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Abstract. The main goal of the present study is to launch the foundations of a 
pipeline for fMRI-based human behavior classification, addressing however 
some particularities of cognitive processes. While studying cognition, much of 
the experiments with fMRI use devices to record subjects’ responses, which re-
cruits the participation of the motor cortex. Although the influence of this as-
pect may be reduced in subtractive univariate analyses methods, it may nega-
tively interfere in multivariate methods. The fMRI data here used is exempted 
of motor responses. Subjects were asked to form impressions about persons, ob-
jects, and brands, but their thoughts were not recorded by devices. The feed-
forward backpropagation artificial neural network was used. With this proce-
dure it was possible to correctly classify above randomness. The analysis of the 
hidden nodes reveals the extensive participation of the fusiform gyri and lateral 
occipital cortex in this cognitive process, corroborating the critical participation 
of these structures during classification in the natural brain. 

1 Introduction 

Although some classifiers have been being proposed for fMRI (functional magnetic 
resonance imaging) data analysis [1], and the advantages of such methods have been 
already addressed, especially in the study of cognitive processes [2, 3], ANNs have 
been missing this trend, with sporadic cross-talks [4-6]. However, ANNs’ advantages 
are well known (e.g. modeling non-linear systems) which may be useful in the study 
of cognitive processes by modeling and classifying functional data. The present 
study’s main goal is to contribute to this developing field. 

Since its practical implementation in the mid 90s, fMRI has been extensively used 
to better understand human cognition. GLM (General Linear Model) is the mostly 
used method to analyze the fMRI signal. However, GLM has some limitations. Its 
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univariate nature is one of them. GLM procedure analyzes the signal in a voxel by 
voxel basis, i.e. in one voxel independently of any activity in the remaining voxels of 
the brain. Nonetheless, there is compelling evidence that processes in the brain unfold 
in interconnected networks [7], and neurons’ interdependencies have to be assumed 
in order to fully understand cognition. One advantage of multivariated-based methods 
is that they consider the activity of all voxels included in the model, which may 
emulate brain function closely, at least better than the GLM approach. Comparisons 
of these methods may be found elsewhere [8, 9]. 

The present study explores the applicability of ANNs. ANNs were already 
successfully used with fMRI. Misaki and Miyauchi [5] used ANNs to model signal, 
although in a procedure similar to the GLM analysis. Recently ANNs were used to 
detect Resting State Networks (RSNs) at the individual level [10], acknowledging 
that RSNs probably are the most important brain networks discovered with 
neuroimaging techniques [11]. Therefore, ANNs may be a suitable method for fMRI 
signal analysis, especially in the cognitive domains. 

ANNs have a potential advantage in comparison with other multivariate methods. 
ANNs’ structure includes nodes in hidden layers which may emulate similar 
regularities that exist in the decision process. This facet may be explored in order to 
model cognitive processes, especially the complex and multi-stepped ones. Therefore, 
the present study uses a proven and effective backpropagation feedforward ANN with 
one single hidden layer, in order to favor, more the interpretation of the results (main-
ly the psychological interpretation), than the ANN performance. 

One particularity disclosed in [12] is the probable over performance introduced by 
motor components when the objective of the study focus on earlier cognitive stages. 
Although counterbalancing may reduce motor influences in subtractive univariate 
methods, this may not happen in ANNs and the neural activity produced in motor 
responses may introduce biases that inflate successful hits. Hence, in this study ANNs 
are used to model a cognitive task, but the task is exempted of motor components. 

The paradigm is largely inspired in the work of Mitchell, Macrae and Banaji [13]. 
In their study participants made impressions of persons and objects, two stimuli 
classes that have been extensively used in cognitive neuroscience. In the present 
study, a third class was added: brand logos. However, in order to explore the 
discriminative power of ANNs, this class is split in two: preferred brands and 
indifferent brands. 

2 Methods 

2.1 Paradigm  

The structure of the present study relies on the work of Mitchell et al., [13]. It also 
includes the same two classes of stimuli, photographs of human faces and objects, but 
it adds a third new one: brands’ logos. However, two subclasses of brands’ logos are 
considered: preferred and indifferent brands. To disentangle between the two 
subclasses, subjects performed a preliminary session where they assessed 200 logos 
using the PAD (Pleasure – Arousal – Dominance) scale [14], and

46



the SAM (Self Assessment Manikin) [15]. Fig.  summarizes all the assessments. 

 
Fig. 1. Subjects’ aassessments in the preliminary session plotted in the Pleasure - Arousal matrix; 
the two rectangles define the selection criteria: the green outline define preferred brands (high 
pleasure, high arousal), and the red define indifferent brands (null pleasure, low arousal). 

As in [13], the images with stimuli are accompanied with a caption. The caption 
includes some information about the subject depicted in the image (person / brand / 
object). Participants were instructed to covertly form an impression of the person, 
brand, or object taking into account the information in the caption. During the 
interstimuli interval participants fixated a cross. 

2.2 Data Analysis and Preprocessing 

Due to the difficulty in dealing with huge amounts of input data, ANNs have been 
used with ROIs (regions of interest) for fMRI signal analysis. ICA (Independent 
Component Analysis) may be used in order to previously reduce data dimensionality, 
which then allows whole brain analyses [12]. 

fMRI data pre-processing was carried out using FEAT (FMRI Expert Analysis 
Tool) version 5.98, and also using probabilistic independent component analysis 
(PICA) [16] as implemented in MELODIC (Multivariate Exploratory Linear 
Decomposition into Independent Components) version 3.10, both part of FSL - 
FMRIB's Software Library, [17]. 

Fifteen subjects were randomly assigned to the train group, and the remaining 
seven subjects were allocated to the test group. 

The fMRI data of the train group entered the PICA analysis for dimension 
reduction, which output 173 ICs (independent components). Features were then 
extracted from each of the 173 time courses. The strategy adopted was to average the 
second and third signals after stimulus onset. By this way, the average time distance 
from the onset was 5000 ms, i.e. the signals considered were consistently in the 
neighborhood of the hemodynamic response peaks. At the end of this stage the result 
is a matrix with 2399 rows (each corresponding to an epoch with the corresponding 
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event), and 173 columns (each corresponding to one IC) plus one more column with 
the event code. This matrix is the training set. 

The fMRI data of the test group was preprocessed in FEAT. The following pre-
statistics processing was applied: motion correction using MCFLIRT [18]; slice-
timing correction using Fourier-space time-series phase-shifting; non-brain removal 
using BET [19]; grand-mean intensity normalization of the entire 4D dataset by a 
single multiplicative factor; highpass temporal filtering (Gaussian-weighted least-
squares straight line fitting, with sigma=30.0s). No spatial smoothing was applied. 
Registration to high-resolution structural and/or standard space images was done 
using FLIRT [18, 20]. All acquisitions were previously registered to a standard brain 
(MNI152) in order to make comparisons between subjects possible. 

The 173 brain activation maps obtained with the train group were used as masks to 
average the individual time courses in the test group. The same procedure for feature 
calculation was adopted, i.e. the second and third acquisitions after stimulus onset 
were averaged (average time distance from the onset was 5000 ms, equal to the 
training set). Finally, the 1119 epochs obtained were normalized for each subject. At 
the end of this stage the result is a similar matrix with 1119 rows and 173 columns 
(each corresponding to one IC) plus one more column with the event code (that is 
used to assess the ANN calculations). This matrix is the training set. 

In order to only include input nodes containing critical information for the 
classification [21], the 173 ICs were screened. For each IC a GLM was applied. The 
timecourse of the IC was the independent variable, and the stimuli onsets convolved 
with a gamma function were the explanatory variables. The parameters were 
estimated with least mean squares and z statistics computed. The ICs that survived the 
screening were those where at least one of the four z was superior to 2.3. Thus, the 
ICs screened out had not correlations with the stimuli. This procedure reduced the 
quantity of ICs to 82. 

2.3 Parameters of the Artificial Neural Networks 

The AMORE package [22] implemented in R [23] was used to design and perform 
the necessary calculations of the backpropagation feedforward ANN. Exploratory 
analyses yielded a global learning rate of 0.07 and a global momentum of 0.8. It was 
considered a hidden layer with six nodes. The selected activation function for the 
hidden nodes was “tansig”, while for output neurons the function was “sigmoid”. 

In order to investigate possible bias derived from the network structure, the ANN 
was also fed with a matrix similar to the test set, but now including random values 
from a normal distribution. This procedure was completed for 10,000 times in order 
to have a large distribution. 

3 Results 

The results of the ANN with the best performance (more global correct hits) are 
represented in Table 1, with the respective accuracies and precisions. 
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Table 1. Confusion matrix with the predictions of the ANN. 

Class 
Predicted assessment 

Total 
BP BI O P 

R
ea

l 
as

se
ss

m
en

t BP 100 80 45 55 280 
BI 91 88 71 30 280 
O 49 61 134 36 280 
P 59 33 46 141 279 

Total 299 262 296 262 1119 
Accuracy 33,4% 33,6% 45,3% 53,8%  
Precision 35,7% 31,4% 47,9% 50,5%  

 BP brands preferred; BI brands indifferent; O objects; P persons. 

Fig. 1 depicts the results of feeding the network with random values from a normal 
distribution. Table 2 represents the probability values of the predictions in Table 1. 

 
Fig. 1. Plot of the results of feeding the network with random values of a normal distribution 
(10,000 feeds). 

Table 2. Probabilities values of the predictions of the ann based on the distribution obtained 
after feeding the network with random normal values for 10,000 times. 

Class 
Predicted assessment 

BP BI O P 

R
ea

l 
as

se
ss

m
en

t BP 0.000 0.085 1.000 0.942 
BI 0.002 0.008 0.794 1.000 
O 0.998 0.901 0.000 1.000 
P 0.914 1.000 1.000 0.000 

BP brands preferred; BI brands indifferent; O objects; P persons. 
 

Table 3 lists the weights of the axons that link hidden nodes to the output nodes. For 
the sake of space, the weights of the axons that link input to hidden nodes are not here 
fully reported. However, Fig. 2 depicts two axial slices of IC2 and IC7. IC2 has 
important positive weights with hidden nodes 1 (10.73) and 5 (22.33) and important 
negative weights with hidden node 3 (-10.60) and 4 (-39.56); also IC2 encompasses 
voxels in the occipital and temporal occipital fusiform gyrus, and lateral occipital 
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cortex, all bilaterally. IC7 has important positive weights with hidden nodes 1 
(13.11), 3 (14.17), and 5 (11.72); IC7 includes voxels from the lateral occipital 
cortex, inferior temporal gyrus (temporooccipital part) all bilaterally. 

Table 3. Weights of the axons that link hidden to output nodes. The most important positive 
weights have blue background, and red for the most important negative weights. 

Output 
nodes 

Hidden nodes 
1 2 3 4 5 6 

BP 1.569 0.811 1.224 0.288 -1.314 0.679 
BI -0.411 -0.680 1.154 -0.838 1.302 0.998 
O -0.184 0.983 -1.387 -1.478 1.081 -1.305 
P -1.783 -0.797 -1.151 1.714 -0.966 0.353 

BP brands preferred; BI brands indifferent; O objects; P persons. 

 
Fig. 2. Two axial slices (z = -12) of IC2 and IC7; MNI152 coordinates; radiological convention. 

4 Discussion 

Being 280 the quantity of cases of each class presented to test the network, it would 
be expectable that random choice is around 70 (25%) because there are four classes. 
In fact the peaks of the distributions in Fig. 1 fall around this value (69 for BP, 71 for 
BI, 76 for O, and 63 for P). In Table 2 all the p-values in the diagonal are zero or 
close to. The main conclusion of this study is that the basic backpropagation feedfor-
ward ANN with one hidden layer is correctly predicting much above random choice, 
i.e. the ANN is extracting critical information from brain data in order to correctly 
predict behavioral responses. 

It is important to highlight the conditions of this study. Subjects never performed 
actions, just made mental impressions about the stimuli. Thus, the ANN is extracting 
neural information in the pre-motor stages, supposedly during the perception / 
decision periods, which are the most interesting for studies on cognition. 

The analysis of the hidden nodes reveals interesting aspects. Hidden node 3 has 
important positive weights for preferred and indifferent brands and important 
negative weights for objects and persons. Hidden node 5 has important positive 
weights for indifferent brands and objects and negative weights for preferred brands 
and persons. These two nodes alone are sufficient to discriminate between the four 
classes. 
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However, considering hidden node 4, each class (brand, object, and person) is 
discriminated. It is possible to conclude that this node is able to successfully 
segregate among classes, which is also supported by the data in Table 1 and Table 2. 
In fact, the cells with correct hits (grey background) concentrate the majority of the 
assessments and have the lowest probability values. 

Nonetheless, discriminating between preferred and indifferent brands it is not so 
good. The values of the four cells that involve preferred and indifferent brands in 
Table 1 are approximate, and in the case of indifferent brands, the network has more 
tendency to classify as preferred brands. The analysis of the same four cells in Table 
2 confirms this observation. The reason for such has to be explored. The problem 
may be intrinsic to the stimulus, because of its low salience, or the method has to be 
improved in order to attain such refinement. 

IC2 and IC7 (depicted in Fig. 2) are two important sources of data for successful 
classification. Interestingly these two brain networks encompass brain regions from 
visual and visual associative areas. This is in line with the findings of Hanson, 
Matsuka and Haxby [4], which also found in fusiform gyri sources of cognitive data 
for accurate classification. 
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