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Abstract: Support vector machines (SVMs) are among the most popular classification algorithms. However, whereas
SVMs perform efficiently in a class balanced dataset, their performance declines for class imbalanced datasets.
The fuzzy SVM for class imbalance learning (FSVM-CIL) is a variation of the SVM type algorithm to accom-

modate class imbalanced datasets. Considering the class imbalance, FSVM-CIL associates a fuzzy member-

ship to each example, which represents the importance of the example for classification. Based on FSVM-CIL,
we present a simple but effective method here to calculate fuzzy memberships using the kernel mean. The ker-
nel mean is a useful statistic for consideration of the probability distribution over the feature space. Our

proposed method is simpler than preceding methods because it requires adjustment of fewer parameters and

operates at reduced computational cost. Experimental results show that our proposed method is promising.

1 INTRODUCTION and fuzzy SVM(FSVM) (Chun-Fu and Sheng-De,
2002) for class imbalance learning (CIL). Although

Support vector machines (SVMs) (Vapnik, 1995) this method is quite effective for class_ imbalance_d
are very popular classification algorithms, which datasets, even in the presence of outliers and noisy
have been extensively studied and applied in vari- €xamples, it requires the adjustment of numerous pa-
ous fields (Burges, 1998). Although SVM is a high- rameters.
accuracy classifier for class balanced datasets, it does In both FSVM and FSVM-CIL, each example is
not work well forclass imbalanced datase{$le and assigned duzzy membershifhat represents the de-
Ma, 2013; He and Garcia, 2009). gree to which the example belongs to the class. The
In real world problems, datasets are often imbal- classification ability of these methods depends on the
anced, that is, the number of available examples for fuzzy memberships. Various computational meth-
one class is significantly different than for the oth- ods for assigning fuzzy memberships have been de-
ers. For instance, doctors diagnose disorders usingveloped to appropriately address noisy data. Yan et
X-ray photographs. The number of photographs for al. (2013) proposed a method based on fuzzy cluster-
patients with serious illnesses is obviously far smaller ing and probability distribution. A weakness of this
than that for healthy persons. Nevertheless it is very method is that it is applicable only to vector data.
important to classify both positive and negative exam- Chun-Fu and Sheng-De (2004) proposed a method
ples correctly, even when they are highly imbalanced. based on a kernel function that is highly relevant
A number of methods have been proposed in the lit- to @ probability density. This method can be used
erature to adapt SVM to accommodate class imbal- for nonvectorial data. Jiang et al. (2006) also pro-
anced datasets (He and Ma, 2013). These methodgosed a kernel-based method that exploits a geometri-
can roughly be divided intexternal methodsuch as  cal property of the training sample in a feature space.
preprocessing of the dataset to balance it,iatetnal Both these methods calculate a value using a kernel
methodswhich seek to modify the algorithms. function and convert the value into a fuzzy member-
The present study takes the latter approach basedship using a combination of some decaying functions.
on the previously proposed fuzzy SVM for class im- However, these methods incur the unfortunate burden
balance learning (FSVM-CIL) method (Batuwita and ©f adjusting numerous parameters not only in the ker-
Palade, 2010). The FSVM-CIL framework combines nel functions but also in the decaying functions.
different error cost§DEC) (Veropoulos et al., 1999) In this paper, we propose a simple kernel-based
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method that directly calculates a fuzzy membership guaranteed b¥[||@(X)||]] = E[\/k(X,X)] < . sThe
from the kernel functions. Our method requires the kernel mean satisfies the condition (Fukumizu et al.,
adjustment of a fewer number of parameters, relative 2013):
to other methods; thus, it represents a simpler solution

for class imbalanced datasets. The effectiveness of {h,my) = E[h(X)] for vh e H.

(@)

our proposed method is experimentally verified.

2 PRELIMINARIES

2.1 Kernel Methods

In kernel methods, examples are mapped implicitly
into a feature space by a kernel to exploit the nonlin-

ear features of the examples. Kernels are applicable

to many existing linear methods by replacing the orig-
inal inner product in the input space with kernels. An
N x N matrix K is positive semidefinité it satisfies
c'Kc > 0 for any real vectoc = (cy,...,cn)" € RN,
where T represents the transpose. kétnelis de-
fined as a two-variable functiok: X x X — R on

an arbitrary setX. A kernel k is said to beposi-
tive definite symmetri(PDS) if, for any sampl& =
(X1,...,%nv) € XN, the matrixk = [K(x;,xj)]ij is Sym-
metric and positive semidefinite. The mati is
called theGram matrixassociated witk and the sam-
ple S. In many kernel methods, each example is ac-
cessed only through the Gram matrix.

The following are some useful properties of PDS
kernels (e.g., Mohri et al. 2012). For any PDS ker-
nel k, there exists a Hilbert spad® and a mapping
@: X — H such thatk(x,x) = (@(x),@(x)) for any
x,X € X, where(e, o) represents the inner product in
H. FurthermoreH satisfies theeproducing property

Vhe H, vxe X, h(x) = (hk(e,x)). (1)

H is called areproducing kernel Hilbert space
(RKHS) associated with and is denoted by in
this paper.

For a kernek, we definethe normalized kernel k
associated wittk by

if k(x,x) = k(xX,X) =0,

0
/
k/(XaX)_{ k(k<xa>‘>— otherwise

X X)K(X' X
For any PDS kernel, the normalized kerndd asso-
ciated withk is also PDS.
2.2 Kernel Mean

Let X be a random variable o andk be a mea-
surable PDS otk x X with E[\/k(X,X)] < «. The
kernel mean mof X onHy is defined by the mean of
the Hy-valued random variabl@(X). Its existence is
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Note that, for any normalized PDS kerrielthe con-
dition E[/k(X,X)] < e« apparently holds because
lo(X)|| = /Kk(x,x) <1 foranyxe X.

The empirical kernel meanfy for a sample
(X1,...,XN) € XN drawn from an independent and
identically distributed (i.i.d.) distribution is defined

by

1N 1N
=5 2 00%) = 3 k(o). ©
PR P
The empirical kernel meamy is y/n-consistent for
the kernel meamy, and./n(rfix, — my) converges to
a Gaussian process diix (Fukumizu et al., 2013;
Bertinet and Agnan, 2004). Therefore, we can prop-
erly estimate the kernel meam of X by the empirical
kernel meanry'in the feature space.

2.3 Support Vector Machine

The SVM was proposed by Vapnik (1995) and has
a high generalization ability based on structural risk
minimization. Suppose that we have a training sam-
ple S= ((X1,y1),.-.,(%n,¥N)) € (X x 9N, where
eachy; € 9 = {—1,+1} is a class label. Solving
the quadratic convex optimization problem given in
Eq. (4), SVM finds a hyperplane that maximizes the
margin between itself and the closest examples.

minimize (|w||2+C3N &

subjectto yj(W'x +b) > 1—§
and >0 (i=1,...,N)

(4)

Here,&; is a slack variable associated with which
represents the penalty of margin violation, abds

a constant that can be regarded as a regularization pa-
rameter. The corresponding decision functfasf the
optimization problem in (4) is

N

f(x) = sgn(_zicxiyik(xi,x) + b) ,

wherek is a PDS kernel onX x X anda; is a La-
grange multiplier that is introduced when considering
the dual form of the optimization problem given in
(4). To meet the Karush—Kuhn—Tucker condition, the
value ofa; must satisfy < a; <C andziN:lonyi =0.

An examplex; whose associated multiplier takes a
positive value is called support vector
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2.4 Fuzzy Support Vector Machine negative class, respectively, we have

N N

In the optimization problem of SVM, both the max- minimize J|w|[2+Cty &+C 3y &

imization of the size of the margin and the mini- : S

mization of its penalty of margin violations are at-  SUPIECL{O Yi(W'xi +b) > 1-§;

tempted simultaneously. Therefore, excess penalties and & 20 (i=1,...,N).

cause overfitting and hinder the generalization ability DEC can decrease the influence of the class imbal-

of the SVM. In many cases, outliers or noisy exam- ance by assigning a larger value to the coeffic&ht

ples are inevitable, and we would like to allow for for the positive class tha@~ for the negative class.

lower margin violation penalties for these. The DEC seems to be a better solution for class
Chun-Fu and Sheng-De (2002) proposed an imbalanced datasets. However, it cannot distinguish

FSVM method wherein eaclk has a fuzzy mem-_ well in the case of samples with outliers and noisy

berships that represents a measure of the extent to examples because the value ©@f of the cumula-

which x; is a member of its assigned class. It is de- tive penalty becomes large. For such data, Batuwita

sirable that noisy examples or those that are likely to and Palade (2010) proposed FSVM-CIL by combin-

be outliers have lower membership values than nor- ing FSVM and DEC. Letting;" be a positive example

mal examples. Considering fuzzy memberships, the andx be a negative example, a fuzzy membership

optimization problem of SVM given in (4) becomes  value is assigned to each example by taking into ac-

S 1 g2 N count the class imbalance as follows:
minimize 5[|W||*+C¥i5;S§

subjectto yi(W'x +b) >1—§ st=f)rt, s =10 )r, (5)
and § >0 (i=1,...,N). wherert andr~ are theerror costs of the positive
and negative classesorresponding to th€" and
C~ constants in DEC, respectivelf,is anexample
weight functionthat evaluates the importance of an
example in its own class, argi ands represent the
fuzzy membership value of the positive and negative
classes, respectively. Batuwita and Palade assigned
, rt =1andr~ =C*/C™ according to the findings re-
The hyperplane determined by SVM depends only on ported by Akbani et al. (2004). They proposed six
supportvectors. For linearly separable data, SVM can 4riations of the example weight functidnthat are

_correctly classify the training sample no matter how compositions of three distance function&” dsph’
imbalanced the classes are. However, for nonlinearly

hyp i i iongli
separable data, SVM attempts to select a greater num-&ndds _ with two decaying functiong™ andg®® as
ber of support vectors to separate the training samplefollows:

Here,s andg¢; represent a fuzzy membership and a
penalty for margin violation, respectively, and their
productsé; represents a weighted penalty.

2.5 SVMs for Class Imbalanced Data

due to which it is strongly influenced by class imbal- fan-cen_ glin ; gcen - §EXACEN _ gexp, ggen
ance. We now review some methods that reduce the fun-SPh_ glin o gSPh £ EXRSPN _ exp, §SPh
influence of class imbalance. In the following dis- fﬁn,hypi iin o g Vo fgxp,hypi exp, g Vo

=d s 5 Ig =g s -

cussion, we assume without loss of generality that a S
negative classs always taken to be the majority class Here, d$e(x) = ||x — ;”1/2 is the Euclidean dis-
and apositive classs always treated as the minority tance tox from the center of its own clasg,
class. _ o dPx) = iL1Yiyik(xj,%) was proposed by Cris-

SVM attempts to simultaneously maximize the .~ . . hyp, o\ : :
margin and minimize the penalty of margin violation. tianini et al. (2002), andg™ (%) is thg o-hstance from
Therefore, if the minority and the majority classes the hyperplane c.omputed.by the or|g|r;atl1 SVNFI] given
have overlapping regions, the resulting hyperplane S Let di be a distance given bgfg™, %p or dsyp'
has a tendency to be pushed toward the minority class.Which is associated witk. The decaying functions
In extreme situations, SVM may ignore all examples are given as follows:

of the minority class. The phenomenon is caused by di

i
the fact that SVM takes into account the penalties for g"(d) = 1- max{dy,...,dn} + 0’
margin violationsequallyfor all examples. 2
. exp/ d. _
To tackle this problem, Veropoulos et al. (1999) gv™™(di) 17 exped)

proposed aDEC method that associates a different
penalty with each class. By splitting the const@nt  whered is a small positive constant to avoid the con-
in (4) into C* andC~ for the positive class and the dition ¢ (d;) = 0, ande € [0,1] is a decaying rate.
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Figure 1: Comparison of our method (right) with FSVM-
CIL (left) using either (1)fi"sP" and f&XPsPh () flin-cen
and f&P°or (3) NP and PP,

The functionsgjin andgexp decay linearly and expo-
nentially, respectively. The left side of Figure 1 illus-
trates the flow of FSVM-CIL.

In (Batuwita and Palade, 2010), the authors con-
cluded that the setting usingS™®™P = g&xPo dP
was the most effective among the six example weight
functions for learning on any imbalanced dataset in
their experiments. We consider that it is attributable to
the representation ability of each function. The clas-
sification performance depends on the distribution of
example weights, and the shape of the distribution is
determined by the example weight function. The dis-
tance functiongl® and d3*" are multimodal, while

dge" is unimodal. Howeverd?’® has a disadvantage
that it is very time consuming, because it utilizes an-
other SVM classifier internally to calculate the dis-
tance. On the other hand, the example weight func-

tions consisting otis"" have another drawback that
the evaluation of example weights is indirect, in our
opinion, in the following sense. A kernel function
k(xi,x;) itself represents a similarity of two examples
X andx;j, because it is the inner productlifi More-
over, the resulting example weight functiég(x) also

expresses a similarity that measures how reliable the
examplex belongs to the class. Nevertheler:z‘éé’,h as-

sociates these two values in terms of distance, that is

an inverse of similarity in some sense. In the next sec-
tion, we will introduce a more direct transformation.

3 PROPOSAL

In this section, we propose a new classification
method based on FSVM-CIL (Batuwita and Palade,
2010), which utilizes the kernel mean to evaluate the
example weightf (x;). Our proposed method, out-
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lined in the right side of Figure 1, is simpler than
other existing methods because it does not need to de-
sign any functions other than the kernel. Moreover,
it requires the adjustment of fewer parameters than
FSVM-CIL.

The basic ideais as follows. Each exampli X
is mapped into a feature space by a keks# that the
SVM finds a hyperplane the feature spaceThus,
the example weighf (x), which is a measure of the
extent to whichx; belongs to its own class, should
reflect the probability distribution of(X) over the
feature space, but not that &f itself over X. Be-
cause the kernel meany of X, introduced in Sec-
tion 2.2, can be regarded as a representative of the
distribution of@(X), it would be reasonable to define
f(x) = (M, @ )) if possible.

However, the kernel meamy is not computable,
so that, in its place, we substitute the empirical kernel
meanmy. By Eq. (3), utilizing the bilinearity of the in-
ner product and the reproducing property given in (1)
satisfied by the RKHS, the inner produaty, @(x;))
can be rewritten as follows.

(M, @(xi))

Mz
=~
—~
\..
~—
=
—~
\‘.
P
~
~

[

x

Zl -

<k(0,Xj),k(0,Xi)>

Zlr Zl-

k(

X

i) (6)

Mz Mz

Note that the last term in (6) is the kernel density es-
timation (Duda and Hart, 1973).

To reflect the probability distribution over the fea-
ture space, we focus on the kernel mean. However, if
the mapping from the distribution ovétto the kernel
mean is not one-to-one, the value obtained for a fuzzy
membership will not be accurate. Such a kernel that
satisfies the above condition is calledaracteristic
and is defined as follows.

Definition 3.1 (Characteristic property; Fukumizu
et al. 2009) Let P be the set of all probability mea-
sures on an input spacé We say that a PDS kernel
k on X x X is characteristidf the mapping

P — Hy, P—nf

is injective, wherarf is the mean of a random vari-
able with lawP.

A characteristic kernel determines a kernel mean
from the probability distribution ovek. Typical ex-
amples of characteristic kernels are tagplacianand
Gaussian kernelgFukumizu et al., 2013, 2009). To
utilize the kernel mean, its existence have to be guar-
anteed in the first place. As mentioned in Section 2.2,
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4 Table 1: The imbalanced datasets used in the experiments.
z’ #Pos and #Neg represent the numbers of positive and neg-
o ative examples, respectively, and RatigiNeg/#Pos. The
ol dimension of an input space is denoted by Dim. For multi-
“af class datasets, the class labeled PosLabel is selected as th
-2t positive class and the other classes are regarded as the neg-
-3 ative class.
a [ Dataset | #Pog§ #Ne§ Ratijp Din).PosLabel|
| Pima-Indian] 268] 500 1.4 [ !
oL Waveform | 1657 3343 2.Q 21 D
1l Haberman 81 225 2.8 B P
of Transfusion 178 570 3.2 4 L
-1t Ecoli 77 259 3.4 7 2
-2f Satimage 626 5809 9.8 3b 4
—-3F Yeast 51| 1433 28.1 [: [
-47 Abalone 103| 4074 39.4 7 15
Figure 2: The distribution of examples (upper) and that of | Page-Block| 115 535§ 46.6 1P P

fuzzy memberships (lower), that are associated to the exam-
ple weights given by the proposed method. The size of each ~We now turn our attention to the computational
example and the deepness of its color express the magnitudecost. As mentioned in Section 2.3, we need the Gram
of the fuzzy membership associated to the example. matrixK = [K(x;,xj)];j to solve the SVM optimization
) ] . problem in (4). Conversely, in our proposed method,

the kernel mean associated with a normalized PDS g example weightsf (") and f(x") in (7) can be
kernel always exists. _ _ calculated easily from the Gram matrix alone and re-

In summary, we propose using a normalized char- qyires no additional computations. Moreover, our
acteristic kernek to calculate the example weight method requires neither decaying functions nor the
f(xi) by the inner product ofp(x;) andm. More  gdjustment of additional parameters (see Figure 1).
precisely, we assign the example weights;") and  our method can be applied to any input space, if we
f(x ) for the positive and negative examples, respec- gefine a characteristic PDS kernel for it. Therefore,

tively, as follows: our method is much more general than other methods.
f(Xf) = HSJ:H\ > k(XJ'inJr)a
, e @)
f) =7 > k%), 4 EXPERIMENT
(xj,yj)eS™

whereS"t ansS™ are respective sets of the positive We compared the performance of our proposed
and negative examples. method with other learning methods, including the
Remark that the proposed method enables the ex-original SVM, the DEC method, and six variations
ample weight function to be multimodal, by consider- of FSVM-CIL. We implemented these methods us-
ing the distribution of examples in the feature space. ing the scikit-learnlibrary (Pedregosa et al., 2011).
In Figure 2, we show an instance of the relationship The svm module works just as a wrapper of Lib-
between the distribution of the examples and the dis- SVM (Chang and Lin, 2011). The experiments are
tribution of the fuzzy memberships. In the upper part, performed on a 2.80GHz Intg) Xeon CPU X5660
50 positive examples (red) and 500 negative exam-with 48GB RAM, running CentOS 6.2. We consid-
ples (blue) are drawn according to a distribution. In ered the nine benchmark class imbalanced datasets
the lower part, we illustrate the fuzzy memberships, from the UCI Machine Learning Repository (Bache
that are associated to the examples by our proposedand Lichman, 2013) listed in Table 1. These datasets
method. The size of each example and the deepnessire the same as (Batuwita and Palade, 2010), ex-
of its color express the magnitude of the fuzzy mem- cept the one named “miRNA’, that had been consid-
bership associated to the example. As we see, the dis-ered since their previous work (Batuwita and Palade,
tribution of fuzzy memberships given by our method 2009). We excluded it because it is not stored in UCI
is multimodal. Furthermore, the proposed method re- Machine Repository.
quires no additional mechanism such as otherinternal  To assess the methods, we used three measures:
classifiers nor decaying functions, because it evalu- thesensitivity(SE) measure, thepecificity(SP) mea-
ates each example weight directly by the inner prod- sure, and thgeometric meaGM). These measures
uct of the empirical kernel mean and the image of the are commonly used in class imbalanced dataset ex-
example. periments (He and Ma, 2013; Batuwita and Palade,
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Table 2: Classification results obtained for Pima-Indiargvéform, Haberman, Transfusion, Ecoli and Satimage by the
proposed method, the six variations of FSVM-CIL, the DEChodf{ and the original SVM. We evaluated the sensitivity (SE)
specificity (SP), geometric mean (GM\/SE x SP), and calculation time (Time). Each value of SE, SP and &#¥{dresented

as a percentage (%), and each one of Time is expressed inralg@ec).

Dataset Pima-Indian Waveform
method SE] SH GM Tim¢ Ran SE SP GM Time Rank
proposed 716 77.8 747 0.14 1 90.8| 85.5/ 88.1 7.79 5
FSVMCIL" || 67.1| 78.4] 725 0.31 2 91.Y 85/688.6 2.72 1
FSVMCILﬁﬁh 62.2 | 62.4| 62.3 0.91 7 93.5 83,8 88|5 22.86 2
FSVMCILﬂr{p 46.3 | 80.4| 61.0, 33326.54 9 75)996.2 | 85.4 | 195892.31 7
FSVMCILgig 55.0 | 75.2| 64.3 89.63 5 91.1 857 88/4 58726 B
FSVMCILg’X’FJ 73.8 | 60.6 | 66.9 87.78 4 || 96.4| 79.2 | 87.4 603.39 6
FSVMCILQ{Q 452 | 86.0| 62.3] 32881.10 6 759 96|2 885.4 193904.45 8
SVM 53.4| 85.8| 67.7 - 3 83.5 93.0 88 - 4
DEC 426 88.2| 61.3 0.03 8 75.71 96.2 85.3 0.02 8
Dataset Haberman Transfusion
method SE] SH GM Timd Ran}y SE P GM Tirhe  Rank
proposed 615 70.7| 65.9 0.04 2 544 543 545 0.17 2
FSVMCIL®" || 61.5 | 73.8] 67.3 0.18 1 50.7| 58.1 54.3 0.24 3
FSVMCILﬁﬁh 456 | 63.1| 53.6 0.21 6 60.3 352 46[1 0.79 g
FSVMCILﬂr{p 225 | 93.8| 45.9 | 15747.52 8 18.2 88.B 40/l 55704.97 9
FSVMCILgig 54.2 | 69.3| 61.3 36.09 3 48.6  62]655.2 93.13 1
FSVMCIL@QB 51.6 | 64.0| 57.5 35.33 4 || 745 | 32.4| 49.1 84.83 5
FSVMCILQ{Q 244 | 77.8| 43.6| 15759.51 9 44/8 570 50.5 55795.26 4
SVM 41.8| 78.7| 57.4 - 5 23.9 89.4 | 46.2 - 7
DEC 29.3| 74.2| 46.7 0.07 7 254 876 472 0.p1 b
Dataset Ecoli Satimage
method SE] SH GM Timd Ranf SE P GM Tirhe  Rank
proposed 83.6 859 84. 0.02 2 86.1 84.3 8h.2 19.00 3
FSVMCILE" || 83.6 | 84.4] 84.0 0.13 4 87.4 836 85|5 4.97 p.
FSVMCILﬁr‘jh 845 | 81.6| 83.0 0.28 7 || 90.4 | 81.9| 86.1 39.28 1
FSVMCIL[},{p 78.0 | 86.8| 82.3] 511.0(¢ 8 504 96|5 757 3806644
FSVMCILgf”p 82.3| 85.2| 83.7 42.03 5 83.1 766 797 72325 4
FSVMCIL@QE 89.5| 77.3| 83.2 38.4 6 749 77,8 76/4 818.29 5
FSVMCIL’e‘){g 66.0 | 94.7 | 79.0 | 543.95 9 58.4 96.6 | 75.3 | 38658.07| 9
SVM 84.3| 84.0| 84.2 - 3 509 96.1 758 - 6
DEC 90.0 | 83.2 | 86.5 0.00 1 59.2| 96.4 75.6 0.04 8

2010; Akbani et al., 2004). The SE and SP measuressearch to obtain good values for the parameters
are the ratio of the correctly classified positive and C in SVM and 3 in the Gaussian kernels. In the
negative examples, respectively, to the total, and thefirst step, we performed a grid-parameter-search

GM is given by GM= /SEx SP. for logC in the range{1,2,...,15} and for logf3 in
Through the experiments, we carried out the {=15-14,...,—1} to obtain a roughly good pair

outer-inner-cv(Batuwita and Palade, 2010), consist- (C, ) of values. In the second step, we fine-tuned our
ing of two layers of five-fold cross validations. When results through a grid-parameter-search fordag a
dividing a dataset into five partitions, we maintained narrower range log @ {0,£0.25,40.5,£0.75} and
the ratio of the number of examples between positive for logp in logP & {0,40.25,£0.5,4+0.75}, where
and negative classes because we are considering clase® Sdenotes the sgiv+s|se S}. We setd = 10°
imbalanced datasets. for the linearly decaying function in FSVM-CIL
We used Gaussian kernelskps(x,X) = according to the settings given _by Batuvyita and
exg—B|x — X||?) (B > 0) in each classifier. Palade (2010). For the exponential decaying func-
The Gaussian kernel is a popular kernel used in SvM 1ion, we selected from the range{0.1,0.2,...,1.0}
and has a characteristic property (Fukumizu et al., Py adding a third axis to the grid-parameter-search.
2013). For the inner-cv, we performed a two-step Besides SE and SP, we show the total running time
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Table 3: Classification results obtained for Yeast, Abal&rage-block and the average of 9 datasets by the proposbddnet
the six variations of FSVM-CIL, the DEC method, and the ar&@iSVM. We evaluated the sensitivity (SE), specificity (SP)
geometric mean (GM= v/SEx SP), and calculation time (Time). Each value of SE, SP and &Mpresented as a percent-
age (%), and each one of Time is expressed in a second (sec).

Dataset Yeast Abalone
method SE] SP GM Timg Ran SE P GM Tithe  Rank
proposed 84.2 85.2 84.7 1.27 1 73.3| 68.1 | 70.6 8.06 2

FSVMCILS" 80.4 | 85.9| 83.1 0.48

73.3 66/ 69|90 1.46
FsvMcILS || 57.3 | 80.0] 67.7 2.63

3 7
lin 5 725 540 626 15.4
FSVMCIL{Kp 256 | 97.1 | 49.9 | 3140.44 8 67.4 322 46 64528.58
1
9

ol Nl

FSVMCILgzp 84.2 | 85.2| 84.7 | 172.47 78.3| 64.8 71.2 487.37 1
FSVMCILZQB 100.0| 0.0 0.0 173.5 100.0| 0.0 0.0 553.39 9

FSVMCILQ;’E 64.0 | 58.1| 61.0f 3292.41 6 46.0 513 486 65907|74 5
SVM 82.4| 80.6| 815 - 4 88.6 17.3 39 - 8
DEC 36.5| 94.4| 58.7 0.04 7 69.6 300 457 0.p7 T
Dataset Page-block average of 9 datasets
method SE] SA GM Timg Ran SE P GM Tire  Rank

proposed 81.7, 90.3 85.9 15.02 3 76.4 78.07.2 5.72 1

FSVMCILS" || 85.2 90.1| 87.6 2.43 2 75.7 78p 77|0 1.44 p.

FSVMCIL™ || 87.8 | 91.1] 89,5 27.07 1 72.7| 703 71 12.16 3

lin
FSVMCIL{Kp 374 94.7| 59.5| 6111.99 5 47.085.1 | 60.7 | 45892.20 8
FSVMCILgiB 0.0 | 100.0| 0.0 692.91 9 64.1 78.3 65.4 324.90 5
FSVMCILZQE 45.2 66.0| 54.6 693.08 61 78.4| 50.8| 52.8 343.11 9
FSVMCILQ{E 60.0 48.2| 53.8] 6804.82 7 530 740 62.2 45949|71 6
SVM 40.9 94.3| 62.1 - 4 62.1 79.9 69.9 - 4
DEC 24.3 95.1| 48.] 0.0¢ 8 50.8 82)8 617 0.p3 T

for evaluating example weights in each method, in the parametee for g®P. Obviously, FSVMCI hxp
order to compare the actual computational costs gnd FSVMCILQ%’E are much slower, because the
including parameter tuning. The time for computing
Gram matrix and solving the optimization problem
of SVM are excluded, because these are common to
all methods. More precisely, the running time refers
to the sum of the time for evaluating example weights
for all examples, that include parameter tuning in 5 CONCLUSION

outer-inner-cv.

The results are listed in Table 2 and 3. As shown, We proposed a new method for the classification
our proposed method achieved the best performanceproblem associated with class imbalanced data. We
in the two datasets (Pima-Indian and Yeast) of the developed a simple but effective method to provide
nine datasets. Moreover, the proposed method gota fuzzy membership for each example by consider-
high ranks in other datasets with various imbalance ing the probability distribution over the feature space.
ratios. Actually, our method performed the best on Our method reuses the Gram matrix, which is always
the average of the nine GM measures. Concerningused in SVM, to obtain fuzzy membership values for
with the running time, DEC and FSVMC{E" are each example without additional computational cost.
much faster than the other methods in all datasets.Furthermore, our method does not rely on the ad-
This is because both DEC and FSVMG{L runs in justment of additional parameters. Experiments con-
O(n) time with respect to the numbarof examples,  firmed the superiority of our method over other clas-
while the others requir®(n?) time. Next to these  sification methods for imbalanced data.
two methods, the proposed method runs fast, because We note that our proposed method can be applied
it does not depend on any other mechanisms, andalso for non-vectorial data, such as strings, graphs,
it has fewer parameters to adjust, among other and images, even though we do not have any charac-
FSVIM-CIL methods. The FSVM-CIL methods teristic kernels for non-vectorial data yet. However, if
utilizing the exponential decaying functiog®*P such characteristic kernels are developed, we can ap-
are slow in general, because it takes time to adjust ply our method to non-vectorial data more effectively.

We will try to address them in future work.

computation ofdgyp(x@) requires another internal
SVM classifiers to execute.
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