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Abstract: Support vector machines (SVMs) are among the most popular classification algorithms. However, whereas
SVMs perform efficiently in a class balanced dataset, their performance declines for class imbalanced datasets.
The fuzzy SVM for class imbalance learning (FSVM-CIL) is a variation of the SVM type algorithm to accom-
modate class imbalanced datasets. Considering the class imbalance, FSVM-CIL associates a fuzzy member-
ship to each example, which represents the importance of the example for classification. Based on FSVM-CIL,
we present a simple but effective method here to calculate fuzzy memberships using the kernel mean. The ker-
nel mean is a useful statistic for consideration of the probability distribution over the feature space. Our
proposed method is simpler than preceding methods because it requires adjustment of fewer parameters and
operates at reduced computational cost. Experimental results show that our proposed method is promising.

1 INTRODUCTION

Support vector machines (SVMs) (Vapnik, 1995)
are very popular classification algorithms, which
have been extensively studied and applied in vari-
ous fields (Burges, 1998). Although SVM is a high-
accuracy classifier for class balanced datasets, it does
not work well forclass imbalanced datasets(He and
Ma, 2013; He and Garcia, 2009).

In real world problems, datasets are often imbal-
anced, that is, the number of available examples for
one class is significantly different than for the oth-
ers. For instance, doctors diagnose disorders using
X-ray photographs. The number of photographs for
patients with serious illnesses is obviously far smaller
than that for healthy persons. Nevertheless it is very
important to classify both positive and negative exam-
ples correctly, even when they are highly imbalanced.
A number of methods have been proposed in the lit-
erature to adapt SVM to accommodate class imbal-
anced datasets (He and Ma, 2013). These methods
can roughly be divided intoexternal methods, such as
preprocessing of the dataset to balance it, andinternal
methods, which seek to modify the algorithms.

The present study takes the latter approach based
on the previously proposed fuzzy SVM for class im-
balance learning (FSVM-CIL) method (Batuwita and
Palade, 2010). The FSVM-CIL framework combines
different error costs(DEC) (Veropoulos et al., 1999)

and fuzzy SVM(FSVM) (Chun-Fu and Sheng-De,
2002) for class imbalance learning (CIL). Although
this method is quite effective for class imbalanced
datasets, even in the presence of outliers and noisy
examples, it requires the adjustment of numerous pa-
rameters.

In both FSVM and FSVM-CIL, each example is
assigned afuzzy membershipthat represents the de-
gree to which the example belongs to the class. The
classification ability of these methods depends on the
fuzzy memberships. Various computational meth-
ods for assigning fuzzy memberships have been de-
veloped to appropriately address noisy data. Yan et
al. (2013) proposed a method based on fuzzy cluster-
ing and probability distribution. A weakness of this
method is that it is applicable only to vector data.
Chun-Fu and Sheng-De (2004) proposed a method
based on a kernel function that is highly relevant
to a probability density. This method can be used
for nonvectorial data. Jiang et al. (2006) also pro-
posed a kernel-based method that exploits a geometri-
cal property of the training sample in a feature space.
Both these methods calculate a value using a kernel
function and convert the value into a fuzzy member-
ship using a combination of some decaying functions.
However, these methods incur the unfortunate burden
of adjusting numerous parameters not only in the ker-
nel functions but also in the decaying functions.

In this paper, we propose a simple kernel-based
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method that directly calculates a fuzzy membership
from the kernel functions. Our method requires the
adjustment of a fewer number of parameters, relative
to other methods; thus, it represents a simpler solution
for class imbalanced datasets. The effectiveness of
our proposed method is experimentally verified.

2 PRELIMINARIES

2.1 Kernel Methods

In kernel methods, examples are mapped implicitly
into a feature space by a kernel to exploit the nonlin-
ear features of the examples. Kernels are applicable
to many existing linear methods by replacing the orig-
inal inner product in the input space with kernels. An
N×N matrix K is positive semidefiniteif it satisfies
cccTKccc≥ 0 for any real vectorccc= (c1, . . . ,cN)

T ∈ R
N,

where T represents the transpose. Akernel is de-
fined as a two-variable functionk : X ×X → R on
an arbitrary setX . A kernel k is said to beposi-
tive definite symmetric(PDS) if, for any sampleS=
(x1, . . . ,xN) ∈ X N, the matrixK = [k(xi ,x j)]i j is sym-
metric and positive semidefinite. The matrixK is
called theGram matrixassociated withk and the sam-
ple S. In many kernel methods, each example is ac-
cessed only through the Gram matrix.

The following are some useful properties of PDS
kernels (e.g., Mohri et al. 2012). For any PDS ker-
nel k, there exists a Hilbert spaceH and a mapping
φφφ : X → H such thatk(x,x′) = 〈φφφ(x),φφφ(x′)〉 for any
x,x′ ∈ X , where〈•,•〉 represents the inner product in
H. Furthermore,H satisfies thereproducing property:

∀h∈Hk, ∀x∈ X , h(x) = 〈h,k(•,x)〉. (1)

H is called a reproducing kernel Hilbert space
(RKHS) associated withk and is denoted byHk in
this paper.

For a kernelk, we definethe normalized kernel k′

associated withk by

k′(x,x′)=

{

0 if k(x,x) = k(x′,x′) = 0,
k(x,x′)√

k(x,x)k(x′ ,x′)
otherwise.

For any PDS kernelk, the normalized kernelk′ asso-
ciated withk is also PDS.

2.2 Kernel Mean

Let X be a random variable onX and k be a mea-
surable PDS onX ×X with E[

√

k(X,X)] < ∞. The
kernel mean mk of X onHk is defined by the mean of
theHk-valued random variableφφφ(X). Its existence is

guaranteed byE[‖φφφ(X)‖] = E[
√

k(X,X)] < ∞. sThe
kernel mean satisfies the condition (Fukumizu et al.,
2013):

〈h,mk〉= E[h(X)] for ∀h∈Hk. (2)

Note that, for any normalized PDS kernelk, the con-
dition E[

√

k(X,X)] < ∞ apparently holds because
‖φφφ(x)‖ =

√

k(x,x)≤ 1 for anyx∈ X .
The empirical kernel meanm̂k for a sample

(x1, . . . ,xN) ∈ X N drawn from an independent and
identically distributed (i.i.d.) distribution is defined
by

m̂k =
1
N

N

∑
i=1

φφφ(xi) =
1
N

N

∑
i=1

k(•,xi). (3)

The empirical kernel mean ˆmk is
√

n-consistent for
the kernel meanmk, and

√
n(m̂k −mk) converges to

a Gaussian process onHk (Fukumizu et al., 2013;
Bertinet and Agnan, 2004). Therefore, we can prop-
erly estimate the kernel meanmk of X by the empirical
kernel mean ˆmk in the feature space.

2.3 Support Vector Machine

The SVM was proposed by Vapnik (1995) and has
a high generalization ability based on structural risk
minimization. Suppose that we have a training sam-
ple S= ((x1,y1), . . . ,(xN,yN)) ∈ (X × Y )N, where
eachyi ∈ Y = {−1,+1} is a class label. Solving
the quadratic convex optimization problem given in
Eq. (4), SVM finds a hyperplane that maximizes the
margin between itself and the closest examples.

minimize 1
2‖www‖2+C∑N

i=1 ξi

subject to yi(wwwTxi +b)≥ 1− ξi
and ξi ≥ 0 (i = 1, . . . ,N)

(4)

Here,ξi is a slack variable associated withxi , which
represents the penalty of margin violation, andC is
a constant that can be regarded as a regularization pa-
rameter. The corresponding decision functionf of the
optimization problem in (4) is

f (x) = sgn

(

N

∑
i=1

αiyik(xi ,x)+b

)

,

wherek is a PDS kernel onX ×X and αi is a La-
grange multiplier that is introduced when considering
the dual form of the optimization problem given in
(4). To meet the Karush–Kuhn–Tucker condition, the
value ofαi must satisfy 0≤ αi ≤C and∑N

i=1 αiyi = 0.
An examplexi whose associated multiplierαi takes a
positive value is called asupport vector.
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2.4 Fuzzy Support Vector Machine

In the optimization problem of SVM, both the max-
imization of the size of the margin and the mini-
mization of its penalty of margin violations are at-
tempted simultaneously. Therefore, excess penalties
cause overfitting and hinder the generalization ability
of the SVM. In many cases, outliers or noisy exam-
ples are inevitable, and we would like to allow for
lower margin violation penalties for these.

Chun-Fu and Sheng-De (2002) proposed an
FSVM method wherein eachxi has a fuzzy mem-
bershipsi that represents a measure of the extent to
which xi is a member of its assigned class. It is de-
sirable that noisy examples or those that are likely to
be outliers have lower membership values than nor-
mal examples. Considering fuzzy memberships, the
optimization problem of SVM given in (4) becomes

minimize 1
2‖www‖2+C∑N

i=1siξi

subject to yi(wwwTxi +b)≥ 1− ξi
and ξi ≥ 0 (i = 1, . . . ,N).

Here,si andξi represent a fuzzy membership and a
penalty for margin violation, respectively, and their
productsiξi represents a weighted penalty.

2.5 SVMs for Class Imbalanced Data

The hyperplane determined by SVM depends only on
support vectors. For linearly separable data, SVM can
correctly classify the training sample no matter how
imbalanced the classes are. However, for nonlinearly
separable data, SVM attempts to select a greater num-
ber of support vectors to separate the training sample
due to which it is strongly influenced by class imbal-
ance. We now review some methods that reduce the
influence of class imbalance. In the following dis-
cussion, we assume without loss of generality that a
negative classis always taken to be the majority class
and apositive classis always treated as the minority
class.

SVM attempts to simultaneously maximize the
margin and minimize the penalty of margin violation.
Therefore, if the minority and the majority classes
have overlapping regions, the resulting hyperplane
has a tendency to be pushed toward the minority class.
In extreme situations, SVM may ignore all examples
of the minority class. The phenomenon is caused by
the fact that SVM takes into account the penalties for
margin violationsequallyfor all examples.

To tackle this problem, Veropoulos et al. (1999)
proposed aDEC method that associates a different
penalty with each class. By splitting the constantC
in (4) into C+ andC− for the positive class and the

negative class, respectively, we have

minimize 1
2‖www‖2+C+

N
∑

i:yi=+1
ξi +C− N

∑
i:yi=−1

ξi

subject to yi(wwwTxi +b)≥ 1− ξi
and ξi ≥ 0 (i = 1, . . . ,N).

DEC can decrease the influence of the class imbal-
ance by assigning a larger value to the coefficientC+

for the positive class thanC− for the negative class.
The DEC seems to be a better solution for class

imbalanced datasets. However, it cannot distinguish
well in the case of samples with outliers and noisy
examples because the value ofC+ of the cumula-
tive penalty becomes large. For such data, Batuwita
and Palade (2010) proposed FSVM-CIL by combin-
ing FSVM and DEC. Lettingx+i be a positive example
andx−i be a negative example, a fuzzy membership
value is assigned to each example by taking into ac-
count the class imbalance as follows:

s+i = f (x+i )r
+, s−i = f (x−i )r

−, (5)

wherer+ and r− are theerror costs of the positive
and negative classescorresponding to theC+ and
C− constants in DEC, respectively,f is anexample
weight functionthat evaluates the importance of an
example in its own class, ands+i ands−i represent the
fuzzy membership value of the positive and negative
classes, respectively. Batuwita and Palade assigned
r+ = 1 andr− =C+/C− according to the findings re-
ported by Akbani et al. (2004). They proposed six
variations of the example weight functionf that are
compositions of three distance functionsdcen

S , dsph
S ,

anddhyp
S with two decaying functionsglin andgexp as

follows:

f lin,cen
S = glin ◦dcen

S , f exp,cen
S = gexp◦dcen

S ,

f lin,sph
S = glin ◦dsph

S , f exp,sph
S = gexp◦dsph

S ,

f lin,hyp
S = glin ◦dhyp

S , f exp,hyp
S = gexp◦dhyp

S .

Here, dcen
S (xi) = ‖xi − x̄‖1/2 is the Euclidean dis-

tance to xi from the center of its own class ¯x,
dsph

S (xi) = ∑N
j=1yiy jk(x j ,xi) was proposed by Cris-

tianini et al. (2002), anddhyp
S (xi) is the distance from

the hyperplane computed by the original SVM given
S. Let di be a distance given bydcen

S , dsph
S or dhyp

S ,
which is associated withxi . Thedecaying functions
are given as follows:

glin(di) = 1− di

max{d1, . . . ,dN}+ δ
,

gexp(di) =
2

1+exp(εdi)

whereδ is a small positive constant to avoid the con-
dition glin(di) = 0, andε ∈ [0,1] is a decaying rate.
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Figure 1: Comparison of our method (right) with FSVM-
CIL (left) using either (1)f lin,sph

S and f exp,sph
S , (2) f lin,cen

S

and f exp,cen
S or (3) f lin,hyp

S and f exp,hyp
S .

The functionsglin andgexp decay linearly and expo-
nentially, respectively. The left side of Figure 1 illus-
trates the flow of FSVM-CIL.

In (Batuwita and Palade, 2010), the authors con-
cluded that the setting usingf exp,hyp

S = gexp◦ dhyp
S

was the most effective among the six example weight
functions for learning on any imbalanced dataset in
their experiments. We consider that it is attributable to
the representation ability of each function. The clas-
sification performance depends on the distribution of
example weights, and the shape of the distribution is
determined by the example weight function. The dis-
tance functionsdhyp

S anddsph
S are multimodal, while

dcen
S is unimodal. However,dhyp

S has a disadvantage
that it is very time consuming, because it utilizes an-
other SVM classifier internally to calculate the dis-
tance. On the other hand, the example weight func-
tions consisting ofdsph

S have another drawback that
the evaluation of example weights is indirect, in our
opinion, in the following sense. A kernel function
k(xi ,x j) itself represents a similarity of two examples
xi andx j , because it is the inner product inH. More-
over, the resulting example weight functionfS(x) also
expresses a similarity that measures how reliable the
examplex belongs to the class. Nevertheless,dsph

S as-
sociates these two values in terms of distance, that is
an inverse of similarity in some sense. In the next sec-
tion, we will introduce a more direct transformation.

3 PROPOSAL

In this section, we propose a new classification
method based on FSVM-CIL (Batuwita and Palade,
2010), which utilizes the kernel mean to evaluate the
example weightf (xi). Our proposed method, out-

lined in the right side of Figure 1, is simpler than
other existing methods because it does not need to de-
sign any functions other than the kernel. Moreover,
it requires the adjustment of fewer parameters than
FSVM-CIL.

The basic idea is as follows. Each examplexi in X

is mapped into a feature space by a kernelk so that the
SVM finds a hyperplanein the feature space. Thus,
the example weightf (xi), which is a measure of the
extent to whichxi belongs to its own class, should
reflect the probability distribution ofφφφ(X) over the
feature space, but not that ofX itself over X . Be-
cause the kernel meanmk of X, introduced in Sec-
tion 2.2, can be regarded as a representative of the
distribution ofφφφ(X), it would be reasonable to define
f (xi) = 〈mk,φφφ(xi)〉 if possible.

However, the kernel meanmk is not computable,
so that, in its place, we substitute the empirical kernel
mean ˆmk. By Eq. (3), utilizing the bilinearity of the in-
ner product and the reproducing property given in (1)
satisfied by the RKHS, the inner product〈mk,φφφ(xi)〉
can be rewritten as follows.

〈m̂k,φφφ(xi)〉 = 〈 1
N

N

∑
j=1

k(•,x j),k(•,xi)〉

=
1
N

N

∑
j=1

〈k(•,x j ),k(•,xi)〉

=
1
N

N

∑
j=1

k(x j ,xi). (6)

Note that the last term in (6) is the kernel density es-
timation (Duda and Hart, 1973).

To reflect the probability distribution over the fea-
ture space, we focus on the kernel mean. However, if
the mapping from the distribution overX to the kernel
mean is not one-to-one, the value obtained for a fuzzy
membership will not be accurate. Such a kernel that
satisfies the above condition is calledcharacteristic
and is defined as follows.

Definition 3.1 (Characteristic property; Fukumizu
et al. 2009). Let P be the set of all probability mea-
sures on an input spaceX . We say that a PDS kernel
k on X ×X is characteristicif the mapping

P →Hk, P 7→ mP
k

is injective, wheremP
k is the mean of a random vari-

able with lawP.

A characteristic kernel determines a kernel mean
from the probability distribution overX . Typical ex-
amples of characteristic kernels are theLaplacianand
Gaussian kernels(Fukumizu et al., 2013, 2009). To
utilize the kernel mean, its existence have to be guar-
anteed in the first place. As mentioned in Section 2.2,
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Figure 2: The distribution of examples (upper) and that of
fuzzy memberships (lower), that are associated to the exam-
ple weights given by the proposed method. The size of each
example and the deepness of its color express the magnitude
of the fuzzy membership associated to the example.

the kernel mean associated with a normalized PDS
kernel always exists.

In summary, we propose using a normalized char-
acteristic kernelk to calculate the example weight
f (xi) by the inner product ofφφφ(xi) and m̂k. More
precisely, we assign the example weightsf (x+i ) and
f (x−i ) for the positive and negative examples, respec-
tively, as follows:

f (x+i ) =
1

‖S+‖ ∑
(xj ,yj )∈S+

k(x j ,x
+
i ),

f (x−i ) =
1

‖S−‖ ∑
(xj ,yj )∈S−

k(x j ,x
−
i ),

(7)

whereS+ ansS− are respective sets of the positive
and negative examples.

Remark that the proposed method enables the ex-
ample weight function to be multimodal, by consider-
ing the distribution of examples in the feature space.
In Figure 2, we show an instance of the relationship
between the distribution of the examples and the dis-
tribution of the fuzzy memberships. In the upper part,
50 positive examples (red) and 500 negative exam-
ples (blue) are drawn according to a distribution. In
the lower part, we illustrate the fuzzy memberships,
that are associated to the examples by our proposed
method. The size of each example and the deepness
of its color express the magnitude of the fuzzy mem-
bership associated to the example. As we see, the dis-
tribution of fuzzy memberships given by our method
is multimodal. Furthermore, the proposed method re-
quires no additional mechanism such as other internal
classifiers nor decaying functions, because it evalu-
ates each example weight directly by the inner prod-
uct of the empirical kernel mean and the image of the
example.

Table 1: The imbalanced datasets used in the experiments.
#Pos and #Neg represent the numbers of positive and neg-
ative examples, respectively, and Ratio= #Neg/#Pos. The
dimension of an input space is denoted by Dim. For multi-
class datasets, the class labeled PosLabel is selected as the
positive class and the other classes are regarded as the neg-
ative class.

Dataset #Pos #Neg Ratio Dim. PosLabel

Pima-Indian 268 500 1.9 8 1
Waveform 1657 3343 2.0 21 0
Haberman 81 225 2.8 3 2

Transfusion 178 570 3.2 4 1
Ecoli 77 259 3.4 7 2

Satimage 626 5809 9.3 36 4
Yeast 51 1433 28.1 8 5

Abalone 103 4074 39.6 7 15
Page-Block 115 5358 46.6 10 5

We now turn our attention to the computational
cost. As mentioned in Section 2.3, we need the Gram
matrixK = [k(xi ,x j)]i j to solve the SVM optimization
problem in (4). Conversely, in our proposed method,
all example weightsf (x+i ) and f (x−i ) in (7) can be
calculated easily from the Gram matrix alone and re-
quires no additional computations. Moreover, our
method requires neither decaying functions nor the
adjustment of additional parameters (see Figure 1).
Our method can be applied to any input space, if we
define a characteristic PDS kernel for it. Therefore,
our method is much more general than other methods.

4 EXPERIMENT

We compared the performance of our proposed
method with other learning methods, including the
original SVM, the DEC method, and six variations
of FSVM-CIL. We implemented these methods us-
ing the scikit-learn library (Pedregosa et al., 2011).
The svm module works just as a wrapper of Lib-
SVM (Chang and Lin, 2011). The experiments are
performed on a 2.80GHz Intelc© Xeon CPU X5660
with 48GB RAM, running CentOS 6.2. We consid-
ered the nine benchmark class imbalanced datasets
from the UCI Machine Learning Repository (Bache
and Lichman, 2013) listed in Table 1. These datasets
are the same as (Batuwita and Palade, 2010), ex-
cept the one named “miRNA”, that had been consid-
ered since their previous work (Batuwita and Palade,
2009). We excluded it because it is not stored in UCI
Machine Repository.

To assess the methods, we used three measures:
thesensitivity(SE) measure, thespecificity(SP) mea-
sure, and thegeometric mean(GM). These measures
are commonly used in class imbalanced dataset ex-
periments (He and Ma, 2013; Batuwita and Palade,
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Table 2: Classification results obtained for Pima-Indian, Waveform, Haberman, Transfusion, Ecoli and Satimage by the
proposed method, the six variations of FSVM-CIL, the DEC method, and the original SVM. We evaluated the sensitivity (SE),
specificity (SP), geometric mean (GM=

√
SE×SP), and calculation time (Time). Each value of SE, SP and GM is represented

as a percentage (%), and each one of Time is expressed in a second (sec).

Dataset Pima-Indian Waveform
method SE SP GM Time Rank SE SP GM Time Rank

proposed 71.6 77.8 74.7 0.14 1 90.8 85.5 88.1 7.79 5
FSVMCILcen

lin 67.1 78.4 72.5 0.31 2 91.7 85.6 88.6 2.72 1
FSVMCILsph

lin 62.2 62.4 62.3 0.91 7 93.5 83.8 88.5 22.86 2
FSVMCILhyp

lin 46.3 80.4 61.0 33326.54 9 75.996.2 85.4 195892.31 7
FSVMCILcen

exp 55.0 75.2 64.3 89.63 5 91.1 85.7 88.4 587.26 3
FSVMCILsph

exp 73.8 60.6 66.9 87.78 4 96.4 79.2 87.4 603.38 6
FSVMCILhyp

exp 45.2 86.0 62.3 32881.10 6 75.9 96.2 85.4 193904.45 8
SVM 53.4 85.8 67.7 - 3 83.5 93.0 88.1 - 4
DEC 42.6 88.2 61.3 0.03 8 75.7 96.2 85.3 0.02 8

Dataset Haberman Transfusion
method SE SP GM Time Rank SE SP GM Time Rank

proposed 61.5 70.7 65.9 0.04 2 54.6 54.3 54.5 0.17 2
FSVMCILcen

lin 61.5 73.8 67.3 0.18 1 50.7 58.1 54.3 0.24 3
FSVMCILsph

lin 45.6 63.1 53.6 0.21 6 60.3 35.2 46.1 0.79 8
FSVMCILhyp

lin 22.5 93.8 45.9 15747.52 8 18.2 88.3 40.1 55704.97 9
FSVMCILcen

exp 54.2 69.3 61.3 36.08 3 48.6 62.655.2 93.13 1
FSVMCILsph

exp 51.6 64.0 57.5 35.33 4 74.5 32.4 49.1 84.83 5
FSVMCILhyp

exp 24.4 77.8 43.6 15759.51 9 44.8 57.0 50.5 55795.26 4
SVM 41.8 78.7 57.4 - 5 23.9 89.4 46.2 - 7
DEC 29.3 74.2 46.7 0.02 7 25.4 87.6 47.2 0.01 6

Dataset Ecoli Satimage
method SE SP GM Time Rank SE SP GM Time Rank

proposed 83.6 85.9 84.8 0.02 2 86.1 84.3 85.2 19.00 3
FSVMCILcen

lin 83.6 84.4 84.0 0.13 4 87.4 83.6 85.5 4.97 2
FSVMCILsph

lin 84.5 81.6 83.0 0.28 7 90.4 81.9 86.1 39.28 1
FSVMCILhyp

lin 78.0 86.8 82.3 511.00 8 59.4 96.5 75.7 38066.44 7
FSVMCILcen

exp 82.3 85.2 83.7 42.03 5 83.1 76.6 79.7 723.25 4
FSVMCILsph

exp 89.5 77.3 83.2 38.4 6 74.9 77.8 76.4 818.29 5
FSVMCILhyp

exp 66.0 94.7 79.0 543.95 9 58.8 96.6 75.3 38658.07 9
SVM 84.3 84.0 84.2 - 3 59.9 96.1 75.8 - 6
DEC 90.0 83.2 86.5 0.00 1 59.2 96.4 75.6 0.04 8

2010; Akbani et al., 2004). The SE and SP measures
are the ratio of the correctly classified positive and
negative examples, respectively, to the total, and the
GM is given by GM=

√
SE×SP.

Through the experiments, we carried out the
outer-inner-cv(Batuwita and Palade, 2010), consist-
ing of two layers of five-fold cross validations. When
dividing a dataset into five partitions, we maintained
the ratio of the number of examples between positive
and negative classes because we are considering class
imbalanced datasets.

We used Gaussian kernelskrbf (x,x′) =

exp(−β‖x − x′‖2) (β > 0) in each classifier.
The Gaussian kernel is a popular kernel used in SVM
and has a characteristic property (Fukumizu et al.,
2013). For the inner-cv, we performed a two-step

search to obtain good values for the parameters
C in SVM and β in the Gaussian kernels. In the
first step, we performed a grid-parameter-search
for logC in the range{1,2, . . . ,15} and for logβ in
{−15,−14, . . . ,−1} to obtain a roughly good pair
(C̄, β̄) of values. In the second step, we fine-tuned our
results through a grid-parameter-search for logC in a
narrower range loḡC⊕{0,±0.25,±0.5,±0.75} and
for logβ in logβ̄ ⊕ {0,±0.25,±0.5,±0.75}, where
v⊕Sdenotes the set{v+ s | s∈ S}. We setδ = 10−6

for the linearly decaying function in FSVM-CIL
according to the settings given by Batuwita and
Palade (2010). For the exponential decaying func-
tion, we selectedε from the range{0.1,0.2, . . . ,1.0}
by adding a third axis to the grid-parameter-search.
Besides SE and SP, we show the total running time
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Table 3: Classification results obtained for Yeast, Abalone, Page-block and the average of 9 datasets by the proposed method,
the six variations of FSVM-CIL, the DEC method, and the original SVM. We evaluated the sensitivity (SE), specificity (SP),
geometric mean (GM=

√
SE×SP), and calculation time (Time). Each value of SE, SP and GM is represented as a percent-

age (%), and each one of Time is expressed in a second (sec).

Dataset Yeast Abalone
method SE SP GM Time Rank SE SP GM Time Rank

proposed 84.2 85.2 84.7 1.27 1 73.3 68.1 70.6 8.06 2
FSVMCILcen

lin 80.4 85.9 83.1 0.48 3 73.3 66.7 69.9 1.46 3
FSVMCILsph

lin 57.3 80.0 67.7 2.63 5 72.5 54.0 62.6 15.4 4
FSVMCILhyp

lin 25.6 97.1 49.9 3140.44 8 67.6 32.2 46.6 64528.58 6
FSVMCILcen

exp 84.2 85.2 84.7 172.47 1 78.3 64.8 71.2 487.37 1
FSVMCILsph

exp 100.0 0.0 0.0 173.5 9 100.0 0.0 0.0 553.39 9
FSVMCILhyp

exp 64.0 58.1 61.0 3292.45 6 46.0 51.3 48.6 65907.74 5
SVM 82.4 80.6 81.5 - 4 88.6 17.3 39.1 - 8
DEC 36.5 94.4 58.7 0.03 7 69.6 30.0 45.7 0.07 7

Dataset Page-block average of 9 datasets
method SE SP GM Time Rank SE SP GM Time Rank

proposed 81.7 90.3 85.9 15.02 3 76.4 78.077.2 5.72 1
FSVMCILcen

lin 85.2 90.1 87.6 2.43 2 75.7 78.5 77.0 1.44 2
FSVMCILsph

lin 87.8 91.1 89.5 27.07 1 72.7 70.3 71.0 12.16 3
FSVMCILhyp

lin 37.4 94.7 59.5 6111.99 5 47.9 85.1 60.7 45892.20 8
FSVMCILcen

exp 0.0 100.0 0.0 692.91 9 64.1 78.3 65.4 324.90 5
FSVMCILsph

exp 45.2 66.0 54.6 693.08 6 78.4 50.8 52.8 343.11 9
FSVMCILhyp

exp 60.0 48.2 53.8 6804.82 7 53.9 74.0 62.2 45949.71 6
SVM 40.9 94.3 62.1 - 4 62.1 79.9 69.9 - 4
DEC 24.3 95.1 48.1 0.06 8 50.3 82.8 61.7 0.03 7

for evaluating example weights in each method, in
order to compare the actual computational costs
including parameter tuning. The time for computing
Gram matrix and solving the optimization problem
of SVM are excluded, because these are common to
all methods. More precisely, the running time refers
to the sum of the time for evaluating example weights
for all examples, that include parameter tuning in
outer-inner-cv.

The results are listed in Table 2 and 3. As shown,
our proposed method achieved the best performance
in the two datasets (Pima-Indian and Yeast) of the
nine datasets. Moreover, the proposed method got
high ranks in other datasets with various imbalance
ratios. Actually, our method performed the best on
the average of the nine GM measures. Concerning
with the running time, DEC and FSVMCILcen

lin are
much faster than the other methods in all datasets.
This is because both DEC and FSVMCILcen

lin runs in
O(n) time with respect to the numbern of examples,
while the others requireO(n2) time. Next to these
two methods, the proposed method runs fast, because
it does not depend on any other mechanisms, and
it has fewer parameters to adjust, among other
FSVIM-CIL methods. The FSVM-CIL methods
utilizing the exponential decaying functiongexp

are slow in general, because it takes time to adjust

the parameterε for gexp. Obviously, FSVMCILhyp
lin

and FSVMCILhyp
exp are much slower, because the

computation of dhyp
S (xi) requires another internal

SVM classifiers to execute.

5 CONCLUSION

We proposed a new method for the classification
problem associated with class imbalanced data. We
developed a simple but effective method to provide
a fuzzy membership for each example by consider-
ing the probability distribution over the feature space.
Our method reuses the Gram matrix, which is always
used in SVM, to obtain fuzzy membership values for
each example without additional computational cost.
Furthermore, our method does not rely on the ad-
justment of additional parameters. Experiments con-
firmed the superiority of our method over other clas-
sification methods for imbalanced data.

We note that our proposed method can be applied
also for non-vectorial data, such as strings, graphs,
and images, even though we do not have any charac-
teristic kernels for non-vectorial data yet. However, if
such characteristic kernels are developed, we can ap-
ply our method to non-vectorial data more effectively.
We will try to address them in future work.
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