
On the Security of Partially Masked Software Implementations

Alessandro Barenghi and Gerardo Pelosi
Department of Electronics, Information and Bioengineering – DEIB

Politecnico di Milano, Via G. Ponzio 34/5, I-20133 Milano, Italy

Keywords: Applied Cryptography, Side-channel Attacks.

Abstract: Providing sound countermeasures against passive side channel attacks has received large interest in open
literature. The scheme proposed in (Ishai et al., 2003) secures a computation against a d-probing adversary
splitting it into d+1 shares, albeit with a significant performance overhead (5� to 20�). We maintain that it
is possible to apply such countermeasures only to a portion of the cipher implementation, retaining the same
computational security, backing a widespread intuition present among practitioners. We provide the sketch
of a computationally bound attacker model, adapted as an extension of the one in (Ishai et al., 2003), and
detail the resistance metric employed to estimate the computational effort of such an attacker, under sensible
assumptions on the characteristic of the device leakage (which is, to the current state of the art, still lacking a
complete formalization).

1 INTRODUCTION

In a world where embedded computing devices be-
come more and more pervasive, cyber-physical sys-
tems are increasingly employed to process and store
both sensitive and security-critical data. The prime
mean to provide proper security and privacy war-
ranties is represented by cryptographic primitives,
which are being more and more often embedded in
digital devices as either hardware accelerators or soft-
ware libraries. In such a scenario an attacker can
have physical access to the target device and may ex-
ploit either cipher implementation weaknesses or side
channel information (f.i., power consumption, execu-
tion timing or electro-magnetic emanations) to infer
the value of secret parameters intended to be stored in
an un-accessible way. Tackling these attacks requires
a combined effort in order to choose cryptographic
primitives with sound warranties from the theoretical
standpoint, as well as to consider carefully their im-
plementation so that the large class of the so-called
implementation attacks are warded off. The choice of
sound primitives can be effectively performed among
the well scrutinized ones, which have been recog-
nized as standards by international and national en-
tities such as the ISO/IEC committee or the US na-
tional institute of standards and technology (NIST).
By contrast, warding off implementation attacks is
still a complex issue. Indeed, they have been a sig-

nificant threat in recent times, allowing the breach of
many systems ranging from e-tickets (Garcia et al.,
2009) to IP-protection on large scale reconfigurable
devices (Moradi et al., 2011).

The largest class of implementation attacks is rep-
resented by the so-called side-channel attacks, where
the attacker exploits the information leakage happen-
ing on an unintended channel, i.e., not on means of
communicating with the target device intended by
the designer (such as input/output ports). More con-
cretely, the attacker exploits the fact that some envi-
ronmental parameters of a regular functioning of a
digital device are dependent on the input data being
processed by it. In particular, the energy required to
perform the computation, the Electro-Magnetic (EM)
emanations of the device or the time taken to complete
the execution have been reported to be effective side-
channels and are exploited in (Mangard et al., 2007;
Barenghi et al., 2013). Designing efficient and effec-
tive countermeasures against side-channel attacks is
a topic which has received warm attention by the re-
search community (Agosta et al., 2012; Agosta et al.,
2013b; Agosta et al., 2014). Typically the coun-
termeasures involve either modifying the cipher to
the algorithmic or implementation level, or changing
the underlying hardware architecture so to suppress
the side-channel leakage. Despite the efforts to de-
sign such countermeasures have been significant, only
very few schemes have been proven secure against
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a precise attacker model (Ishai et al., 2003; Coron,
2014), and it hasn’t been infrequent for non-proven
countermeasures to be broken after their proposal. On
the other hand, provably secure countermeasure so-
lutions have very significant overheads in terms of
performance: losses in the range of 5� to 10� are
not infrequent, thus limiting the range of applicabil-
ity of such solutions (Agosta et al., 2013a). Such an
overhead comes from the inherently redundant com-
putation mandated by the countermeasures being per-
formed on the whole cipher execution.

In this work, we will show which part of a ci-
pher implementation can be left unprotected by the
countermeasures, preserving the computational secu-
rity margin of the implementation. We will deal with
symmetric block ciphers, which (by their own na-
ture) provide a computational security margin, as their
key size is finite. We will analyze the possibility of
applying the countermeasures to the parts of the ci-
pher where the computational complexity of leading
a side-channel attack is higher or the same of perform-
ing an exhaustive search over the whole keyspace. In
particular, we will provide a practical sketch of the
attacker model against software implementation of
block ciphers protected through adapting the scheme
in (Ishai et al., 2003) and we will extended the defi-
nition of instruction resistance introduced in (Agosta
et al., 2013a) detailing its properties in the context
of power-based side-channel leakages of block cipher
software implementations.

The paper is organized as follows: in Section 2
we recap the workflow of side-channel attacks, the
main strategies put into effect to counter them and de-
scribe the perfectly secure countermeasure proposed
in (Ishai et al., 2003), in Section 3 we illustrate the
data flow analysis employed to precisely pinpoint the
vulnerable instruction of a software implementation
and point out the properties of the bit level resistance
metric. Subsequently, in Section 4 we will describe
the side-channel attacker model for software imple-
mentations and validate our main statement. Section 5
will draw our conclusions.

2 PRELIMINARIES

The classic workflow for power-based SCAs aims at
recovering the value of the secret parameter of a ci-
pher (i.e., the secret key) one portion at a time. This
is possible since, during a cryptographic computa-
tion, the algorithm combines the secret key bits with
the intermediate values involving a limited quantity
of them at a time. An analogous strategy can be ap-
plied employing EM radiations of the device as the

side channel leaking information. The first step of
the attack consists in measuring the power consump-
tion of the target device with different input messages
for a large number of computations. Subsequently, an
intermediate operation employing a small portion of
the secret key is selected, and its results are guessed
for all the possible values of the key portion. From
these hypotheses on the results, a series of predic-
tions of the power consumption are made, one for
each possible value of the secret key portion. Finally,
the predicted consumption values are compared with
the actual measured ones through the use of statistical
means (f.i., linear correlation index or difference-of-
means test) to find out which prediction fits best.

Power-based SCAs affect both hardware and soft-
ware implementations of cryptographic primitives.
Many techniques have been designed to counter this
attack either at logic style- or architectural-level, since
energy consumption variations are strictly related to
both of them (Mangard et al., 2007). An example
of low-level hardware countermeasure consists in em-
ploying a decoupling capacitor placed as close as pos-
sible to the supplied voltage pins of the target device,
in such a way to significantly hinder the collection
of informative measurements through flattening volt-
age variations. However, this does not provide pro-
tection against EM-based attacks. Indeed, as shown
in (O’Flynn and Chen, 2012), it is possible to wrap
the capacitor in a thin magnetic wire in such a way to
exploit the measurement of the high-frequency com-
ponents flowing through it. Usually, countering many
different attack vectors through hardware solutions,
results in an unfavorable trade-off between cost, per-
formance and security guarantees. The importance of
protected software implementations comes into play
as a way to obtain more convenient tradeoffs among
these figures of merit. Indeed, more and more often
software cryptographic libraries are deployed either
as an alternative solution to hardware ones, or as a
fallback should they be breached.

Masking and Hiding. Countermeasures to protect
implementations of ciphers against power-based SCA
aim at concealing the relation between the power con-
sumption and the operations performed by the target
device to compute sensitive intermediate values: they
are split into two categories: hiding and masking.

For software implementations, the hiding strate-
gies hinder the matching between the actual power
measurements and the consumption modeled for each
key-portion guess through rescheduling some instruc-
tions, permuting the sequence of accesses to lookup
tables, or inserting random delays built out of dummy
operations (Mangard et al., 2007; Tillich and Herbst,
2008; Coron and Kizhvatov, 2010). In hardware im-
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Table 1: Complexity of bitwise masked operations as a
function of the masking order d and lookup table size l.

Op.s Complexity Ref.

xor 3(d+1) xor
(Rivain and Prouff, 2010)

(Ishai et al., 2003)

not 1 not (Ishai et al., 2003)

and 2d(d+1) xor +(d+1)2 and (Ishai et al., 2003)

or
2d(d+1) xor +

a _ b=:((:a) ^ (:b))
+(d+1)2 and +3 not

table 2ld xor +ld store + (Schramm and Paar, 2006)lookup +(ld+ 1) load

plementations the common hiding strategies involve
feeding the chip with a drifting clock so to change the
instant in time when the sensitive operations are per-
formed and adding extra hardware with the intent to
reduce the Signal to Noise Ratio (SNR) of the physi-
cal measurements (Mangard et al., 2007).

Masking schemes (Ishai et al., 2003; Mangard
et al., 2007) invalidate the correlation between the val-
ues employed to predict the power consumption and
the actual values processed by the device. The prin-
ciple is to add one or more random values (masks) to
every sensitive intermediate variable occurring during
the computation. In a masked implementation, each
sensitive intermediate value is represented as split in
a number of shares (containing both the randomized
sensitive value and the masks employed), which are
then separately processed. To this end, the target al-
gorithm is modified to process each share and recom-
bine them at the end of the computation. This tech-
nique effectively hinders the attacker from formulat-
ing a correct power consumption model, as the in-
stantaneous power consumption is independent from
the original (non-masked) value. Typically, masking
techniques are categorized by the number of masks, d,
employed for each sensitive value, which is known as
the order of the masking. A d-th-order masking can
always be theoretically broken by a (d+1)-th-order
attack, i.e., an attack exploiting the combination of
d+1 measurements in different time instants, during
an execution, to build a mask-independent power con-
sumption model (Mangard et al., 2007; Schramm and
Paar, 2006; Rivain and Prouff, 2010).

Hiding provides an increase in the computational
security margin, as more samples must be collected to
recover the secret key, resulting in both higher storage
and computation requirements. By contrast, mask-
ing techniques are able to provide perfect security
(i.e., security against a computationally unbounded
attacker), provided that the number of measurements
performed during the computation of an intermediate
value is lower than the order of the masking.

Provably Secure Countermeasures. A theoretical
framework for assessing the security of a masking-

based countermeasures is provided by Ishai et
al. (Ishai et al., 2003). Each sensitive operation is
modeled as a Boolean circuit and a perfectly secure
masking scheme (usually referred to as ISW), with
order d, is defined in terms of a transformation op-
erating on the circuit, outputting a protected version
of it, which is functionally equivalent to the unpro-
tected one. The protected circuit employs both stan-
dard logic gates and a “randomness” gate, which out-
puts one fresh randomly chosen bit per clock cycle.

The threat model assumes an adversary able to ac-
quire at most d simultaneous bit-level values during
per clock cycle of the computation (Rivain and Prouff,
2010; Ishai et al., 2003). The scheme is proven to pro-
vide the indistinguishability of the d values obtained
by the attacker from d randomly extracted values, thus
providing perfect security of the computation against
probing. From a constructive point of view, the un-
protected computation is substituted by three phases:
1) an initial share-splitting, where every original bit-
value is split up into d+1 randomized values over dif-
ferent wires, 2) a transformation of the original com-
putation into one processing all the d+1 shares, and
3) a final recombination, which must yield the same
result as the unprotected computation provided that
the composition of the masked values is properly han-
dled, as detailed in (Prouff and Rivain, 2013). As-
suming an unprotected circuit with depth h and size
ofO(n) gates, the transformed circuit exhibits a depth
of O(h log d) and a size of O(nd2) gates.

Table 1 shows the computational costs to mask
bitwise operations as a function of the scheme order
d. For multi-bit arithmetic operations it is possible
to perform conversions between Boolean masked val-
ues and arithmetic masked ones and viceversa (De-
braize, 2012). In case the Boolean function is avail-
able in the form of a lookup table, the masking of
the looked-up values is safe up to the 2nd order ac-
cording to (Coron et al., 2007). The key idea is that,
whenever two share-split operands are combined to-
gether, fresh random values should be inserted in the
computation of the resulting output shares. As the
masking countermeasure is particularly computation-
ally demanding (see Table 1) applying it as sparingly
as possible, without lowering the security margin of
the cipher, is highly desirable.

3 SIDE CHANNEL RESISTANCE

To the end of better understanding the actual com-
putational effort required to perform a passive side-
channel attack, it is necessary to understand which
intermediate values of a software computation are el-
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igible as targets of the attack. In particular, the com-
putational effort needed to exploit the leakage of a
particular intermediate value depends (see Section 2)
on the number of hypotheses (about a secret-key por-
tion) that an attacker need to formulate to correlate its
predictions with the actual measurements. Therefore,
understanding which and how many bits of the cipher-
key value contribute to the output value of every bit of
each intermediate instruction of the cipher, is crucial
to assess the SCA vulnerability of the cipher.

A useful instrument to be employed is the
DataFlow Analysis (DFA), which is commonly used
by compilers to manipulate the data dependencies
among the variables involved in the computation of
an implementation. The effectiveness of employing
dataflow analysis techniques to analyze the interme-
diate values of a cipher computation has been vali-
dated in (Agosta et al., 2013a), through characteriz-
ing a software AES implementation. In particular, the
aforementioned analysis provides a conservative mar-
gin on the resistance against passive side channels of
an intermediate value (i.e.at most the analysis under-
estimates its resistance). Dataflow analysis represents
a program in terms of its Control Flow Graph, which
is defined as follows.

Definition 3.1 (Control-Flow Graph). A Control
Flow Graph (CFG) is a directed graph G(B; E) where
each node i2B represents a statement of the program
(stati). The graph is augmented with two additional
nodes iin, iout. An edge (i; i0)2E is added if the state-
ment stati0 is executed immediately after the state-
ment stati, and each node has at most two immedi-
ate successors. For the first statement (stat0) there
is an edge (iin; i0), while an edge (j; iout)) is added
for each node j bound to a statement (statj) pre-
ceding an exit point of the program.

It is common practice when performing dataflow
analyses, to translate the program in a normal form,
where every intermediate variable is defined (i.e.,
generated) in a single point, and only used after-
wards (i.e., its content is never re-assigned to a new
value). This form, known as Static Single Assign-
ment (SSA), allows the analysis to map each of the
intermediate variables of the program to the node of
the control flow graph where it is computed for the
first time. All the industry grade open source com-
pilers (e.g., LLVM, GCC, OPEN64) make extensive
use of the SSA form in their intermediate representa-
tion (IR) languages. A variable is said to be defined
as a node outcome and used in any statement (node)
which computes a value depending on it. Transform-
ing a program into SSA form requires to deal with
the case of a variable which is defined in more than
one statement of the original program. In the basic

case, a straight sequence of statements can be easily
transformed in SSA form through simply adding ex-
tra variables, one for each definition of the multiply
defined one. In case the multiple definitions of the
same variable lie in two regions separated by a con-
trol flow divergence (e.g., in different branches of a
selection-construct, or one inside and one outside of
a loop body), the problem of knowing which version
will be employed by the statements depending on it,
can only be resolved at runtime. To overcome this is-
sue, the SSA form employs the �-function construct
as a placeholder construct. The �-function takes as
arguments all the variables among which the runtime
selected one will be picked to perform the computa-
tion. Note that no code is emitted as a direct transla-
tion of the �-function: the compiler simply employs it
as a constraint in the register allocation phase. In par-
ticular, all the arguments of the �-function are stored
in the same register before the statement using the re-
sult of the �-function is processed.

As the SSA form of the program allows to do so,
it is possible to identify each node of the CFG with
the actual new variable being defined by it. From
this point on we will thus be using interchangeably
the two concepts without the risk of generating am-
biguity. To perform a dataflow analysis, the nodes
of the CFG are augmented with the actual dataflow
information, which is computed via a fixed-point al-
gorithm which behavior depends on the information
the dataflow analysis should compute. To the end
of determining the influence of the key-material (i.e.,
the set of values including the input cipher-key and
the derived round-keys) on the intermediate values
of the cipher algorithm, we will employ the Secu-
rity DataFlow Analysis (SDFA) framework, as pro-
posed in (Agosta et al., 2013a). In this framework, the
dataflow information attached to each node is a bidi-
mensional vector of Boolean values, which are em-
ployed to indicate which and how many bits of the
key-material influence the computation of each bit of
the intermediate variable associated to the node.

For the sake of clarity, we will divide the nodes of
the CFG in three different categories, as follows:

Definition 3.2 (Key-material Node). A key-material
node is defined recursively as either i) a node where a
memory load operation of a cipher-key portion is per-
formed, or ii) a node which uses only values produced
by other key-material nodes.

The definition of key-material node captures the
practical notion of the KEYSCHEDULE computa-
tion: in fact, the set of all the key-material nodes
corresponds to all the statements computing the
KEYSCHEDULE of the block cipher under exam, in-
cluding the initial load operations of the cipher-key.
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Definition 3.3 (Known-value Manipulation Node).
A known-value manipulation node is either a node
where a memory load operation of a known value
is performed (f.i., the plaintext in an encryption al-
gorithm, or the ciphertext in a decryption one), or
a node which uses only values produced by other
known-value manipulation nodes.

The set of known-value manipulation nodes de-
scribes all the actions which a block cipher may per-
form on known values alone, without the influence of
the key (e.g., the initial permutation of DES encryp-
tion). This set of nodes is relevant for two reasons: i)
it produces output values which are only dependent on
known values, thus no side-channel attack may be led
on them (as their computation lacks the dependency
from the key), and ii) all the nodes of the CFG which
computation does not depend directly or indirectly on
them cannot be targeted in a differential side-channel
attack, as the computed data does not change when
the input is changed.

Definition 3.4 (Cipher-computation Node). A cipher-
computation node is either a node using both a
known-value manipulation node and a key-material
node to compute its output, or it takes as input at least
one other cipher-computation node.

Cipher-computation nodes are the ones represent-
ing the statements of the program which actually
compute the block cipher mixing either directly its in-
put with the key-material, or carrying its computation
to completion. As such, they are the nodes on which
the SCAs focus to derive the values of the key bits.

The SDFA acts on the CFG to the end of evalu-
ating a metric of the computational effort required to
lead a SCA against each single bit of the instruction
outcome represented by each node. Prior to state a
formal definition of the side-channel resistance of an
instruction, it is worth remembering that a core block
cipher design guideline requires that the combination
of the key-material with the outcomes of the interme-
diate values of cipher should never result in the re-
moval of the effect of previously added key-material.
For instance, a key-bit should never be combined via
an xor-addition twice to the same value, as the sec-
ond addition would cancel the first. We note that all
sound block ciphers are designed striving to achieve
this property. By contrast, having an internal cancel-
lation of the key-material contributions would imply
that increasing the rounds of the block cipher under
exam, its security margin would be reduced, which is
a clear design flaw.

Definition 3.5 (Resistance). The resistance of any
bit computed by either an intermediate cipher-
computation node or a key-material node, is defined

as the minimum number of key-material bits required
to derive its value. The resistance of any bit computed
by a known-values manipulation node is defined to be
infinite, as its value does not depend on any unknown.

We note that the resistance notion takes into ac-
count the fact the attacker may choose to retrieve any
of the key-material bits, instead of the cipher-key bits
required to compute them. This captures the com-
mon practice of attacking the intermediate value pro-
duced during the last rounds of a block cipher. In this
case, the attacker makes an hypothesis on the value
of the last key-material bits used, instead of making
his guesses on the cipher-key bits. This strategy al-
lows him to recover a portion of the key-material em-
ployed in a certain round (despite the fact this may
depend on the whole cipher-key), and subsequently,
to exploit the algebraic relations among the bits of
the key-material to invert the KEYSCHEDULE and to
obtain the cipher-key bits. Computing the resistance
metric taking into account only the original cipher-
key bit would thus lead to a significant overestimation
of the security margin of the cipher.

To efficiently compute the resistance value of all
the bits of the cipher-computation nodes it is possible
apply two dataflow equations defining how the key-
material bit contributions are propagated when the op-
eration corresponding to the statement represented by
the node is computed. The application of the equa-
tions is repeated on all the CFG nodes until a fixed
point is reached. The equations define how the op-
eration under exam propagates the data dependencies
from the key-material of its uses into the value it de-
fines. For further details on the form of the dataflow
equations we refer the reader to (Agosta et al., 2013a).
We note that each application of the dataflow equa-
tions can only raise the number of key-material de-
pendencies of the bits of a node, thus the computation
always terminates within a finite time.

The worst-case time complexity of such an analy-
sis is given by the case where a single change to the
properties of a node triggers the need to re-apply the
dataflow equations to all the remaining ones. In ad-
dition, the maximum number of modifications to the
resistance values of the bits of a node is bounded by
the product of the number of key-material bits, by
the number of the bits contained in the node. The
worst-case time complexity of the analysis is thus
O(jBj(jBj � 1) � k � w), where k is the number of
key-material bits and w the largest number of bits en-
coding the value of the variable defined by a node.
The proposed resistance metric enjoys the following:

Property 3.1 (Key-material nodes resistance). All the
bits of the key material nodes have a resistance value
equal to 1.
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This is a direct consequence of the fact that an attacker
may directly hypothesize its value, to the end of per-
forming a simple power analysis (SPA) attack. T

The minimum number of key-material bits in-
volved in the computation of an output bit can be ob-
tained, after the fixed point of the dataflow equations
application on the CFG has been reached, consider-
ing the relations binding them. Thanks to the non
cancelling property of the key contributions, the re-
sistance values of the cipher computation nodes enjoy
also the following

Property 3.2 (Resistance increases with distance
from known-values nodes). The resistance value of
the bits of the cipher-computation nodes increases
monotonically on the shortest path between the node
which generates them and the closest known-material
manipulation node.

This property captures the well known notion among
practitioners that the central rounds of a block ci-
pher tend to be intrinsically more robust against side-
channel attacks than the first and last ones.

4 SOUNDNESS OF PARTIAL
MASKING

In this section we will state our claim on resistance of
a selectively masked algorithm against power-based
SCAs, reducing the capabilities of the side-channel
attacker to the ones of an attacker able to perform only
exhaustive key searches.

We start by stating the side channel attacker
model against which we substantiate the resistance
of a selectively masked algorithm, starting from an
adaptation of the ISW attacker model to an attack
against software implementations. The first obser-
vation in this context concerns the fact that the pro-
tected Boolean operations in the form of combinato-
rial logic, computed by the hardware (i.e., xor, and,
not) are transformed in linear sequences of instruc-
tions (referred to as “macroinstruction” from now on)
to the end of being executed in software. Consequen-
tially, the single clock cycle restriction for the mea-
surements coming of the presented ISW scheme is
translated in terms of the attacker being able to col-
lect at most d measurements within the computation
of a single macroinstruction. In addition, the mea-
surements being collected are limited by the impos-
sibility of collecting more than d measures related
to the shares of the same value, regardless of when
a computation involving them happens. Moreover,
we assume that the d measurements performed by the
side channel attacker are not direct acquisitions of the

computed values, but instead the result of a leakage
function L applied to them.

We thus define our attacker model as follows:

Definition 4.1 (d-th order Software Attacker Model).
The d-th order attacker model is defined as an at-
tacker able to sample any d values of the leakage
function L of the underlying platform, during the
computation of each single macroinstruction of a d+1
shares protected computation. Once a value has
been measured, it counts as measured in all the other
macroinstructions. In addition to the measured val-
ues, the software attacker is entitled to know the in-
puts and outputs of the algorithm, except for the val-
ues of the secret key bits. From the computational
standpoint, the attacker is polynomially computation-
ally bound in the size of the cipher key.

We note that this attacker model includes the com-
mon notion of d-th order attacker employed in prac-
tice (Rivain and Prouff, 2010; Mangard et al., 2007),
i.e., the one where d samples coming from the mea-
surement of an algorithm execution are employed to
lead the attack. Constraining the attacker to the use
of d samples from the measurement of the algorithm
execution allows the constraint of not collecting more
than d measurements of the shares of the same value
to be implicitly satisfied. The described d-th order
Software Attacker model thus provides a more pow-
erful attacker than the one usually employed to lead
a high-order SCA (Rivain and Prouff, 2010; Mangard
et al., 2007). In particular, if up to dmeasurements per
macroinstruction are employed to lead a d-order SCA,
it is possible to obtain more than one d-wide subset of
them leading to a successful attack, as each of the d
shares of the same value may be measured in more
than one instruction computation. These instructions
are the ones computing the macroinstruction defining
the target value and the ones using it.

Definition 4.2 (Ideal Attacker). Given a software ci-
pher implementation running on a target platform,
the ideal attacker aims at recovering the value of the
cipher-key. He has the capability to choose arbi-
trary plaintexts/ciphertexts to be encrypted/decrypted
and obtain the corresponding outcomes, a number of
times polynomially bounded in the cipher key size.
Also, he may resort to an amount of computational
power which is polynomially bound in the size of the
cipher-key.

Proposition 4.1 (Security of a partially masked im-
plementation). Let Asw;d be a d-th order software at-
tacker, and Aideal an ideal one (i.e. the one able to
perform only an exhaustive search of the whole key).
Let C be a software cipher implementation with a
k-bit key running on a target platform with leakage
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function L, and C 0 the result of the application of a
d+1 shares ISW transformation to all the operations
in C having a resistance value r of at least one of
their output bits lower than the cipher key length, k.
The side channel attacker Asw;d cannot perform any
attack more efficient on C 0 than the ones its counter-
part Aideal can lead on C.

Proof. To the end of validating the equivalence of
the attacks of the Asw;d on C 0 with respect to the
ones of Aideal on C we will analyze the how Asw;d

can exploit the information derived from the mea-
surements to obtain a more efficient attack. Perform-
ing a measure of the values computed by known-
values manipulation nodes does not yield any advan-
tage to the Asw;d with respect to the ideal attacker,
as he either already possesses that information or he
can compute it in polynomial time. Any d measure-
ments performed on operations of C 0 concerning the
masked values in a macroinstruction yield an infor-
mation equivalent to a randomly generated one, as
proven in (Ishai et al., 2003). Consequentially the side
channel attacker Asw;d does not gain any advantage
from these measurements too (note that no informa-
tion would be gained even in a scenario of an attacker
with unbounded computational capabilities). If Asw;d

chooses to perform one or more of his measurements
on any sensitive intermediate instruction of C 0 where
the ISW masking has not been applied, he can obtain
up to d samples of the L function for values which de-
pend on at least r=k key material bits. We are assum-
ing that the attacker has no way of deriving directly
the input value of L from a single output, a widely
accepted assumption in Differential Power Analysis
(we note that defining the precise form of a generic
L is still an open problem (Whitnall et al., 2014)). In
particular, the attacker is only able to obtain meaning-
ful information through comparing the acquired mea-
sures against the outputs of a key-value parametric
distinguisher D(k), typically by means of a statisti-
cal test. The distinguisher may be computed in two
ways: 1) either through an a-priori synthetic calcula-
tion on the known values and a key hypothesis (f.i., as
in classical DPA or CPA attacks), 2) or through mod-
eling L through recording the behavior of an identical
computing device (f.i., as in a template attack). An-
alyzing the efficiency of perform the former, we note
that the attacker must evaluate the distinguisher func-
tion D(k) on all the 2k possible key values, thus re-
sulting in a total complexity of �(2kfD(k)) , where
fD(k) is the time complexity of the distinguisher eval-
uation. Consequentially the complexity of this attack
strategy is lower bounded by the one of the plain sub-
key enumeration, 
(2k). As the only instructions to
which the ISW masking is not applied are the ones

involving all the key bits, this results into the same
computational effort of the ideal attacker. Analyzing
the computational effort of the second attack strategy,
the attacker needs to collect enough measurements to
be able to distinguish the actual measured behavior
from one generated by a different key. To this end,
he will need to collect at least one measurement per
every value taken by all the key bits involved in the
computation of the values under attack. As the com-
putation of these values is influenced at minimum by
r=k key bits, the attacker will thus need to store at
least 2k measurements, fully profiling the behavior
of the target device. As the spatial complexity of a
computation provides always a lower bound for its
time complexity, we can state that the time complex-
ity of this approach is also 
(2k). Thus, in both cases,
the advantage provided by measuring the unprotected
part only allows to reduce the computational effort of
Asw;d up to 
(2k), which is the same as the ideal at-
tacker one.

Willing to analyze the relevance of the hypothe-
ses made in the side-channel attacker model, we will
now highlight the effect of lifting either the one on the
number of measurements, or the assumption that she
is not able to derive the input of leakage function L. If
the bound of dmeasurements is lifted, despite the fact
that attacking ISW protected cipher portions becomes
feasible, the side-channel attacker is unable to gain
any information from the portion of the cipher with a
resistance equal to the number of key bits, as extract-
ing it still requires a computational effort exponential
in the size of the cipher key. Assuming the attacker
can obtain the input of the leakage function L from
a single output implies that she can attack even inter-
mediate values of the cipher having a resistance equal
to the number of key bits. This can be done measur-
ing two values separated only by a key material ad-
dition, and deriving the added key material by differ-
ence. This hypothesis relaxation captures the expen-
sive and invasive microprobing attacks, where the at-
tacker directly taps the on-die lines via a small metal-
lic probe. If such attacks fit into the attacker model
under consideration, we note that a partial masking of
the implementation would not hinder them.

5 CONCLUDING REMARKS

In this work we substantiate that applying a provably
secure d-order masking only to a portion of a block
cipher yields the same security of an all-out applica-
tion, against a computationally bound attacker. We
based our claim on the reasonable hypothesis that the
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attacker is not able to derive directly from a single
measurement of the side channel the actual interme-
diate value being computed. Providing a description
of the leakage function, both formally analyzable and
modeling the actual experimental evidence, is still a
subject for open debate (Galea et al., 2014). More-
over, an interesting research direction is to provide
tighter lower bounds for the attacker effort, once such
a leakage function has been specified.
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