
SQLReports
Yet Another Relational Database Reporting System

Sergey Afonin, Alexander Kozitsyn and Ivan Astapov
Institute of Mechanics, Moscow State University, Michurinskij av. 1, Moscow, Russia

Keywords: Reporting software, SQL, Template Language, Django.

Abstract: Popular web application frameworks, such as Django, do not provide efficient tools for rapid report devel-
opment. Specialized reporting software are targeted at visual representation and can generate perfect printed
versions of the report. In this paper we describe a minimalistic but quite powerful reporting system developed
for a web-based university information system. This reporting system supports zero-programing report de-
velopment, parametrization of SQL queries, interactive results processing by means of client-side JavaScript
libraries, and cross-report references. Main features are similar to well-known reporting systems, such as
JasperReports, with more attention to reuse of developed reports, simplicity and interactivity.

1 INTRODUCTION

For almost every modern programming language,
such as Java, Ruby, PHP or Python, dozens web ap-
plication frameworks exist. Most known examples
include Ruby on Rails, Symphony, Drupal, Django.
Such frameworks provide rapid web application de-
velopment capabilities, including transparent access
to underlying database system by means of the Ob-
ject Relational Mapping approach. Objects of the pro-
gramming language are mapped into relational struc-
ture and application developer may query the database
in terms of object fields, rather than direct joining
of tables in SQL. This approach is extremely use-
ful and effective for developing web forms for data
browsing and editing because at each time applica-
tion deals with one or several objects, usually with
complex structure.

Nevertheless, data editing is not the only task of an
information system. The second part of an informa-
tion system, probably the most important one, is the
reporting subsystem. Users require information from
the database using various filtering or aggregation
constraints and their information needs change fre-
quently over time. In addition to its main purpose, ag-
gregated representation of information may be used as
a means for data quality control: it is difficult to find
an error in individual record using simple browsing
but many errors reveal itself when aggregated view
is used. The above mentioned frameworks provide
no support for rapid report development and deploy-

ment. One can easily implement any specific report,
say in Django, but this requires modification of the
application’s source code which is unacceptable for
large application. Special reporting software, such as
JasperReports (Danciu and Chirita, 2007), CrystalRe-
ports (Ganz, 2007), CoDe (Risi et al., 2014) or many
patented systems (Warren, 2013; Yeh and Kundu,
2006; Bennett and Hu, 2013; Tabb and Herrmann,
1998) are targeted to generation of perfect printed re-
ports. Printed version of a report is the final prod-
uct. In this paper we describe a simple web-centric
reporting subsystem SQLReports1, that can be used
for rapid development of reports suitable for both re-
porting and dynamic data exploration and cleaning.
Key properties are:

� report creation requires no “non-SQL” program-
ming;

� queries may be parameterized;

� one query per report;

� cross-references between reports.

The expected usage scenario assumes that a tech-
nically skilled person creates an SQL query consti-
tuting the core of the report, and provide some basic
formatting preferences, such as titles of fields and pa-
rameters. When a user requests for this report, a pa-
rameters filling form might appear. The user is asked
to choose values from drop-down lists of values, or
to enter arbitrary values for textual fields. Then the

1Available at https://bitbucket.org/serg msuru/sqlreports

529Afonin S., Kozitsyn A. and Astapov I..
SQLReports - Yet Another Relational Database Reporting System.
DOI: 10.5220/0005114205290534
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 529-534
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

SQL-query associated with the report is executed, and
resulting data are passed to the user in simple tabu-
lar format. Sorting and additional filtering are imple-
mented on the client’s side using JavaScript libraries.
Report’s result page also contains configurable set of
control elements aimed at quick modification of re-
port’s parameters and report reevaluation. Some cells
of the resulting table may be “clickable”: a click ei-
ther runs dependent report, or opens specified URL.
In both cases new HTTP query may include values
from the current row or values of report’s input pa-
rameters. For example, top-level report computes the
total number of employees satisfying searching crite-
ria, while dependent report, attached to the number
cell, lists all matched employees, providing further
links to individual records. Report’s result may be ex-
ported in CSV, XML, or similar format. PDF gener-
ation is also possible by providing appropriate layout
description.

During the course of a university information sys-
tem development we have identified a common pat-
tern in users’ activity: select set of objects satisfying
specific conditions, choose a subset, and apply some
processing function to this subset or to each mem-
ber. SQLReports partially fits this pattern by provid-
ing tools for objects selection (a user can mark some
rows) and processing selected records by a specified
function. The latter should be implemented in low
level programming language, in our case in Python,
because records processing is very specific. This se-
lect/mark/process scheme is useful for data cleaning
task, when authorized users review information en-
tered by other users.

The layout of the paper is as follows. In the next
section we describe in more details how reports are
created and executed. In Section 3 a template lan-
guage is defined. In Section 4 possible security issues
are discussed.

2 REPORTS DEVELOPMENT
AND EXECUTION

Steps required for report developments may be di-
vided into two classes: “compile-time” actions per-
formed by a technically skilled person, and run-time
steps related to input parameters processing and query
evaluation. Let us note that most steps (with the only
exception of report’s construction) are performed at
run-time. Following components may be identified:

� report constructor — GUI for specifying key
properties of reports;

� report’s parameters form — automatically gen-

erated web-form that allows a user to choose or
specify values for report’s parameters;

� query generator — server-side code that generates
SQL-query, evaluate it, and generates data to be
displayed to user;

� results page — client-side code for browsing and
searching report’s result.

A typical client-server interaction includes the fol-
lowing steps. (1) A user submits a request for some
report. This is an HTTP GET or POST request con-
taining report identifier and, optionally, some values
for input parameters. (2) The server verifies that all
input parameters of the requested report are bound to
some values. If the requested report requires some
parameters not included into original request, then an
automatically generated HTML form (the parameters
form) is returned to the user. (3) User provides values
for requested parameters, if any. (4) Finally, when pa-
rameters form is completed, real SQL query is instan-
tiated from parameterized report’s query and submit-
ted to database server. (5) User browse results page on
its side using an interactive JavaScript code, modifies
some of report’s parameters and re-evaluate report, if
required.

A report consists of:

� parameterized SQL query;

� description of input parameters;

� description of output parameters (i.e., selected
fields);

� access control information.

The core of each report is a parameterized SQL-
query. Supported options for query parametrization
are described in Section 3. For the moment we can
assume that the query is a usual SQL query with
named placeholders. Each input parameter is speci-
fied by its name, type, title, visibility and interactive-
ness flags, and, optionally, a list of values. Mean-
ing of name, type and title fields is straightforward.
Data type affects visual control elements and valida-
tion code generated for each parameter. Visibility flag
controls whether or not a user is allowed to enter val-
ues for this parameter via parameter form. Hidden
input parameters must be provided in original request
or be defined as parameters with default values (e.g.
“year” can be substituted by current year by default).
If a parameter is marked as interactive, then its value
may be changed on the report’s result page, e.g. that
page contains control elements for changing parame-
ters and report re-evaluation.

Possible values for input parameters may be re-
stricted by a statically or dynamically generated list of
values. Static lists of values are stored in the database

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

530

and may be used to encode domain specific values,
such as male/female, yes/no/unspecified, etc. Static
lists of values may be created and modified via report
constructor’s GUI.

Dynamic lists of values are generated by arbitrary
SQL query that selects two fields: key and label. Keys
could be of arbitrary data type. Labels are displayed
to user. Key of selected item is passed to the server
as parameter’s value. List generator query may be pa-
rameterized as well, with the only restriction that all
parameters should be bound before this query is eval-
uated, i.e. all parameters are either passed with the
first request, or have default values (current user, cur-
rent year, etc.). All keys returned by an SQL query are
digitally signed in order to eliminate the possibility of
bypassing defined constraints on possible values.

Output parameters, i.e. selected fields, are spec-
ified by name, type, label, visibility flag and action
URL attached to that field. If an action URL is spec-
ified for output parameter then a user sees values for
that field as hyperlinks. Action URL is an arbitrary
URL with Django-like template syntax: if the URL
contains substring of the form {{name}}, then this
string is replaced by the value of parameter named
“name”. Both input and output parameters may be
used in URL templates, i.e. report’s input parameters
may be passed from one report to another. In short,
action URL may references any value from the cur-
rent row, or any input parameter. Report’s output pa-
rameter may be marked as hidden, so it can be ref-
erenced in URL template string but not presented to
user. Typical example of hidden parameter is primary
key of some object.

In order to simplify reports development, the re-
port constructor supports “magnetic links” between
reports, or between report and external URL. If report
developer asks to setup a link for some output param-
eter of report X to external URL or another report Y
(i.e. make this column “clickable”), then all parame-
ters of Y are linked to input or output parameters of
X, provided that their names match. A predefined set
of URL templates to external resources may be spec-
ified as well. Using magnetic links and unified con-
vention for parameters naming one can define cross
reference links in one click. Another trick that im-
prove user performance is related to input and output
parameters description. Input and output parameters
are automatically created from the code of parameter-
ized SQL query. When an administrator updates SQL
code the system parses it and creates records for all
parameters not presented in the previous version of
the code.

If a name of input or output parameter ends with
double underline symbol then it is considered as a

“magic” parameter. Magic parameters are always hid-
den. A report may be used for selecting and process-
ing some records. If report’s query selects a field with
predefined name checkbox_id__, then each row in
the output table is associated with a checkbox con-
trol. User can choose some rows and submit them to
special processing function. The name of a function
that should be called is determined by report’s input
parameter checkbox_fn__ which is passed through
to result page. Checkbox processing function check-
box fn (a kind of callback function for reporting
server) will be provided with two lists of identifiers:
list of IDs that were shown to the user, and list of IDs
marked by user. Two lists make it possible to deter-
mine what checkboxes were deselected in user inter-
face.

End user interface is implemented on top of
DataTable Javascript library2 that provides flexible
filtering and sorting capabilities out of the box, with
almost no programming efforts.

3 SQL TEMPLATE LANGUAGE

In many practical situations actual SQL query that
should be submitted to database system depends on
values of input parameters, or some external condi-
tions. For example, if a user, who is running the re-
port, belongs to distinguished group, then additional
fields should be displayed. Template language of
SQLReports provides means for query modification
at run time. Four possibilities are provided:

� parameter binding;

� parameter’s value embedding;

� query inclusion;

� conditional generation of SQL queries.
Parameter binding is the usual method for passing

values to SQL queries. For example, in the following
query the value of parameter “full name” will be used
as is and the value does not affect the query.

SELECT employee_id FROM employee
WHERE employee_name = %(full_name)s

When value embedding is used, parameter name
is replaced by its value inside SQL query. In contrast
to parameter binding, embedding changes structure of
a query. This method may be used for passing frag-
ments of SQL code into report’s query. For example,
given a query

SELECT %(!field)s, %(!fun)s(salary)
FROM employee
GROUP BY %(!field)s

2http://datatables.net/

SQLReports�-�Yet�Another�Relational�Database�Reporting�System

531

one can pass to parameter “fun” values such as
“MAX”, or “AVG”, and “employee id” as a value for
“field”. By choosing appropriate values for embed-
dable parameters report’s developer may change re-
sult drastically. We adopted convention that a param-
eter is embeddable if its name starts with exclamation.

Query inclusion is used for insertion of another re-
port’s SQL-query in specified position. As sub-query
(included into top-level query) might have input pa-
rameters, top-level query may provide specific values
for that parameters. A value can be either a constant,
or a name of parameter. For example, in the follow-
ing query value for “param1” (input parameter of a
sub-query) is copied from top-level query’s parameter
“param3”, and other parameters get constant values.
SELECT subq.fullname, count(*)
FROM (
/* include list_by_name(param1=param3,

param2=14, param3=’abc’) */
) subq
GROUP BY subq.fullname

If some parameter is not explicitly bound in the in-
clude command, then the value of top-level report’s
parameter with the same name is used. Query in-
clusion may be used to avoid copying of fragments
of SQL code between reports. In previous example
nested query may lists some records related to per-
sons, and top level query generates aggregated view.
Each number generated by the top-level report may
be clickable and connected to list by name report.
Query inclusion guarantees that two reports always
produce consistent results. In some sense, query in-
clusion correspond to database views, but this ap-
proach is more flexible due to parameter substitution.

The last option for query parametrization allows
conditional insertion of SQL code. Original query
may contain fragments enclosed into comment lines
describing conditions that should be satisfied in order
to include this fragment of code. For example,
SELECT emp.department_id, sum(employee_weight)
FROM employee emp
/* if top_floors=1 */

, department dep
WHERE emp.department_id = dep.department_id

AND
dep.department_floor > 10

/* endif */
GROUP BY emp.department_id
HAVING sum(emp.employee_weight) > 1000

The motivating example for conditional insertion
of SQL code was related to “OLAP-type” reports.
Suppose that for some object a large number of prop-
erties may be computed by means of selecting data
from related tables. Some users are interested in
one subset of properties, other users might deal with
another subset of objects’ properties. Building one
query that always perform all possible joins of re-
lational tables might be inefficient because database

systems can not eliminate unnecessary joins if some
columns are not selected. In this particular situation
conditional expressions in parameterized query may
be used for building more or less efficient query. If a
user requests for some field, all required table will be
joined, and only then. Certainly, a report developer
should care about possible name conflicts if one table
should appear multiple times in report’s query. In the
simplest and not so rare scenario when objects’ prop-
erties are obtained by sub-queries returning one row
for each object it is possible to choose a fresh copy
of a table each time. Building an efficient query in
general case is much more difficult problem and it is
unlikely that it can be solved in terms of any template
language.

Conditional code can be combined with query in-
sertion command like this:
/* if ... */
/* include ... */
/* endif */

In order to instantiate a query suitable for submission
to database server it is suffice to recursively perform
two steps: (1) include all sub-queries (recursive step)
and (2) eliminate unnecessary fragments of the query
in accordance with conditional constraints.

4 SECURITY ISSUES

Passing and embedding of arbitrary SQL code into
main report’s query is obviously a big security issue.
Even parameters binding could be dangerous because
a user can manually substitute one primary key with
another, thus accessing information he is not permit-
ted. From the other hand, passing primary keys from
one report to another is a convenient way for cross-
reports links.

In order to address security issues, report’s pa-
rameters are divided into two classes: the so-called
free parameters, and restricted (technical) parameters.
A user is able to provide arbitrary values for free
parameters (provided that type restrictions are satis-
fied). These values are intended to be passed into SQL
query via parameters binding, so no SQL injection is
possible at this point. As for restricted parameters,
only a limited number of values are accepted by the
server. These values are obtained from the authorized
sources and digitally signed at server’s side. Digital
signature validates field value, login name of the cur-
rent user, and server’s secret. This scheme guarantees
that users can not forge values for hidden parameters
(due to server’s secret) and can not share valid val-
ues with other users (due to username in the signa-
ture). When a list of values is generated, all selected

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

532

keys are signed as well. It is possible that a specific
key value is allowed in one report, but not allowed
for this user in another report. For example, it is al-
lowed to print all employees of a department (report
X with department ID as a parameter value), but not
their salaries (report Y with department ID). In order
to prevent “signed keys stealing” the server’s secret
include randomly generated report instance identifier.

Signing individual parameters may not be very
convenient if a reference to report containing a lot
of parameters has to be generated. It is possible to
publish a GET request on a web page using custom
Django template tag sign_url.

...

In this case the entire string is signed in an OAUTH-
like fashion: all report parameters are sorted by name
and then by value (it is allowed to insert additional
key/value pairs into request, e.g. session id, that will
not be included into signature) . If signed request ar-
rives to reports server then all it’s values are consid-
ered trusted.

In addition to parameter checking procedures,
role-based access control (Ferraiolo et al., 1999; Gior-
dano and Polese, 2013) may be used to prevent users
from executing arbitrary reports. Issues related to ac-
cess control lay out of the scope of this article.

Report inclusion command can be dangerous,
even in the simples from when all parameters are
just copied from top-level report. Indeed, if a re-
port defines an input parameter then report’s devel-
oper can pass arbitrary value. The main question here
is: Should we trust report’s developers, or they are
malicious by default? This question is especially rel-
evant if we allow users to share their reports. In this
work we assume that report’s developer are all trusted.
Nevertheless, if an underlying databases system pro-
vides methods for advanced access control, then ad-
ditional security checks may be implemented. For
example, a reasonable security policy may state that
a user is allowed to access any data from his own
department or institution, but should not be able to
access records form other departments. In Oracle
database system it is possible to enforce such con-
straints by calling one stored procedure before each
report. This procedure will setups effective id for
the session and all subsequent select queries will only
be able to select records related to that department.
Clearly, that such constraints are application-specific
and can not be realized in a general purpose reporting
server.

5 CONCLUSION

Many open source and commercial reporting systems
are available. These systems share common features
like parameterized SQL queries, formatting direc-
tives, data post-processing, cross-references between
reports. In this work we propose a minimalistic sys-
tem that aimed to rapid (one-click) development of in-
teractive reports with standard tabular representation
of report’s results. We believe that this approach may
be useful for solving both quick data analyzing and
data cleaning tasks.

It is not clear whether or not powerful construc-
tions should be added the template language. Param-
eters bindings and query inclusion, and cross-reports
links are simple concepts. It is not very difficult to
start using this concepts for someone familiar with
SQL. Conditional processing of SQL queries may
be quite powerful, provided that the parameterized
queries remain readable. More sophisticated means,
such as post-processing functions, loops over result-
ing rows, filtering constraints, variables, and arith-
metic operations push the language toward universal-
ity (if not Turing completeness), but by the cost of a
much more specific language. Some simple features
are definitely should be implemented. For example, it
seems that a boolean variables will be useful for elim-
ination of repeated constraints in if -clauses (one can
expect what the same condition might appear in SE-
LECT, FROM and WHERE parts of a query if some
tables should be joined only if condition holds). In
any case, further developments of template language
should be based on user’s feedback.

As it was mentioned in (Gjorgjevikj et al., 2011),
most of database users are not familiar with technol-
ogy basics. In an information system we are working
on no more then one percent out of 15 thousand users
are able and willing to develop SQL queries. From
the other hand, a report developed by one user may
be useful for other users. Apart from improvements
of template language, a possible direction of future
work may include the development of reports sharing
tools. This requires advertising/navigation/searching
tasks (how a user can discover what was already done
by others?) and some elements of version control: if
a report depends on a report of another user and that
report has changed, should we automatically update
the first report? It seems that there is no general solu-
tion that fits all needs and one should support at least
version freezing and “dynamic” links pointing to the
most recent version of a report. Finial decision about
“linking” strategy can be made by report developer
only.

SQLReports�-�Yet�Another�Relational�Database�Reporting�System

533

REFERENCES

Bennett, D. and Hu, D. (2013). System for database report-
ing. US Patent 8,620,952.

Danciu, T. and Chirita, L. (2007). Basic notions of Jasper-
Reports. In Danciu, T. and Chirita, L., editors, The
Definitive Guide to iReport, pages 15–23. Apress.

Ferraiolo, D. F., Barkley, J. F., and Kuhn, D. R. (1999). A
role-based access control model and reference imple-
mentation within a corporate intranet. ACM Trans. Inf.
Syst. Secur., 2(1):34–64.

Ganz, C. J. (2007). Crystal Reports and BusinessObjects
XI. In Pro Crystal Enterprise/Business Objects XI
Programming, pages 199–227. Apress.

Giordano, M. and Polese, G. (2013). Visual computer-
managed security: A framework for developing ac-
cess control in enterprise applications. IEEE Software,
30(5):62–69.

Gjorgjevikj, D., Madjarov, G., Chorbev, I., Angelovski,
M., Georgiev, M., and Dikovski, B. (2011). ASGRT:
Automated report generation system. In Gusev, M.
and Mitrevski, P., editors, ICT Innovations 2010, vol-
ume 83 of Communications in Computer and Infor-
mation Science, pages 369–376. Springer Berlin Hei-
delberg.

Risi, M., Sessa, M., Tucci, M., and Tortora, G. (2014). Code
modeling of graph composition for data warehouse re-
port visualization. Knowledge and Data Engineering,
IEEE Transactions on, 26(3):563–576.

Tabb, L. and Herrmann, C. (1998). Methods for hypertext
reporting in a relational database management system.
US Patent 5,787,416.

Warren, W. (2013). Efficient delivery of cross-linked reports
with or without live access to a source data repository.
US Patent 8,521,841.

Yeh, A. and Kundu, A. (2006). Method and system for a
reporting information services architecture. US Patent
7,051,038.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

534

