions for the rest.  

Step 5 (kriging model): employing the 
information in steps 1-4, build the kriging model in 
augmented input space through the approach 
discussed in Section 4.1.  

Step 6 (trust region local optimum): Simulate set 
of N samples from distribution qk(θ) [p(θ) in first 

iteration] and perform optimization described by Eq. 
(4) utilizing estimations in Eqs. (7) and (8), 
employing a gradient based algorithm. Identify local 

optimum k
x .  

Step 7 (information for xk+1 and proposal density 

formulation for DoE); consider 1 kk
x x  and 

evaluate the response and the performance function 
through the kriging approximation for pN   samples. 

Obtain sample set 1{ }a
kθ  through Eq. (16) and 

establish 1( )s
kf  θ .  

Step 8 (IS proposal density for iteration 1k  ): 

Utilizing the same sample set 1{ }a
kθ formulate the 

IS proposal density 1( )kq  θ .  

Step 9 (convergence check); if xk+1 is on the 
boundary of Xk  then convergence has not been 
established and proceed back to Step 1  and advance 
to k+1. If not, then convergence has been potentially 
attained and the second optimization stage needs to 
be implemented by repeating steps 1-6 with 

1 2
f fn n n   and r

fs .  

5 ILLUSTRATIVE EXAMPLE 

The framework is illustrated next in an example 
considering the optimization of semi-active dampers 
for the suspension of a half-car nonlinear model 
riding on a rough road. The excitation (rough road) 
is modelled as a stochastic process (Verros et al., 
2005) and the ride comfort and damper fatigue are 
considered as performance objectives, both 
estimated through their root mean square (RMS) 
statistics. The models adopted include various 
sources of nonlinearities and time-domain 
simulation is used to estimate the car response and 
ultimately RMS performance.  

5.1 Numerical/Probability Model  

The half-car model is shown in Figure 2. The chassis 
is represented as a rigid body connected to the tires 
at the ends by a combination of a spring and a 
dashpot. Furthermore, the tires are connected to the 
ground by another spring/dashpot combination. A 
detailed description of the numerical model 
considered may be found in (Medina and Taflanidis, 
2014). Next a brief review is offered.  
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Figure 2: Half-car model schematic. 

The model is developed by using small angle 
assumption. In this context, let yc, ytf, ytr, and ψc 
denote the vertical displacements of the chassis’ 
center of mass, the front tire, the rear tire, and the 
angular displacement (pitch) of the chassis 
respectively. These correspond to the primary state 
variables for the system. The vertical displacement 
of the front and rear suspensions are denoted by ycf 
and ycr and can be easily calculated based on the 
primary state variables. To simplify notation the 
location of a given component is represented herein 
by subscript : { , }o f r  (either front or rear). For 

example, yco might correspond to any of the ycr or ycf 
discussed above. 

For the spring, Ftso, and damper Ftdo, tire forces 
linear characteristics are assumed with spring 
constant Kto and dashpot constant Cto. For the spring 
suspension force a linear and nonlinear (cubic term) 
component are assumed with spring constants Ko

l 
and Ko

n, respectively.   The semi-active suspension 
damper force is taken to correspond to an idealized 
skyhook damper 

 
                    do so

s t
o oo tF yCyC      (22) 

 
and all coefficients are taken as design variables, 
leading to definition of design variable vector as 

x=[ ]t s t s T
f r r rC C C C .  

The road surface input ou  is modeled as a zero-

mean Gaussian stationary stochastic process with the 
Power Spectral Density ( )S   proposed in (Verros 

et al., 2005), defined through parameter  κi 
representing the roughness coefficient whose value 
is defined by the International Standard 
Organization (ISO). A time-domain realization for uf 
and ur is obtained by using the spectral 
representation method assuming that the car drives 
with a constant horizontal velocity vc.  

Ultimately the system of equations describing the 
half-car dynamical model are 

 

 

( )(1 ) ( )(1 ) 0c c sf df x sr dr x

c c sf df sr dr c

tr tr sr dr tsr tdr tr

tf tf sf df tsf tdf tf

I F F e L F F e L

m m g

m m g

m m g

y F F F F

y F F F F

y F F F F

      

    

   



  






 (23) 

 
where g denotes gravity acceleration, ex is the 
eccentricity between the geometric center of the 
chassis and its center of mass, L is the half-distance 
between the two suspensions, mc, mtf, mtr are masses 
for the chassis, the front, and rear tires respectively, 
and Ic is the moment of inertia of the chassis.  A 
numerical model for this dynamical system is 
developed in SIMULINK (Klee and Allen, 2007) 
and finally the response statistics (RMS) under the 
random road excitation are obtained through the 
time-domain simulation results by 

 

                 2

0

1
( )

T

cRMS c t dt
T

                  (24) 

  
where  T=Lr/vc and Lr is the total length of the road 
considered. The computational burden for one 
simulation, that is one evaluation of the response, is 
on the average 3s on a 3.GHz  Xeon CPU (care was 
taken to establish a model that balances between 
numerical accuracy and efficiency), meaning that an 
evaluation of the objective function within a 
stochastic simulation setting with N=600 samples 
takes half an hour.  

All model parameters apart from L are 
considered as uncertain, leading to θ ultimately 
having 15 components, and Table 1 reviews the 
adopted probability models. In this Table μ 
corresponds to median, cv to coefficient of variation 
and ρ to correlation coefficient.  

Table 1: Probability models adopted for the different 
model parameters. 

mc
Lognormal 

μ=580 kg, cv=0.2 
mtο 

Lognormal 
μ=40 kg, cv=0.2 

Ic 
Lognormal 

μ=1180 kg m2, cv=0.2
vc 

Lognormal 
μ=60 km/h, cv=0.2 

Cto 
Lognormal 

μ=20 N s/m, cv=0.2 Kto 
Lognormal 

μ=190 kN/m, cv=0.2 

κi 

Lognormal 
μ=64e-6 m2/cycle 

cv=0.1 

 Κο
l  

Ko
n 

Correlated Lognormal 
 μ=23.5 kN/m, for Ko

l   
 μ=435 kN/m3, for Ko

n  
 cv=0.2, ρ=0.4 

ex Uniform in [0.1 0.4]   L 4m (deterministic) 
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5.2 Performance Quantification and 
Adjustment for Kriging Error  

The performance measure h(x,θ) is selected as the 
normalized linear combination of the fragilities 
related to the root mean square of the vertical 
acceleration at the center of mass RMSac,  which in 
turn is a measure of passenger comfort, and of the 
root mean square of the suspension’s damping forces 
at the rear and front of the car RMSdf, RMSdr, 
respectively, which is a measure of suspension 
fatigue 

 

       
, ,

ln ln1
( , )

3
i i

bii ac df dr

h
RMS b



 



  
 

x θ      (25) 

 
where [.] corresponds to the standard Gaussian 

Cumulative Distribution Function (CDF) – ib  is the 

threshold related to each response quantity of 
interest, taken here as 1 m/s2 for the acceleration, 
and 160 N in the damper forces,  and σbi is the 
coefficient of variation for the fragilities, assumed as 
5% for all of them. The introduction of the fragilities 
through the CDF, can be also viewed as addressing 
unmodeled uncertainties (Taflanidis and Beck, 
2010): rather than having a binary distinction of the 
performance, i.e. perform acceptably when the 
response is smaller than threshold bi and 
unacceptably when not. In this context each quantity 
within the sum in Eq. (25) corresponds equivalently 
to probability P[RMSi>biεi] with i  having a 

lognormal distribution with median equal to one and 
logarithmic standard deviation σbi. Analytical 
integration of the influence of εi leads ultimately to 
the CDF fragility expressions in Eq. (25). The 
objective function H(x) is the average failure 
probability over the three different RMS response 
quantities and is constrained within the [0 1] range.   

The kriging approximation is formulated directly 
for the log values of the RMS response, since these 
are the ones appearing in the performance function, 
thus z(x,θ)=[ln(RMSac) ln(RMSdf) ln(RMSdr)]

T. 
Furthermore the prediction error stemming from the 
kriging metamodeling may be directly incorporated 
into the performance function definition, exploiting 
the equivalent representation discussed above. This 
is established by considering the following 
transformation of the probability P[RMSi>biεi]  

 

 

2 2

[ ] [ln( ) ln( ) ln( )]

 [ln( ) ln( )]

ln( )
 [ln( ) ln( )]

i i i i i i

i i i i

i i
i i i i

i bi

P RMS b P RMS b

P z b

z b
P z b

 
 


 



   

   

       
  

 (26)

 
where iz  corresponds to the kriging approximation 

for ln(RMSi) and the last equality is based on the fact 
that since ln(εi) and i  are zero mean independent 

Gaussian variables with variances, σi
2 and σbi

2, 
respectively, their sum (or difference in this case) is 
also a Gaussian variable with zero mean and 
variance σi

2+σbi
2.  This leads to the following 

approximation to the performance function  
 

          
2 2

, ,

ln( )1
( , )

3
i i

i ac df dr i bi

z b
h

 

   
  

θx        (27) 

 
The gradient of this expression will be also needed 
in the optimization and can be obtained by  

 

     

2 2
, ,

2 2
, ,

2
22 2

3

2 3/2

ln( )1
( , )

3

ln( )1
              

3

ln(

)

(

(

))

i i
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i i
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i

i ac d

i i
i

i bi

f dr

i ac df dr

g

i bi

z b
h

z b
f

z b
f

z

 

 


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



    
  





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 
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 
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


 
 


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
 





x θ

      (28)

where   corresponds to the Gaussian Probability 

Density Function (PDF), and evaluation of all 
required gradients in the last equation was discussed 
in Section 4. 

5.3 Numerical Details for Optimization  

The design domains X has upper bounds 
[400 4000 400 4000]  N s/m , and lower bounds 

[0 0 0 0]  N s/m . For the trust region definition, 

the length of the initial region L1 is initially selected 

as 20% of the design domain X , i.e. 1 0.2ls   with a 

reduction in size of 5% with every iteration, i.e. 

0.95rs  . When the optimization has reached the 
last stage, the reduction in the trust region is set to 

50% or 0.5r
fs  . For the local search within Xk a 

trust-region-reflective algorithm is adopted. For the 
local search an exterior sampling approach is 
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adopted (same samples are utilized within the trust-
region-reflective algorithm) whereas, as discussed 
earlier, the overall implementation is formulated as 
interior sampling (different sample set is generated 
whenever the algorithm is initiated at the beginning 
of each local search/optimization).  

The number of support points for the hybrid DoE 

approach is selected as 1 200sn   and 2 700sn   

whereas the number of support points for the second 
optimization stage, for increasing the accuracy of the 
kriging approximation, is taken to be double these 
values.  The number of samples for the estimates in 
Eqs. (7) and (8) for the local search is taken as 
N=2000 and increased to N=10000 in the second 
optimization stage. The total number of simulations 

for ( , )kh x θ   to inform the selection of IS densities 

and the sampling density for the second stage of the 
DoE approach is set to Np=10000. For the basis 
functions selection, the percentage reduction 
(defining the cut-off entropy with respect to the 
maximum entropy over the entire input vector) is set 

to 0.4re
es  .  

Apart from the fully adaptive kriging 
implementation that additionally incorporates the 
kriging error in the objective function formulation, 
two additional cases are examined, leading to a total 
of three different optimization approaches 
considered. The first, denoted AK (adaptive 
kriging), and second, denoted AKE (adaptive 
kriging with error), correspond to the proposed 
algorithm that adaptively employs the probabilistic 
sensitivity analysis to select the order of the basis 
function for the kriging model, and also adopts the 
proposed hybrid DoE. The only difference is that the 
first approach does not include the kriging error in 
the objective function while the second one does. 
The former is established simply by taking 

2 2 0i i     in Eqs. (27) and (28). The third 

approach, denoted LK (Latin Hypercube Kriging), 
employs the traditional sampling technique of LHC 
for both x and θ, uses quadratic basis functions for 
all the parameters of the kriging model, and does not 
include the kriging error in the objective function. 
This last configuration is the baseline case, where 
none of the proposed advances are employed.   

To judge the quality of the obtained solutions, 
the optimization problem was additionally solved 
using the simultaneous perturbation stochastic 
approximation algorithm (Spall, 2003) coupled with 
the highly efficient adaptive IS formulation 
proposed recently by Medina and Taflanidis (2014). 
The optimal benchmark solution was found to be 

x*=[175.2 1645.3 190.1 1495.4] with respective 
performance H(x*)=0.066% whereas the total 
number of model evaluations needed to converge to 
this solution was close to 265000. This large 
computational effort should be attributed to the fact 
that the performance close to the optimum 
corresponds to a rare event (small failure 
probability) requiring a large number of samples for 
accurate approximation, even with implementation 
of an efficient adaptive IS scheme.   

5.4 Results and Discussion  

Results are reported in Table 2 for five different 
trials corresponding to different initial conditions x1 
for the algorithm. In particular, the optimal solution 
x*, the total number of simulations of the system 
high-fidelity model till convergence is established, 
Ntot, the objective function value obtained through 

the use of the kriging metamodel, ˆ ( )krigH x , which 

is obtained directly from the optimization algorithm, 
as well as the objective function value obtained 
through the use of the actual system model, 

|ˆ ( { })cH x θ ,  are reported. For the latter the same 

sample set { }cθ  (common random numbers) are 

used across all comparisons for each design problem 
to enable a consistent comparison (Spall, 2003). 
N=10000 samples are used in this comparison which 
facilitates a small coefficient of variation for 

|ˆ ( { })cH x θ , close to 4%.  A three-fold comparison 

can be established based on these results: (i) 
Comparison between ˆ ( )krigH x  and |ˆ ( { })cH x θ  

shows the accuracy of the kriging implementation, 
(ii) comparison of the Ntot for different approaches 
shows the computational efficiency for convergence 
of the algorithm, (iii) comparison between 

|ˆ ( { })cH x θ  and the benchmark optimal solution of 

0.0066% shows the robustness of the approach in 
converging to the true optimum. 

The results for AKE demonstrate a remarkable 
computational efficiency and robustness. The 
identified solution x* is always in the vicinity of the 
benchmark optimum solution and, more importantly, 
the attained performance is always comparable or 
even better than the benchmark performance. This is 
accomplished with a small number of model 
evaluations, not exceeding 7100 for any trial. Note 
that the differences between these trials are well 
expected since there is a strong dependence of the 
optimization approach on the initial conditions. 
Overall the reported efficiency corresponds to 
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tremendous computational savings (265000 
simulations needed before), something that is 
accomplished primarily through the proposed 
formulation of the kriging metamodel in the 
augmented input space. 

Table 2: Optimization results for different cases 
considered and different trials. 

Trial x* (Nm/s) totN   ˆ ( )krigH x   ˆ ( { })| cH x θ

AK (adaptive kriging) 

1 
[122.5  2121.1   
142.8  1884.5] 8817 0.025 % 0.079 % 

2 
[161.3  1484.9   
145.7  1725.3] 6607 0.023 % 0.091 % 

3 
[149.4  1780.3   
168.6  1568.5] 12046 0.020 % 0.073 % 

4 
[125.6  2183.2   
113.1  1656.2] 

3736 0.020 % 0.113 % 

5 
[159.1  1541.0   
160.2  1532.8] 

8698 0.022 % 0.089 % 

AKE (adaptive kriging with error) 

1 
[136.9  2091.9    
154.5  1814.3] 5721 0.054 % 0.066 % 

2 
[159.4  1819       
189.8  1521.3] 4751 0.053 % 0.063 % 

3 
[158.6  1886.3    
153.6  1762.9] 5512 0.059 % 0.063 % 

4 
[173.1  1731.5    
147.5  1808.1] 7076 0.045 % 0.064 % 

5 
[171.3  1847.5    
170.1  1708.0] 4703 0.059 % 0.063 % 

LK (Latin hypercube kriging) 

1 
[148.7  2649.4    
195.1  1765.9] 19778 0.024 % 0.175 % 

2 
[220.3  2011.5    
84.0  1860.4] 19720 0.182 % 0.279 % 

3 
[157.5  1838.1   
145.3  2400.7] 19153 0.026 % 0.091 % 

4 
[189.9  1887.6    

71.3  2174.7] 
18763 0.032 % 0.119 % 

5 
[136.3  1937      
306.3  859.2] 19591 0.119 % 0.191 % 

 
Moving now to the accuracy of the kriging 

implementation (still for AKE), assessed through the 

comparison between ˆ ( )krigH x  and |ˆ ( { })cH x θ , 

there is an overall good agreement. When compared 
against the accuracy of the kriging implementation 
when the prediction error is not included in the 

performance function estimate (compare the values 

of ˆ ( )krigH x  and |ˆ ( { })cH x θ  for AK) it is evident 

that the explicit consideration of that error provides 
significantly improved estimates, i.e., closer values 

of ˆ ( )krigH x  and |ˆ ( { })cH x θ .  

The more interesting comparison is, however, 
between AKE and the alternative approaches 
(AK/LK) in terms of computational efficiency 
(comparison of Ntot for same trial) and more 

importantly robustness (comparison of |ˆ ( { })cH x θ  

for same trial). In all instances it is shown that the 
other two approaches do not share the robustness of 
the proposed AKE implementation, as they converge 
for some trials to a significantly suboptimal 

performance |ˆ ( { })cH x θ . The differences are 

perhaps more evident for LK and secondary for AK. 
This is an important result; it shows that a space-
filling DoE, even though might provide a good 
global accuracy, leads to significant errors in regions 
of the model parameters that are of importance for 
the probabilistic performance and ultimately to 
erroneous identified optimal designs. Similarly 
ignoring the prediction error, not only decreases the 
accuracy of the estimated performance as argued in 
the previous paragraph, but, and perhaps more 
importantly, can provide erroneous optimal 
solutions. Even though calculation of this error does 
involve a higher computational burden compared to 
using only the mean kriging approximation (Jia and 
Taflanidis, 2013), it is evident that its explicit 
consideration provides significant enhancements that 
counteract this burden.     

6 CONCLUSIONS 

An adaptive implementation of kriging 
metamodeling was considered to reduce the 
computational burden associated with optimization 
under uncertainty problems adopting a simulation-
driven (stochastic simulation) approach for 
evaluation of the objective function. Two important 
aspects for tuning of the kriging metamodel were 
adaptively addressed within this implementation by 
seamlessly sharing information across the iterations 
of the numerical optimization: (i) design of 
experiments (DoE) for selecting support points 
aimed at improving the accuracy over a targeted 
region, the one contributing most towards the 
probabilistic performance, and (ii) selection of the 
order of basis functions for the different inputs of the 
metamodel. Additionally, a novel implementation 
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was introduced formulating the kriging metamodel 
in the augmented model parameter and design 
variable space whereas the local prediction error 
associated with the kriging approximation was 
explicitly considered in the objective function 
estimation.     

The illustrative example showed the 
computational efficiency (convergence with small 
number of evaluations of the high-fidelity system 
model) as well as robustness (convergence to 
solutions that are close to the true optimum) 
established through the proposed kriging 
implementation in the augmented input space. The 
proposed hybrid DoE for a targeted region was 
additionally shown to greatly enhance the accuracy 
of the kriging approximation and its ability to avoid 
converging to suboptimal solutions. Finally the 
explicit incorporation of the prediction error 
improved not only the accuracy of the estimated 
objective function through the kriging metamodel 
but also similarly supported a more robust 
optimization.  

ACKNOWLEDGEMENTS 

This research effort is supported by the National 
Science Foundation (NSF) under Grant No. CBET-
1235768. This support is gratefully acknowledged.   

REFERENCES 

Dubourg, V., Sudret, B. & Bourinet, J.-M. 2011. 
Reliability-based design optimization using kriging 
surrogates and subset simulation. Structural and 
Multidisciplinary Optimization, 44(5), 673-690. 

Gasser, M. & Schueller, G. I. 1997. Reliability-based 
optimization of structural systems. Mathematical 
Methods of Operations Research, 46, 287-307. 

Gavin, H. P. & Yau, S. C. 2007. High-order limit state 
functions in the response surface method for structural 
reliability analysis. Structural Safety, 30(2), 162-179. 

Jaynes, E. T. 2003. Probability Theory: The logic of 
science, Cambridge, UK, Cambridge University Press. 

Jia, G. & Taflanidis, A. A. 2011 Relative entropy 
estimation through stochastic sampling and stochastic 
simulation techniques. Second International 
Conference on Soft Computing Technology in Civil, 
Structural and Environmental Engineering. Chania, 
Greece. 

Jia, G. & Taflanidis, A. A. 2013. Kriging metamodeling 
for approximation of high-dimensional wave and surge 
responses in real-time storm/hurricane risk assessment. 
Computer Methods in Applied Mechanics and 
Engineering, 261-262, 24-38. 

Jin, R., Chen, W. & Simpson, T. W. 2001. Comparative 
studies of metamodelling techniques under multiple 
modelling criteria. Structural and Multidisciplinary 
Optimization, 23(1), 1-13. 

Klee, H. & Allen, R. 2007. Simulation of dynamic systems 
with MATLAB and SIMULINK, Boca Raton, FL, 
CRC Press. 

Lophaven, S. N., Nielsen, H.B., and Sondergaard, J. 2002 
DACE-A MATLAB Kriging Toolbox. Technical 
University of Denmark. 

Medina, J. C. & Taflanidis, A. 2014. Adaptive importance 
sampling for optimization under uncertainty problems. 
Computer Methods in Applied Mechanics and 
Engineering, (10.1016/j.cma.2014.06.025). 

Picheny, V., Ginsbourger, D., Roustant, O., Haftka, R. T. 
& Kim, N. H. 2010. Adaptive designs of experiments 
for accurate approximation of a target region. Journal 
of Mechanical Design, 132(7). 

Robert, C. P. & Casella, G. 2004. Monte Carlo statistical 
methods, New York, NY, Springer. 

Rodrı ́guez, J. F., Renaud, J. E., Wujek, B. A. & Tappeta, 
R. V. 2000. Trust region model management in 
multidisciplinary design optimization. Journal of 
Computational Applied Mathematics, 124(1), 139-
154. 

Royset, J. O. & Polak, E. 2004. Reliability-based optimal 
design using sample average approximations. 
Probabilistic Engineering Mechanics, 19, 331-343. 

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P. 1989. 
Design and analysis of computer experiments. 
Statistical Science, 4(4), 409-435. 

Schuëller, G. I. & Jensen, H. A. 2008. Computational 
methods in optimization considering uncertainties - 
An overview. Computer Methods in Applied 
Mechanics and Engineering, 198(1), 2-13. 

Spall, J. C. 2003. Introduction to stochastic search and 
optimization, New York, Wiley-Interscience. 

Taflanidis, A. A. & Beck, J. L. 2008. An efficient 
framework for optimal robust stochastic system design 
using stochastic simulation. Computer Methods in 
Applied Mechanics and Engineering, 198(1), 88-101. 

Taflanidis, A. A. & Beck, J. L. 2010. Reliability-based 
design using two-stage stochastic optimization with a 
treatment of model prediction errors. Journal of 
Engineering Mechanics, 136(12), 1460-1473. 

Verros, C., Natsiavas, S. & Papadimitriou, C. 2005. 
Design optimization of quarter-car models with 
passive and semi-active suspensions under random 
road excitation. Journal of Vibration and Control, 
11(5), 581-606. 

Wang, G. G. & Shan, S. 2007. Review of metamodeling 
techniques in support of engineering design 
optimization. Journal of Mechanical Design, 129(4), 
370-380. 

Adaptive�Kriging�for�Simulation-based�Design�under�Uncertainty�-�Development�of�Metamodels�in�Augmeted�Input�Space
and�Adaptive�Tuning�of�Their�Characteristics

797


