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Abstract: A gender classification method using an M-estimator based radial basis function (RBF) neural network is 
proposed in this paper. In the proposed method, three types of effective features, including facial texture 
features, hair geometry features, and moustache features are extracted from a face image. Then, an 
improved RBF neural network based on M-estimator is proposed to classify the gender according to the 
extracted features. The improved RBF network uses an M-estimator to replace the traditional least-mean 
square (LMS) criterion to deal with the outliers in the data set. The FERET database is used to evaluate our 
method in the experiment. In the FERET data set, 600 images are chosen in which 300 of them are used as 
training data and the rest are regarded as test data. The experimental results show that the proposed method 
can produce a good performance. 

1 INTRODUCTION 

Gender classification plays an important role in 
many human visual applications. It makes machines 
have the ability to recognize human gender. Thus, 
gender classification can improve artificial 
intelligence of machines. It can also improve the 
advertisement effect, face identity and face analysis 
performance.  

Several gender classification methods are 
proposed in literature. The pattern recognition 
architecture usually consists of two major phases, 
including feature extraction and classification. In the 
feature extraction, there are two main categories in 
the gender classification including appearance-based 
approaches and geometrical-based approaches. 
Appearance-based feature extraction approaches 
generate feature vectors by using entire facial 
images. These approaches use pixel and texture 
information of images to generate the feature vector. 
The dimensionality of the feature vector is usually 
high, and the advantage of these approaches is fast 
and easy. The well-known methods for extracting 
the image texture feature are local binary patterns 
(LBP) (Alexandre, 2010) and principal component 
analysis (PCA) (Moghaddam and Ming-Hsuan, 
2000). 

Geometrical-based feature extraction approaches 
use facial parts to calculate the feature vector, such 
as eyes, nose, hair, and mouth (Len, et al, 2011; 
Ueki, 2004). The advantage of these approaches is 
the invariability of rotation and transformation. 
However, observing the certain parts of face may 
lead to ignore much useful information.  

In the classification phase, several machine 
learning techniques can be used, such as neural 
networks, support vector machines, clustering, and 
many statistical approaches. Among the existing 
neural network models, the radial basis function 
(RBF) neural network is considered as a good 
candidate for approximation and prediction due to its 
rapid learning capacity. It has been applied 
successfully to nonlinear time series modeling and 
prediction applications (Chng, 1996; Leung, 2001; 
Li, 2004; Wang, 2005). In this paper, we use an 
improved RBF neural network to classify the 
features, and to recognize the gender. The 
experimental results show that the proposed method 
can produce a good performance.  

This paper is organized as follows. Section 2 
describes our method. Section 3 presents the 
experimental results. Finally, conclusions are 
presented in Section 4. 
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2 METHOD 

2.1 Preprocessing 

The preprocessing process includes three steps: face 
detection, facial component location, and image 
enhancement. All the faces in images are detected by 
the Viola-Jones face detector (Viola and Jones, 
2001). The face images with hair are scaled to the 
size of 350  450 pixels. Then, facial component 
coordinates are located by the Active Appearance 
Model (AAM) (Stegmann, 2003). Manual landmark 
identification is needed for each training image. 
These landmark points are composed of eyes, nose, 
mouth and facial contour, as shown in Figure1. 

 

Figure 1: An example of the landmark points of AAM. 

After the facial component identification, an 
image enhancement procedure is performed by 
Adaptive histogram equalization (AHE). Histogram 
equalization (HE) distributes the gray level of whole 
image among each pixel. It may lead to that the 
contrast of certain region is much higher or lower. 
AHE could modify this drawback. It divides the 
image into several 16 × 16 regions and uses HE to 
adjust the contrast of each region. 

2.2 Feature Extraction 

In this study, three types of features including facial 
texture features, hair geometry features, and 
mustache features are extracted from a face image. 
The facial texture is derived from the PCA 
coefficients from the face image.  

In order to extract the hair features, a hair 
segmentation is designed in this study. First, Mean-
shift algorithm roughly classifies a face image 
according to the color property, as shown in Figure 
2. Then, the segmented image is divided into three 
clusters by using k-means clustering, including hair, 
face, and background, as shown in Figure 3. Finally, 

the hair region is obtained according to the region 
area and location. Then, four hair features are 
computed: hair length, hair contour length, the ratio 
between hair and face lengths, and the complexity of 
fringe hair. 

 

  

(a) (b) 

Figure 2: Mean shift segmentation result: (a) original 
image, (b) segmented image. 

  

(a) (b) 

Figure 3: K-means result: (a) Mean shift segmentation 
image, (b) K-means result. 

The hair contour can be represented as P={(x1, 
y1), (x2, y2),…,(xn, yn)}, (xi, yi)R2, where n denotes 
the number of points on the contour. The hair length 
is defined as  

 

Hairlen	ൌ
maxሺyiሻ‐minሺyiሻ

distሺeyesሻ
,                          (1) 

 

where ݀݅ݐݏሺeyesሻ is the distance between eyes. The 
hair contour length is defined as  
 

Haircontour ൌ
௎௣௣௘௥௅௘௡௚௧௛ሺ௣್೗,௣್ೝሻ

distሺeyesሻ
,          (2) 

 

where pbl is the lowest point on the left side of the 
contour, and pbr is the lowest point on the right side 
of the contour. The ratio between hair and face 
lengths is defined as  
 

Hairratio ൌ ൝	
		
Haired
Hairlen	

, Haired ൐ 0

	0	, Haired ൌ 0
,          (3) 

 

where Hairlen  is the hair length feature and Haired is 
the hair length under eyes, as shown in Figure 4. The 
complexity of fringe hair is defined as the 
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approximate entropy (ApEn) (Pincus, 1995) of the 
lower contour points between Pୠ୪ and Pୠ୰. ApEn is a 
recently developed statistic quantifying regularity 
and complexity, and it was widely used in the 
physiological time-series analysis. The larger the 
ApEn value is, the more complex the fringe is.  
 

 
Figure 4: Feature of the ratio between hair and face 
lengths. 

Mustache is the unique feature of male and could 
increase the accuracy rate of gender recognition. The 
color difference between nose and mustache regions 
is used to describe the mustache feature. First, the 
RGB mean values on the mustache region and the 
RGB mode values on the nose region are calculated. 
Then, the difference between these values is 
regarded as the feature. The feature vector is 
computed as: 

 

M ൌ diff൫ሺMeanR,MeanG,MeanBሻ, ሺModeR,ModeG,ModeBሻ൯, 
(4) 

 

where MeanR, MeanG, MeanB		 are the RGB mean 
values in the mustache region and 
ModeR, ModeG, ModeB are the RGB modes in the 
nose region, respectively. 

2.3 M-Estimator Based Radial Basis 
Function Neural Network 

RBF networks have been successfully used as a 
classifier in many kinds of applications. The 
conventional learning rules of RBF networks are 
based on the LMS criterion, which minimize the 
quadratic function of the residual errors.  

The output of the RBF network is described by 

 



N

k
kkkkwfy

1

,)(  cxx ,     (5) 

where y is the actual network output, xRm1 is an 
input vector signal, with individual vector 
components given as xj, for j=1, 2, …,m, that is, 
x=[x1, x2, …, xm]T Rm1. w=[ w1, w2, …, wN]T RN1 
is the vector of the weights in the output layer, N is 
the number of neurons in the hidden layer, and k() 
is the basis function of the network from Rm1 to R. 

ck=[ ck1, ck2, …, ckm]T Rm1 is called the center 
vector of the kth node, k is the bandwidth of the 
basis function k(), and |||| denotes the Euclidean 
distance. For each neuron in the hidden layer, the 
Euclidean distance between its associated center and 
the input to the network is computed. The output of 
the neuron in a hidden layer is a nonlinear function 
of the distance, and the Gaussian function is widely 
selected as the nonlinear basis function. After 
computing the output for each neuron, the output of 
the network is counted as a weighted sum of the 
hidden layer outputs. 

 A common optimization criterion is used to 
minimize the LMS between the actual and desired 
network outputs. LMS error function is defined as 
(6), 

 
                       (6) 

 
where rn= d(n)- y(n) represents the residual error 
between the desired, d(n), and the actual network 
outputs, y(n). n indicates the index of the data.  

The cost function can be defined as an ensemble 
average errors, 

 

 )()( nrEJ               (7) 
 

where  is one of the parameter sets of the network.  
According to the gradient descent method, the 

gradient of the cost function J() needs to be 
computed. The gradient surface can be estimated by 
taking the gradient of the instantaneous cost surface. 
That is, the gradient of J() is approximated by Eq 
(8) 
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and  

            

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          (10) 
 

The update equation for the network parameters 
is given by 

 





  








y

rnJnn n)()()()1(
   (11) 

 

However, LMS is not a good criterion for some 
training patterns in which there exist huge errors by 
the presence of outliers. Those errors cause the 
training patterns move far away from the underlying 

2
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1
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position because the influence function in LMS 
criterion is linearly with the size of its error. 

Among several methods, which deal with the 
outlier problem, M-estimator techniques (Huber, 
1984) are the most robust and have been applied in 
many applications. M-estimators use some cost 
functions which increase less rapidly than that of 
least square estimators as the residual departs from 
zero. When the residual error increases over a 
threshold, M-estimators suppress the response 
instead. This work employs Welsch M-estimator 
function as the error function, given by 
 

                                                       (12) 
 
where is a scale parameter. The cost function of 
RBF network Eq. (7) can be rewritten as  
 

    (13)                          
 

where  is one of the parameter sets of the network. 
According to the gradient descent method, the 
update equation for the network parameters (11) also 
can be derived according to (13).  

According to the M-estimator behaviour, the 
modified RBF networks are able to eliminate the 
influence of outliers. In this way, the classification 
performance can be improved.  

3 EXPERIMENTAL RESULTS 

This research uses the Facial Recognition 
Technology (FERET) (Phillips, 1998) database to 
evaluate the performance. We select 600 frontal face 
images from the FERET database. There are 300 
images for training and other images for testing.  

Table 1: Comparison of other methods. 

Methods Accuracy (%) 
Shan, C. [14] 94.81 

Yuchun, Fang [15] 92.16 
Qiu, Huining [17] 92.45 
Mehmood, Y. [18] 94 

Our method (M-estimator RBF) 94.7 
Our method (Traditional RBF) 91.02 

 

To investigate the performance of the PCA 
dimensionality reduction, different dimensionalities 
are performed which are ranged from 10 to 130 
dimensions. The best accuracy rate of the proposed 
method achieves 94.7% while the dimensionality is 
60, and the number of neurons in RBF network is set 
to 12. A comparison of other methods is listed in 

Table 1. On the other hand, the table also shows that 
the result of our method using traditional RBF 
network is only 91.02 % accuracy. It demonstrates 
the tolerance to outliers of M-estimator.  

4 CONCLUSIONS 

This research proposes three types of effective 
features, including facial texture features, hair 
geometry features, and mustache features, to 
perform the gender classification. These features 
cover the global, local, geometry, and texture 
properties. We also design an M-estimator based 
RBF neural network to classify the gender. The 
experimental results show that the proposed method 
produces a good performance. 
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