
Towards a Wake-up and Synchronization Mechanism
for Multiscreen Applications using iBeacon

Louay Bassbouss, Görkem Güçlü and Stephan Steglich
Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

Keywords: Multiscreen, Companion Screen, Application Wake-up, Synchronization, iBeacon, Bluetooth Low Energy.

Abstract: TV sets and companion devices (Smartphones, Tablets, etc.) have outgrown their original purpose and are now
playing together an important role to offer the best user experience on multiple screens. However, the collab-
oration between TV and companion applications faces challenges that go beyond traditional single screen
applications. These range from discovery, wake-up and pairing of devices, to application launch, communi-
cation, synchronization and adaptation to target device and screen size. In this position paper, we will limit
ourselves to two of these aspects and introduce an idea for a new wake-up and synchronization mechanism for
Multiscreen applications using iBeacon technology.

1 INTRODUCTION

Almost every modern connected TV can be controlled
with a smartphone app provided by the manufacturer.
These apps range from simple remote control replace-
ments, to fully featured media centers including PVR
programming, interactive EPGs and video streaming
from the TV to the smartphone. Furthermore, new
generation of companion devices provide connectiv-
ity to large displays and give mobile applications the
ability to mirror or extend the small screen of the mo-
bile device.

However, today’s standard application models are
focused on single devices and screens. Multiscreen
applications face new challenges such as discovery
of devices and services, launch of applications on
remote devices, synchronization of application state
across devices as well as timeline synchronization
of multiple media streams, application to application
communication, etc. New application development
paradigms, concepts, protocols and technologies ad-
dressing these challenges are getting mature. How-
ever, there are still interoperability issues between dif-
ferent devices and platforms: Android (Google - An-
droid, 2014) provides native support for screen mir-
roring using Miracast (Wi-Fi Alliance, 2014) protocol
to any Miracast compliant receiver compared to iOS
(Apple - iOS, 2014) that offers the same functionality
using AirPlay (Apple - AirPlay, 2014) only on Air-
Play licensed devices, such as AppleTV (Apple - Ap-
ple TV, 2014). There are also different limitations

for applications running on different platforms: An-
droid applications are able to run services in the back-
ground compared to iOS where this feature is limited
to specific applications like Music, Navigation, etc. It
is easier to interact with applications running in the
background on Android systems than on iOS. The
question is, why we need to interact with background
applications on companion devices? To answer this
question, let us consider the following scenario:

Alice and Bob are watching a Formula 1 race on
their TV. The broadcaster offers a service which al-
lows users watch the race from different camera per-
spectives, where the TV displays the perspective of the
main camera and a companion device may be used to
display the perspective of the on-board camera of a
selected driver (user can select which driver). During
commercial breaks, the broadcast stream on the TV
shows advertisements for a certain brand of footwear.
At the same time, the on-board camera stream will be
interrupted on each companion device and a compan-
ion app related to the advertisement displayed on the
TV will be launched. Through this app, the user can
for example chose to bookmark products displayed in
the commercial break that he is interested in buying
later and may even get a discount. After the commer-
cial break ends, the main perspective of the Formula
1 race continues on the TV and the on-board camera
perspective continues on the companion devices.

The different steps of the use case are highlighted
in figure 1. There are of course other relevant scenar-
ios that require collaboration between TV and com-

67Bassbouss L., Güçlü G. and Steglich S..
Towards a Wake-up and Synchronization Mechanism for Multiscreen Applications using iBeacon.
DOI: 10.5220/0005121800670072
In Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications (SIGMAP-2014), pages 67-72
ISBN: 978-989-758-046-8
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



panion devices, but we will consider this scenario to
examine the problem statement and identify the re-
quirements on TV and companion devices.

Figure 1: Use Case.

We can identify two main requirements from
the scenario described above: (REQ1) wake-up and
launch of companion applications related to broadcast
services on the TV and (REQ2) Synchronization of
content between TV and companion devices. There
are other important multiscreen requirements that can
be identified for this use case but in this paper we
limit ourselves to the wake-up and synchronization
aspects. The rest of this paper is structured as fol-
lows: Section 2 provides a short introduction to the
fundamental state of the art technologies and related
works required to understand the discussion of the
proposed approach in this work. In section 3 we will
introduce the concept of a new approach for wake-up
and synchronization of companion applications using
iBeacon technology. Section 4 summarizes the work
with a conclusion and future prospects for a prof-of-
concept implementation.

2 TECHNICAL DISCUSSION AND
STATE OF THE ART

This section collects and weights prior work related
to the concept we will introduce in this paper. This
includes works which has been established during
standardization efforts, as well as proprietary tech-
nology currently found in products on the end-user
market. We will differ between application Wake-up
and Launch on TV and on companion devices. The
traditional way for launching applications on smart
TVs is by using the TV remote control or a special
mobile application provided by TV manufacturer. To
launch a TV application that collaborates with an ap-

plication running on companion device, e.g. YouTube
application on TV for playing videos and YouTube
mobile application to search and control videos, ad-
ditional steps are needed. Both applications need to
be connected to the same session in order to know
about each other and establish a communication chan-
nel. PIN or QR code technologies can help here. The
application running on the TV displays a PIN or QR
code. The user of the companion device can either
scan the QR Code using a QR scanner App or en-
ter the PIN code manually in the companion appli-
cation and join the session. To reduce the number
of steps needed to connect both apps to each other,
Network Service Discovery (NSD) technologies like
SSDP (Contributing Members of the UPnP Forum,
2008) or Bonjour (Apple - Bonjour, 2014) can help.
The Discovery and Launch Protocol DIAL (Netflix,
2014) is especially made for this purpose. TV sets
that support this protocol implement the DIAL server
functionality and advertise a DIAL service in the local
network using SSDP. Companion devices implement
the DIAL client functionality and discover DIAL de-
vices available in the network. Once a DIAL device is
found, the companion device connects to it and uses
its service interface to launch a specific app. Dur-
ing Launch, the companion application can pass some
parameters to the TV application such as session ID,
video URL, etc.

In recent years, Hybrid TV technologies like Hy-
brid Broadband Broadcast TV (HbbTV) (HbbTV as-
sociation, 2014), a major new pan-European initia-
tive aimed at harmonizing the broadcast and broad-
band delivery of entertainment to the end consumer
through connected TVs and set-top boxes, and Hy-
bridcast (IPTV Forum Japan, 2014), a Japanese Hy-
brid TV standard that enables the provision of flexi-
ble and extensible new services that take advantage of
the characteristics of broadcasting and telecommuni-
cations, are emerging. Involving companion screens
within Hybrid TV sessions opens the door to a new
kind of use cases such as the once described in the
previous section and offers a replacement of tradi-
tional remote control that is not suitable for the in-
teraction with such smart TV services. The key to
successful integration of TV services and companion
devices is the seamless and user friendly wake-up and
synchronization of companion applications. Many
Hybrid TV services are using the PIN or QR code
technology for this purpose to ensure cross-platform
support since these technologies are not dependent
from platform specific APIs. On the other side, stud-
ies showed that these technologies are more suitable
for printed material and not for the digital domain
from user experience perspective (eMarketer, 2014).

SIGMAP�2014�-�International�Conference�on�Signal�Processing�and�Multimedia�Applications

68



Technically, The DIAL technology can be used for
launching companion applications by implementing
the DIAL server functionality on companion devices
and client functionality on TV, but this will raise ad-
ditional security and battery lifetime issues on com-
panion devices. Furthermore, this requires compan-
ion devices to run services in the background which
is not possible on some mobile platforms like iOS as
we discussed in the previous section. In addition, the
flow for remotely launching companion applications
is not the same as for launching TV applications from
the end-user perspective. Bringing an application on
a companion device to the foreground without asking
the user while he interacts with another application is
a bad user experience. Most mobile platforms allow
this feature only in relation with a user interaction e.g.
the user starts a new application by clicking on a but-
ton in the current application or by clicking on a noti-
fication. On iOS, there are two types of notifications:
local and remote notifications. The end-user don’t see
any difference between them, they differ only in the
way how they are triggered: local notifications are
triggered by applications running in the background
on the same device while remote notifications are trig-
gered and sent by Apple Push Servers. This means, if
an application is not running at all (neither in the fore-
ground nor in the background), the user can be noti-
fied only through remote notifications. One option to
wake-up and launch a not running iOS application in
the background is by using iBeacon (Apple - iBea-
con, 2014), a new technology that extends Location
Services in iOS7. iBeacon uses a Bluetooth Low En-
ergy (BLE) (Bluetooth SIG, 2014) signal which iOS
devices detect. Any device supporting BLE can be
turned into an iBeacon transmitter and alert applica-
tions on iOS devices nearby. iBeacon transmitters are
in general tiny and cheap sensors that can run up to
2+ years with a single coin battery depending on how
frequent they broadcast information around. Main us-
age area of iBeacon are location based services: iOS
devices alert apps when the user approaches or leaves
a region with an iBeacon. While a beacon is in range
of an iOS device, apps can also monitor for the rel-
ative distance to the beacon. If the application was
not running while the user crosses (enters or leaves)
a Beacon region, the iOS device wakes up the appli-
cation and launches it in the background only for 10
seconds. In this time frame the application can react
to the changes in the user position and may request to
show a local notification, through which the user can
bring the application to the foreground.

3 CONCEPT

Based on the technical discussion in previous section,
we will propose some ideas for a user friendly remote
launch mechanism of TV companion applications us-
ing iBeacon and Notification technologies. We will
limit ourselves in this work to the iOS platform and
follow its application development guidelines to en-
sure best user experience, nevertheless the concept
can be easily adapted to companion devices with BLE
support running other platforms like Android. Unlike
on iOS, the only platform that provides native iBea-
con support, the iBeacon functionality needs to be
implemented on application level for the other plat-
forms.

As mentioned in previous section, the iBeacon
protocol uses BLE signals to transmit information in
a specific frequency e.g. each second. An iBeacon
message consists besides the BLE packet headers and
Apple’s static prefix of the following values (Apple -
iBeacon for Developers, 2014):

Proximity UUID: A 128-bit value that uniquely
identifies one or more beacons as a certain type
or from a certain organization.

Major: A 16-bit unsigned integer that can be used to
group related beacons that have the same proxim-
ity UUID.

Minor: A 16-bit unsigned integer that differentiates
beacons with the same proximity UUID and major
value.

iOS applications can use the iBeacon API available in
iOS7 for registering a Beacon region using the prox-
imity UUID, major and minor parameters described
above. If a device crosses the boundaries of a reg-
istered beacon region, the application will be noti-
fied on entering or leaving that region. The proxim-
ity UUID is mandatory for registering a Beacon re-
gion while major and minor are optional. Application
Provider needs to choose a value for the proximity
UUID and use it in all beacons as well as in the iOS
application. This means, the proximity UUID is in
general a fix value in the context of a specific appli-
cation or organization. Major and minor values can
be used to differ between different locations or places
for the same application or organization.

iBeacon seems to be a compromising technol-
ogy not only for location based services, but also for
launching companion applications in a multiscreen
environment if new generation of TV sets (also set-
top-boxes, TV dongles, etc.) are equipped with BLE
sensors and act as beacon transmitters. Main advan-
tage of this approach is that the TV will able to wake-
up companion applications only on devices belonging

Towards�a�Wake-up�and�Synchronization�Mechanism�for�Multiscreen�Applications�using�iBeacon

69



to users sitting in front of the TV, it doesn’t matter
if they are connected to local or mobile carrier net-
work. Unlike the traditional usage of iBeacon where
the proximity UUID is fix and known for a specific
application, a more dynamic behavior by using differ-
ent values for proximity UUID on different TV sets is
required in the multiscreen domain: If the TV manu-
facturer uses a unique proximity UUID, the compan-
ion application will be always notified when the user
crosses the beacon region of any TV from the same
manufacturer. In case TV sets transmit different prox-
imity UUIDs, it will be possible to notify compan-
ion applications associated with a specific TV. Fur-
thermore, it is possible for a companion application
to subscribe to TV’s different beacon regions at the
same time and therefore to get notified by different
TV sets, e.g. if the user has more than one TV at
home. Figure 2 shows an example with two TV sets
that transmit different proximity UUIDs.Companion
Device2 is registered for bothproximity UUID1 and
proximity UUID2 and can be notified from bothTV1
andTV2. The other two companion devices can be
only notified from one TV set.

Figure 2: Example with two TV sets and three companion
devices.

Since there is no unique and known proximity
UUID to be used in the TV companion application,
we need a mechanism to generate and exchange prox-
imity UUIDs between the TV and the companion ap-
plication. UUIDs can be randomly generated and
stored on the TV without any user interaction. The
probability of collision with UUIDs used in other ap-
plications is almost zero since proximity UUIDs are
128-bit long. The best way to exchange the gener-
ated UUID is during first connection (Setup phase) of
the companion application with the TV. Figure 3 il-
lustrates the steps needed for creation and exchange
of proximity UUID between TV and companion ap-

Figure 3: Creation and Exchange of proximity UUID.

plication.

From now on, each time the user turns on the TV
or enters the TV’s beacon region (e.g. living room)
while the TV is on, the companion application will be
woken up and launched in the background for around
10 seconds (iOS limitation). Same applies if the user
turns off the TV or leaves the TV’s beacon region. In
both cases, the companion application connects to a
signaling server (e.g. maintained by the TV manufac-
turer) when running in the background and requests
to update its availability in the TV’s beacon region
by sending the proximity UUID and the device token
(we suppose that the companion application already
requested a device token from Apple Push Notifica-
tion Service). As depicted in figure 4, the signaling
server maintains a table for device availability and of-
fers a lookup function to find devices (identified by
the device token) in range of a specific beacon (iden-
tified by the proximity UUID). On the other side, If
a TV Application (Hybrid or Smart Application) pro-
vides multiscreen support and needs to launch a com-
panion application, it uses a special TV API for that
purpose (Figure 4 - step 2). The TV sends its prox-
imity UUID and other application specific informa-
tion to the Signaling Server (Figure 4 - step 3). The
signaling Server looks into the table for all devices in
range of the beacon with the received UUID (Figure 4
- step 4) and sends a request to the Apple Push Notifi-
cation Service (APNs) (Apple Developer - Local and
Push Notifications for Developers, 2014) using the to-
kens of devices in range from the previous step. The
APNs sends push notifications containing all informa-
tion necessary to launch the companion application
to each found device (Figure 4 - step 6). If the user
clicks on the Push notification, the companion appli-
cation will be launched into the foreground and the
notification data will be passed to it (Figure 4 - step
7). Apple’s Push Notification Service for remote push
notifications is necessary in this scenario, because lo-
cal notifications are only possible, when the app is
running in the background at that moment. Though,

SIGMAP�2014�-�International�Conference�on�Signal�Processing�and�Multimedia�Applications

70



apps are woken up through iBeacons, they are only
running for ten seconds and get terminated by the OS
afterwards. Moreover, the OS will only wake up apps
for entering and exiting a region of a beacon. As a re-
sult, we can not assume the companion app is running
at that moment and is available to send a local notifi-
cation. Therefore, it is necessary to use Apple’s Push
Notification Service for remote push notifications.

Figure 4: Launch a Companion Application from a TV Ap-
plication.

Figure 4 shows the flow for notifying and launch-
ing the companion application provided by the TV
manufacturer from a hybrid or smart TV application
provided by a broadcaster or a third party provider.
However, our goal is to launch the companion ap-
plication related to the TV application and not the
manufacturer companion application. There are dif-
ferent options to achieve this goal depending from
the kind of the companion application to launch, if
it is a hosted web application or a native iOS applica-
tion. We will focus in this work on hosted web appli-
cations and consider native iOS companion applica-
tions in future works. As mentioned above, The TV
application passes in theRequest Launch step (Fig-
ure 4 - step 2) information about the application to
launch on the companion device. This information
could include a URL of the hosted web application
to launch and will be passed to the companion de-
vice through all steps depicted in figure 4 until the
user clicks on the push notification: The TV com-
panion application will be launched in the foreground
and can retrieve the URL of the hosted companion
web application from the launch information passed
to it. Finally, the TV companion application opens the
hosted companion application in a Web View (UIWe-
bView), a kind integrated web browser for displaying
web content in iOS applications. The TV application
and the hosted companion web application can col-
laborate and synchronize content with each others by
using an application to application (App2App) com-
munication mechanism which is not in scope of this
work (A widespread mechanism for communication

in the multiscreen domain is to connect the TV and
companion web application to a messaging server that
proxies the communication between entities in same
session. Session ID could be passed to the compan-
ion web application during launch as a URL query
parameter).

Besides application wake-up and launch, iBea-
cons could also help in synchronizing playback of
multiple media streams as in the use case described
in first section for synchronizing streams from dif-
ferent camera angles on TV and companion device.
The major and minor values can be used for this pur-
pose e.g. major value to group beacons related to the
same application on TV and companion device and
minor value can be controlled by the TV application
e.g. to send identifiers indicating the current position
in the TV stream. While the TV companion applica-
tion runs a hosted companion web application in the
foreground, it listens for beacons with the same major
value as for the related TV application and passes mi-
nor values to the application using an API provided by
the Web View. Figure 5 summarizes the synchroniza-
tion steps between TV and companion application.

Figure 5: Synchronization between TV and Companion
Web Application using beacon’s major and minor values.

4 CONCLUSION

We introduced in this paper a Wake-up and Synchro-
nization Mechanism for Multiscreen Applications on
TV and companion devices using iBeacon technol-
ogy. We already started with a proof-of-concept
implementation using iPad as replacement for TV
and any iOS device supporting iBeacon as compan-
ion device. The prototype was demonstrated at the
4th Media Web Symposium organized by Fraunhofer
FOKUS in Berlin (Fraunhofer FOKUS Media Web
Symposium , 2014). In next steps we will take into
consideration other important aspects that could in-
fluence the success of work introduced in this pa-
per especially usability, privacy, security and perfor-
mance. On prototyping level we plan to implement
the TV part on an Android HDMI Dongle with BLE
and DVB-T/S/C support in order to proof our concept
with real Hybrid TV (HbbTV) applications.

Towards�a�Wake-up�and�Synchronization�Mechanism�for�Multiscreen�Applications�using�iBeacon

71



REFERENCES

Apple - AirPlay (2014). Apple - airplay. [Online; accessed
4-June-2014].

Apple - Apple TV (2014). Apple - apple tv - hd itunes
content and more on your tv. [Online; accessed 4-
June-2014].

Apple - Bonjour (2014). Bonjour - apple support. [Online;
accessed 4-June-2014].

Apple - iBeacon (2014). ios: Understanding ibeacon. [On-
line; accessed 4-June-2014].

Apple - iBeacon for Developers (2014). ibeacon for de-
velopers - apple developer. [Online; accessed 4-June-
2014].

Apple - iOS (2014). Apple - ios7. [Online; accessed 4-
June-2014].

Apple Developer - Local and Push Notifications for Devel-
opers (2014). Local and push notifications. [Online;
accessed 4-June-2014].

Bluetooth SIG (2014). Bluetooth smart technology: Pow-
ering the internet of things. [Online; accessed 4-June-
2014].

Contributing Members of the UPnP Forum (2008). Upnp
device architecture 1.1. [Section 1].

eMarketer (2014). Us ahead of western europe in qr code
usage. consumers most familiar with qr codes on mag-
azines, printed materials. [Online; accessed 4-June-
2014].

Fraunhofer FOKUS Media Web Symposium (2014). 4th
fokus media web symposium. [Online; accessed 4-
June-2014].

Google - Android (2014). Android. [Online; accessed 4-
June-2014].

HbbTV association (2014). Hbbtv. [Online; accessed 4-
June-2014].

IPTV Forum Japan (2014). Hybridcast. [Online; accessed
4-June-2014].

Netflix (2014). Discovery and launch protocol specification,
version 1.7.

Wi-Fi Alliance (2014). Wi-fi certified miracast. [Online;
accessed 4-June-2014].

SIGMAP�2014�-�International�Conference�on�Signal�Processing�and�Multimedia�Applications

72


