
A Novel Neural Network Computing Based Way to 
Sensor and Method Fusion in Harsh Operational 

Environments 

Yuriy V. Shkvarko, Juan I. Yañez and Gustavo D. Martín del Campo 

Department of Electrical Engineering, Center for Advanced Research and  
Education of the National Polytechnic Institute, CINVESTAV-IPN, Guadalajara, Mexico 

Abstract. We address a novel neural network computing-based approach to the 
problem of near real-time feature enhanced fusion of remote sensing (RS) im-
agery acquired in harsh sensing environments. The novel proposition consists 
in adapting the Hopfield-type maximum entropy neural network (MENN) com-
putational framework to solving the RS image fusion inverse problem. The fea-
ture enhanced fusion is performed via aggregating the descriptive experiment 
design with the variational analysis (VA) inspired regularization frameworks 
that lead to an adaptive procedure for proper adjustments of the MENN synap-
tic weights and bias inputs. We feature on the considerably speeded-up imple-
mentation of the MENN-based RS image fusion and verify the overall image 
enhancement efficiency via computer simulations with real-world RS imagery. 

1 Introduction 

Relation to Prior Work–Demanding requirements of feature enhanced remote sens-
ing (RS) imaging in harsh sensing environments has spurred development of various 
sensor/method fusion techniques for feature enhanced recovery of images acquired 
with multimode RS systems, e.g., see [1–16] and the references therein. The crucial 
problem is to reduce the fusion complexity and attain the (near) real-time processing 
mode. In this study, we propose a novel approach for computationally speeded-up 
enhancement of the RS imagery via adapting the Hopfield-type maximum entropy 
neural network (MENN) computational framework to solving the RS image fusion 
inverse problem. The feature enhanced fusion is performed via aggregating the de-
scriptive experiment design with the variational analysis (VA) inspired regularization 
frameworks that lead to an adaptive procedure for proper adjustments of the MENN 
synaptic weights and bias inputs. Our MENN image enhancement technique outper-
forms the recently proposed competing methods (e.g., the F-SAR-adapted anisotropic 
diffusion (AD) method [13], the maximum likelihood (ML) inspired amplitude-phase 
estimator (APES) [15], the robust spatial filtering (RSF) and robust adaptive spatial 
filtering (RASF) procedures [16, 17], etc. that do not employ the method fusion). We 
feature on the considerably speeded-up implementation of the MENN-based RS im-
age fusion and verify the overall image enhancement efficiency via computer simula-
tions with real-world RS imagery.   
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2 Problem Model 

In RS imaging, a model most often used expresses the degraded lexicographically 
ordered image vector formed by a system as a sum of the noise and a linear convolu-
tion of the original scene image with the system spatial response function. The latter 
is usually referred to as the point-spread function (PSF) of the RS image formation 
system [1–8]. The noise vector is account to the power components in the degraded 
image that correspond to system noise and environmental noise (solution-dependent 
in the harsh environments due to multiplicative noise effects [8]). Let us consider for 
the purpose of generality P different degraded images {g(p); p = 1, …, P} of the same 
original scene image b  obtained with P different RS imaging systems or methods. 

The system or method fusion paradigm [11, 12] can be employed in these cases to 
improve the image quality. In a system fusion context [11], we associate P different 
models of the PSF with the corresponding image formation RS systems. In the meth-
od fusion context [12], we assume one given low resolution image acquisition system 
but apply P different image formation algorithms to form the images {g(p); p = 1, …, 
P}, e.g., from the DEDR or VA families developed in the previous studies [13–17]. 
In the both cases, the lexicographically ordered [5, 12] K-D low resolution RS image 
model is formalized by a system of P equations 

g(p) = ( )Φ p b + (p);        p = 1,…, P                  (1) 

with P different KK PSFs ( )Φ p  and related K-D noise vectors {(p)}, respectively. 

The problem of image enhancement is considered as a composite inverse problem of 
restoration of the original K-D image b  from P actually formed degraded K-D RS 

images {g(p)}, given the systems' PSFs { ( )Φ p }. No prior knowledge about the statis-
tics of noise {(p)} in the data (1) is implied, thus the maximum entropy (ME) prior 
model uncertainty [11, 12] conventional for harsh sensing environments is assumed. 

3 ME Regularization 

It is well known that the PSFs { ( )Φ p } are ill-conditioned for practical low/medium 
resolution RS image formation systems, both passive radiometers and active ra-
dar/fractional SAR sensors [1–8]. Hence, the regularization-based approach is needed 
when dealing with the feature enhanced RS image recovery problems. Next, the sta-
tistical model uncertainties about the image and noise significantly complicate the 
recovery problem making inapplicable the statistically optimal Bayesian inference 
techniques [5]. That is why, we adopt here the ME regularization approach [11, 12, 
16, 17] in which case the desired feature enhanced RS image is to be found as a solu-

tion   ˆ arg min
b

b b λE  to the problem of minimization of the augmented objec-

tive/cost function 
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K
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  is the image entropy,  = (1
 , …,   P , P+1 )

T  is the 

vector of regularization parameters, {Jp(b) ; p = 1, …, P} compose a set of objective 
(cost) functions incorporated into the optimization; here, we compose {Jp(b); p = 1, 
…, P} of equibalanced image discrepancy and image gradient map discrepancy 2  

structured squared norms instead of only image discrepancy terms considered in the 
previous competing studies [12–15]. Also, the second  novel proposition of this study 
consists in constructing  JP+1(b) = bTMb as the Tikhonov-type VA-inspired stabilizer 
that controls weighted metrics properties of the image and its gradient flow map spec-
ified by the K×K matrix-form second-order pseudo differential operator M = I + 2 

where I represents the discrete-form identity operator and  2  is the discrete-form 
spatial Laplacian defined via a 4-nearest-neighbors differences over the x-y spatial 
coordinates in the scene frame [5, 18]). The ME-regularized solution on the minimum 
of (2) exists and is guaranteed to be unique because all functions that compose E(b|) 
are convex. Due to the nonlinearity of the composite error function (2), the derivation 
of the ME-regularized solution of the image restoration problem with system/method 
fusion requires extremely complex computations with proper collaborative adjust-
ments of all “degrees of freedom”  in (2) if solve this problem using the standard 
gradient descent-based minimization techniques, thus yields an NP hard computation-
al problem [18, 19]. Our proposition is to solve that problem in a considerably speed-
ed-up fashion using the MENN computational framework detailed in the next section. 

4 MENN for RS System/Method Fusion 

The multistate Hopfield-type dynamic MENN that we propose to employ to solve the 
fusion problem at hand is a P-mode expansion of the MENN developed in [11, 12] 
with the K-D state vector x and K-D output vector z = sgnWx +, where W and  
represent the matrix of synaptic weights and the vector of the corresponding bias 
inputs of the MENN, respectively, designed to aggregate all P systems/methods to be 
fused. The state values {xk; k = 1, …, K} of all K neurons are used to represent the 
gray levels of the lexicographically ordered image vector in the process of the feature 
enhancing fusion. Each neuron k receives the signals from all other neurons including 
itself and a bias input. The energy function of such a neural network (NN) is ex-
pressed as [11]  

                 T T1 1
2 2 1 1 1
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K K K
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E W x x x

  
                        (3) 

The idea for solving the RS system/method fusion problem using the MENN is 
based on the following proposition. If the energy function (3) of the NN represents 
the function of a mathematical minimization problem over a parameter space, then the 
state of the NN would represent the parameters and the stationary point of the net-
work would represent a local minimum of the original minimization problem 

 ˆ arg min
b

b b λE . Hence, utilizing the concept of a dynamic NN, we may translate 

our image recovery problem with RS system/method fusion to the correspondent 
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problem of minimization of the energy function (3) of the related MENN. Therefore, 
we define the parameters of the MENN to aggregate the corresponding parameters of 
all P systems/methods to be fused adopting the equibalanced image ant its gradient 
map discrepancy 2  squared norm [12] partial objective functions {Jp(b)} in (2) that 

yields 
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for all  k, i = 1, …, K. Next, to find a minimum of the energy function (3) with speci-
fications (4), (5) the states of the network are to be updated x'' = x' + x (the super-
scripts ' and '' correspond to the state values before and after network state updating) 
to provide the non-positive energy changes 
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                                (6) 

due to updating of each kth neuron; k = 1, …, K. To guarantee non-positive values of 
the energy changes (6) at each updating step the state update rule (z) should be as 
follows, (z ): if  zk  = 0, then xk = 0; if  zk > 0, then xk = ; if  zk < 0, then  xk = – 
 for all k = 1, …, K, where  is a prescribed step-size parameter. Following the orig-
inal MENN prototype from [11, 12], we adopt  = 10–2 and the collaborative balanc-
ing method for empirical evaluation of the regularization parameters 

     1 1

1
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           (7) 

directly from the degraded input images (1) where rp = trace{ ( ) 2( )Φ p   } represents 

the pth system/method resolution factor [5], and the gain factor q̂  is to be found as a 

solution to the so-called resolution-to-noise balance equation (Eq. (33) from  [11]). 

5 Simulation Results 

To analyze the performances of different RS image formation techniques, we evaluat-
ed the effectiveness of the image formation and feature enhanced recovery via per-
forming the computer simulations experiment. The test unfocused fractional SAR (F-
SAR) system image was generated via performing the matched spatial filtering  
(MSF) [3, 4] of the high-resolution noised SAR 1024×1024-pixel scene image bor-
rowed from the real-world RS imagery [20] with the squared triangular PSF of 10 
pixel width in the range direction (y-axis) and the truncated squared Gaussian PSF of 
30 pixel width in the azimuth direction (x-axis) to be comparable with the previous 
simulations formats [12, 16]. Different fusion combinations { , p p P} of two meth-

ods from the tested six (P = 6) specified in Table 1 were simulated and compared. For 
evaluation of the enhancement/fusion performances, we employed two metrics. The 
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first one is the conventional resolution enhancement over noise suppression measure 
referred to also as the signal-over-noise improvement (SNI) metric [17, 18] 
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where bk is the kth element of the test high-resolution image b of dimension  K = 

1024×1024, { ( )ˆ p
kb , ( ')ˆ p

kb } represent the kth elements of the tested combinations 

{ , p p P = 6} of the images fused in a particular simulation experiment, and 

ˆ{ }fused
kb represent the corresponding pixel values of the fused image for the particular 

tested combination { , p p P = 6}. The second one is the mean absolute error [19] 
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The quantitative method fusion results evaluated in both metrics (8), (9) are reported 
in Table 1, where subscripts 1 and 2 point at single-look and double-look F-SAR mo-
dalities: single-look (SNR = 0 dB) and double-look (SNR = 5 dB).   

Table 1. SNI (8) and MAE (9) metrics corresponding to the reconstruction of the F-SAR image 
with five simulated fusion combinations (the modeled system parameters are the same as in the 
competing study[12]): range PSF width (at ½ from the peak value) κr = 10 pixels; azimuth PSF 
width (at ½ from the peak value) κa = 30 pixels; Indexes 1 and 2 point at two corresponding 
SNRs: SNR1 = 0 dB (single look mode) and SNR2 = 5 dB (double-look mode). The fusion was 
performed employing the MENN technique featured in Sect. 4 for the corresponding combina-
tions of the DEDR-related techniques specified in Table 1. The dynamic MENN enhancement 
and fusion results are reported for 30 performed iterations for the VA-free DEDR-related tech-
niques [11, 15] and for 8 iterations for the developed here DEDR-VA-MENN method. 

Method Fusion Combination 

Metric MSF1-MSF2 MSF1-AD2
MSF1-
RSF2 

MSF1-
RASF2 

MSF1-
APES2 

DEDR- 
VA-MENN 

SNI [dB] 
7.92 8.39 8.73 9.17 9.74 10.79 

MAE [dB] 
20.17 19.34 17.43 15.34 13.16 12.38 

 
In Fig. 1 we present the enhanced imaging results attained with different recovery 
techniques (as specified in the figure captions). The corresponding convergence rates 
for the three feasible combinations of the competing method fusion combinations are 
reported in Figure 2. Such MSF1-AD2, MSF1-RSF2 and DEDR-VA-MENN methods 
require 30.82, 38.51 and 10.46 seconds respectively, to converge when run in a PC at 
3.4 GHz with an Intel Core i7 64-bit processor and 8.00 GB of RAM. Thus, our NN 
method is at least 3 times more efficient in comparison with the most competing ones. 
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Fig. 1. Qualitative results of the F-SAR images enhancement without and with method fusion: 
(a) original 1024×1024-pixel scene from the real-world RS imagery [20]; (b) degraded F-SAR 
single look scene image; (c) AD enhancement (without fusion) [13], (d) RSF enhancement 
(without fusion) [16]; (e) RASF enhancement (without fusion) [17]; (f) APES enhancement 
(without fusion) [15]; (g) MSF1-MSF2 fusion; (h) MSF1-AD2 fusion; (i) MSF1-RSF2 fusion; (j) 
MSF1-RASF2 fusion; (k) MSF1-APES2 fusion; (l) DEDR-VA-MENN fusion. Subscripts 1 and 2 
point at single-look mode (SNR1 = 0 dB) and double-look (SNR2 = 5 dB) F-SAR modalities. 
The VA-free enhanced imaging results (e)–(k) are reported for 30 performed iterations and the 
fused DEDR-VA-MENN enhancement result (l) is reported for 8 performed iterations.  
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Fig. 2. Convergence rates evaluated via the SNI metric vs. number of iterations for three most 
prominent DEDR-related method fusion combinations (specified in the text box) implemented 
using the MENN computing technique featured in Sect. 4. 

6 Conclusion     

We have presented and validated via simulations a new approach for feature en-
hanced RS sensor/method fusion. In the heart of our method is adaptation of the 
MENN computational framework to solving the RS image fusion inverse problems. 
To achieve the feature enhanced fusion, we developed the technique for performing 
the aggregation of the DEDR and VA regularization paradigms that leads to proper 
adaptive adjustments of the MENN operational parameters (aggregated synaptic 
weights and bias inputs). The proposed aggregated DEDR-VA-MENN enhance-
ment/fusion technique outperforms the existing low-resolution RS image formation 
approaches as well as the recently proposed competing robust adaptive RS image 
recovery methods that do not employ the multi-level structured regularization both in 
the resolution enhancement over noise suppression and convergence rates. These 
result in the speeded-up computational implementation with the considerably reduced 
(near-real) processing time.  The reported simulations demonstrate and verify the 
feature enhanced recovery of the real-world RS imagery acquired with an F-SAR 
system operating in a harsh sensing environment. 
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