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We describe how to use conditional Monte Carlo (CMC) to estimate a quantile. CMC is a variance-reduction
technique that reduces variance by analytically integrating out some of the variability. We show that the
CMC guantile estimator satisfies a central limit theorem and Bahadur representation. We also develop three
asymptotically valid confidence intervals (Cls) for a quantile. One Cl is based on a finite-difference estima-
tor, another uses batching, and the third applies sectioning. We present numerical results demonstrating the

effectiveness of CMC.

1 INTRODUCTION

For a continuous random variab} with a strictly
increasing cumulative distribution function (CDF)
and fixed O< p < 1, thep-quantile ofX is defined as
the constant such thaP(X < &) = p. A well-known
example is the median, which is thé&quantile. The
p-quantileg also can equivalently be expressed as
F(p).

Quantiles are often used in application areas to
measure risk. For example, in finance, a quantile is
known as a value-at-risk, and quantiles are widely em-
ployed to assess portfolio risk. For example, bank-
ing regulations specify capital requirements for a firm
in terms of 099-quantiles of the random loss (Jorion,

2007). In nuclear engineering, safety and uncertainty

analyses are often performed with &@®-quantile
(U.S. Nuclear Regulatory Commission, 1989).

Suppose that we have a simulation model that out-

puts a random variabbé. When applying simple ran-

dom sampling (SRS), the typical approach to estimate

the p-quantileg is to run independent and identically

distributed (i.i.d.) replications of the model, and form
an estimator of the CDF from the sample outputs. In-
verting the CDF estimator yields a quantile estimator.

0.95-quantile lies below a mandated threshold; see
Section 24.9 of (U.S. Nuclear Regulatory Commis-
sion, 2011). Thus, we need not only a point estimate
of a quantile but also a confidence interval for it.

There are several approaches to construct a Cl
when applying SRS. One technique, which is some-
times called the nonparametric method, exploits a bi-
nomial property of the i.i.d. sample; see Section 2.6.1
of (Serfling, 1980). Another way first shows that
the quantile estimator satisfies a central limit theorem
(CLT), and then unfolds the CLT to obtain a Cl. The
key to applying this technique is consistently estimat-
ing the asymptotic variance constant appearing in the
CLT; approaches for accomplishing this include using
a finite difference (Bloch and Gastwirth, 1968; Bofin-
ger, 1975) and kernel methods (Falk, 1986). Rather
than consistently estimating the asymptotic variance,
we can instead apply batching or sectioning, the latter
of which was originally developed for SRS in Sec-
tion Ill.5a of (Asmussen and Glynn, 2007) and ex-
tended in (Nakayama, 2014a) to work when applying
the variance-reduction techniques control variates and
importance sampling. Batching and sectioning divide
the i.i.d. outputs into independent batches, computing
a quantile estimator from each batch, and construct-
ing a Cl from the batch quantile estimators.

simulation, the quantile estimator has some error, estimate a quantile. CMC reduces variance (com-
which should be measured. A standard way of as- pared to SRS) by analytically integrating out the vari-
sessing the error is by forming a confidence interval apjlity that remains after conditioning on an auxiliary
for the true quantileg. For example, the U.S. NU-  random variableY; e.g., see Section 8.3 of (Ross,
clear Regulatory Commission requires nuclear plant 2906) or Section V.4 of (Asmussen and Glynn, 2007).

licensees to satisfy a so-called 95/95 criterion, which \ne prove that the CMC quantile estimator satisfies a
entails establishing, with 95% confidence, that the
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CLT and a Bahadur representation (Bahadur, 1966).
The latter shows that a quantile estimator can be ap-

proximated as the true quantile plus a linear transfor-
mation of the corresponding CDF estimator, with a

f(§) > 0, theng, satisfies the following CLT:
V(& —&) = N(O,p(1-p)/f*&) (1)

asn — o, where= denotes convergence in distri-

remainder term that vanishes at some rate as the sambution (e.g., see Chapter 5 of (Billingsley, 1995)),

ple size grows. Since the CDF estimator is typically

a sample average, it satisfies a CLT under appropri-
ate conditions. Thus, the Bahadur representation pro-

vides insight into why a quantile estimator, which is

nota sample average, satisfies a CLT. It also allows us

to construct asymptotically valid Cls f@rby using a
finite difference or sectioning, and we develop those
Cls in this paper.

CMC has previously been employed to derive an
estimator of a sensitivity of a quantile with respect to
a model parameter (Fu et al., 2009). For example,
suppose a financial investor has a portfolio of loans,
each of which may default. The investor may want to
estimate the sensitivity of the@-quantile of the loss
of the portfolio, where the sensitivity is taken with
respect to a parameter of the loss distribution of an
individual obligor. While (Fu et al., 2009) apply CMC

andN(a,b?) is a normal random variable with mean
a and varianceb?. Moreover, &, also satisfies a
so-called (weak) Bahadur representation (Bahadur,
1966; Ghosh, 1971):

znzz—%’mﬁ, with VAR, =0 (2)

as n — «. By (2), the left side of (1) equals
—v/N(F(§) — p)/f (&) + /NR,, where the first term
convergesweakly to the right side of (1), and the sec-
ond weakly vanishes by (2). Thus, the Bahadur repre-
sentation provides insight into w4, which isnota
sample average, satisfies a CLT, as it can be approxi-
mated in terms of the empirical distribution, which is
a sample mean.

(Ghosh, 1971) also establishes a version of (2) for
the py-quantile with perturbed, that converges to

to estimate quantile sensitivities, the method has not P rather than the-quantile for fixedp." This vari-
been used (to the best of our knowledge) to estimate &tion can be useful for constructing a consistent es-

the quantile itself.

The rest of the paper develops as follows. Sec-
tion 2 reviews how to apply SRS to estimate and con-
struct Cls for a quantil€. Section 3 develops our
CMC estimator of a quantile, shows that it satisfies a

CLT and Bahadur representation, and uses these re-

sults to construct Cls fo€. Section 4 presents nu-
merical results from a simple model, and we provide
concluding remarks in Section 5. Proofs of the results
are given in (Nakayama, 2014b).

2 SIMPLE RANDOM SAMPLING

Let X be a random variable with CDIF. We first re-
view how to estimate and construct confidence inter-
vals for thep-quantile§ = F~1(p) = inf{x: F(x) >

p} of F (or equivalently ofX) for a fixed O< p< 1
when applying simple random sampling (SRS).

Let X, i =1,2,...,n, be a sample of i.i.d. ob-
servations fromF. The SRS estimator of (x) =
E[I(X < x)] is the empirical distribution function
Fn(x) = (1/n) 3L, 1(X < x). The SRSp-quantile es-
timator is§, = F, ~(p). We can alternatively compute
& by first sorting the samplé;, Xz, ..., X, into the or-
der statistic(1) < X2) < --- <Xy, and then setting
&n = X([np|)» where[ - | denotes the ceiling function.

Section 2.3 of (Serfling, 1980) provides an
overview of &, and its properties. For example, let
f denote the derivative (when it exists) &f If

timator of A = 1/f (&), which appears in the asymp-
totic variance in (1) and can be used to construct a
confidence interval fog. If f(&) > 0, then for any
pn= p+0(n~1/2), the SRS estimatdt; 1(py) of the
pn-quantileF —1(py) satisfies

1(pn) FH(E)_ p

f(&)

Fo (pn) = &, — +R,, with nR,=0
3)

asn — oo, where

o =&+ (Pn—p)/f(2). 4
To see how to use these results to consis-
tently estimateA, first note thatA = %F*l(p)
limp_o[F~Y(p+h) — F~1(p— h)]/2h. This suggests
estimating\ with thefinite difference

_ FrYp+hn)—FyHp—hy)
- o e

whereh, > 0 is known as théandwidth The termsin
the numerator of the finite difference are precisely in
the form of (3) withp, = p+ hn, which allows prov-
ing Ap = A asn — o whenh, = cn~/2 for any con-
stantc > 0; see Section 2.6.3 of (Serfling, 1980). Us-
ing a different proof technique, (Bloch and Gastwirth,
1968) and (Bofinger, 1975) also shaw = A when

f is continuous in a neighborhood &f andh, — 0
andnh, — o asn — . Thus, unfolding the CLT
in (1) leads to the following two-sidefl — a)-level

(0 < a < 1) confidence interval fof:

Ih= [Eniza V p(l_ p))\n/\/ﬁL

An

(6)
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wherez, = ®1(1—a/2) and® is the CDF of a stan-
dard (mean 0 and unit variance) normal. Thelgl
is asymptotically valid in the sense thR¢ < I,) —
1—aasn— oo,

3 CONDITIONAL MONTE
CARLO

Now suppose thatX,Y) is a random vector with

Determining an appropriate value for the band- joint distributionH. As before, we want to estimate

width hy in the finite difference can be difficult in
practice. Alternatively, we can avoid trying to con-
sistently estimat@ by instead applying batching or
sectioning. In batching, we divide the outputs
X1,X2,..., Xy into b > 2 equal-sized batches, where
the jth batch,j = 1,2,...,b, consists of them =
n/b outputsX(j_1m4i, i = 1,2,...,m. A reasonable
choice for the number of batches lis= 10. For
each batctj, we define the CDF estimaté§ m(x) =
(1/m) 30 1(Xj—ym+i < X) and correspondingy-
quantile estimatogj m = ijnl](p). Since then out-
puts are i.i.d., théo batches are i.i.d., s§jm, j =
1,2,...,b, are i.i.d. We compute their sample aver-
agegpm = (1/b) Z?zlzj’m and their sample variance
Em=(1/(b—1)) 3¥_1(&jm=Em)%. An asymptot-
ically valid (asm — o with b > 2 fixed) (1 — a)-level

ClI for € using batching is then

Ih= [E_b,mitqso,m/\/g]a
wheretq = T, 4 (1—a/2) andT,_; is the CDF of a

Student distribution withb — 1 degrees of freedom.
Similar to batching, sectioning was originally de-

veloped in Section Ill.5a of (Asmussen and Glynn,
2007) for SRS, and it replaces the batching point es-

timator &, m with the overall quantile estimatd,.
Specifically, let§2,, = (1/(b— 1)) 2?:1(Ej,m —&n)2,
and the sectioning two-sided — a)-level ClI for &
when applying SRS is

‘]r/1 = [Enitas’o,m/\/B]-

The asymptotic validity of)}, can be established by

& = F1(p), whereF again denotes the (marginal)
distribution ofX. Let(X;,Y;),i=1,2,...,n, be asam-
ple ofni.i.d. pairs fromH.

Since F(x) = E[E[I(X < x)|Y]] = E[P(X <
x|Y)], a conditional Monte Carlo estimator &f(x)
is

00 =5 5 ENG<01¥] = £ 3 60X, (7)

whereG(Y,x) = P(X < x|Y). The CMC p-quantile
estimator i, = Ifn‘l(p). Applying CMC relies crit-
ically on being able to comput@ and invertr,.

ComputingF, *(p) for CMC appears to be more
involved than for SRS or the other variance-reduction
techniques examined in (Chu and Nakayama, 2012).
For example, consider the simple case whXnY)
has a bivariate normal distribution with zero marginal
means, unit marginal variances, and correlagon
The conditional distribution ofX givenY =y is
N(py,1—p?) (e.g., see pp. 167-168 of (Mood et al.,
1974)), so

X—pY

) ®

G(Y,X) = P(X <x|Y) = ® (

and
x—pY;

R 170
Fa(X) = ﬁi;d) <\/1——p2> .

Identifying&,, such thafn(&n) = p, i.e.,&n = Fy 1(p),

can be accomplished using a root-finding algorithm,
e.g., Newton’s method, the secant method or the false-
position method; e.g., see Sections 7.1 and 7.2 of
(Ortega and Rheinboldt, 1987). In contrast to the
secant and false-position methods, Newton's method
requires computing the derivative d%,. Given

exploiting the Bahadur representatjon in (2) for fi>_<ed Y1,Ya, ..., Yn, note that,(x) is strictly increasing and
Pn = P- An advantage of sectioning over batching ifferentiable inx, with sample-path derivative

arises from the fact that quantile estimators are gen-
erally biased. While the bias decreases (nonmono-

tonically) to zero as the sample simeincreases, it

can be significant for small sample sizes. The bias

of the batching point estimat@p,m is determined by
the batch sizen=n/b < n, so§,m can be consid-

erably more biased than the overall quantile estima-
tor &n, which has bias governed by the overall sample
sizen. Since the sectioning Cl is centered at a less-

d - 12 212, [ X—PYi
&Fn(x) = ﬁi;(l_p )Y (P<\/ﬁ> ;
wheregis the density of a standard normal.

The following shows that the CM@,-quantile es-
timatorF; 1(pn) satisfies a Bahadur representation.
Theorem 1. If f(§) > 0, then for any p= p+
O(n~1/2), the CMC p-quantile estimator, *(py)

biased poin€,, whereas the batching Cl is centered Satisfies

at &pm, the sectioning CI typically has better cover-

age than the batching CI for a fixed overall sample

sizen = bnt see the numerical results in Section 4.
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as n— oo, WhereE’pn is given in(4). As with SRS, choosing an appropriate value for
In particular, the results of Theorem 1 hold for the bandwidth in the finite-differende, can be dif-
pn = p fixed, in which CaSGE/pn = &. It then fol- ficult when applying CMC, and we may instead ap-

ply batching or sectioning to construct a Cl f&r
with CMC. For batching, we divide th&(Y;,-), i =
1,2,...,n, into b > 2 nonoverlapping batches, each

lows from (9) that the CM(-quantile estimato%n =
F. (p) satisfies the following CLT:

2 Ay of sizem=n/b. As with SRS, a reasonable choice
ViEn—8) = _ﬁ(F”(E) —P VIR, for the number of batches Is= 10. For eachj =
2 1,2,...,b, the jth batch consists o6(Y(_1m+i;"),
= N(O,T) (10) i=12,....,m which we use to compute a CDF es-
asn — oo, where timator Fj m, with
Var[G(Y,¢)]
2 ) m
=— (11) - 1
f2(€) Fim(X) = ai;G(Y(jA)mﬂaX),

The numerator in the right side of (11) arises
since Fq(§) is the sample average of the ii.d. and p-quantile estimatoré;, = Fim(p). Theb
G(Y;,§),i=1,2,...,n. By the well-known variance- batch il timat % S 12 b
decomposition formula (e.g., see Section 2.10 of _ac quantiie estimator 1 ms l1=L44...,0, are
(Ross, 2006)), we have that i.i.d., and we compute their sample averdge, =
o(1— p) = Var(l (X < £)] (1/b) 2?:}21’,“ and sample variancé, = (1/(b—

_ « 1))5P_1(&jm—&bm)% The batching CI fo€ when

= < < i ; )

E[Varll (X < &) V)] Var(E[l (X <g)|Y]] - Z)Eha b - coml

(12) jb,m — [Eb,m + ta éom/\/B]

where the inequality follows from the nonnegativity Because of the bias of quantile estimators, it is

of (conditional) variance. Thus, comparing (1) with " sfien petter to apply sectioning instead of batching
(10) and (11), we see that the CMEquantile estima-  \yhepn s small, where we again replace the batching

tor &, ht?:}lS S”la”eft asymptotic variance than the SRS point estimatogp, , with the overall quantile estima-
-quantile estimatog. s & s :
p-quanti imatog, tor &n. Define S = (1/(b—1)) 301 (&jm—&n)%

The CLT in (10) can be unfolded to construct an .0 X .
asymptotically valid confidence interval f@rif we and the sectioning Cl fof when applying CMC is

can consistently estimat@ in (11). Theorem 1 can then - A N
be used to prove that the finite difference Jom = [En+taSom/Vb].
R If,l(p+ hn) — lf,l(p_ ) As with SRS, when applying CMC, the sectioning Cl
n n

An= oh (13) J:b,m should have better coverage than the batching Cl
. n Jom for fixed overall sample size=bm
satisfiesh, = A = 1/f(€) asn — o when the band- The following result establishes the asymptotic

width h, = ¢//n for any constant > 0. We can con-  validity of the CMC Cls.
sistently estimate the numeratpf = Var[G(Y,&)] in Theorem 2. Suppose () > 0. Then the following

(11) via hold:
n A —12 . ~ ~
q,g_izl{e(yi,gn)_gn , (i) PEedm —1—aandRE €Jpm) - 1—aas
n-1.£ m — oo with b> 2 fixed.

whereGn = (1/n) S, G(Y;, &n). If G(y,x) is continu- (ii) If the bandwidth i = cn~Y/2 in (13)for any con-
ous inx for eachy, thenG, = psincelfn(én) =p. The stantc> 0, then RE € ) > 1-aasn— .
proof of the consistency apZ is complicated by the
fact thatG(Yi,én), i=1,2,...,n arenoti.i.d. because
they all depend oén, which in turnis a function of all

Yi,i =1,2,...,n. But this can be handled employing

arguments developed in (Chu and Nakayama, 2012).WWe next present Eumbgricgl results frlorg_ simula(tjio_n
Now we can consistently estimatesingt, — Qrn, experiments on the bivariate normal discussed in

so an asymptotically valid two-sided CI f&iis Section 3. Recal(x,\_() is bivariate normal, with
marginal means 0, unit marginal variances, and cor-

= [én +27,T0/v/N). (14) relationp = 0.5. Our goal is to estimate and construct

4 NUMERICAL RESULTS
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Cls for the p-quantile€ of X for different values of

p and different sample sizas Tables 1 and 2 con-
tain the results when applying simple random sam-
pling and conditional Monte Carlo, respectively, giv-
ing the estimated coverage of nominal 90% Cls&or
and the average half widths (AHWS) of the Cls from
10* independent replications, where we use different
methods to construct the Cls.

Table 2: Coverage (and average half width) of nominal
90% confidence intervals for thg-quantile of X of a bi-
variate normal(X,Y) with p = 0.5 when applying condi-
tional Monte Carlo (CMC) with bandwidth, = 0.2n~%/2
andb = 10 batches.

Table 1: Coverage (and average half width) of nominal 90%
confidence intervals for the-quantile of a standard nor-
mal X when applying simple random sampling (SRS) with

bandwidthh, = 0.2n~%/2 andb = 10 batches.

| p=0.8 |
n Exact FD Batch  Section
100 | 0.900 Q808 0620 Q903
(0.235 (0.230) (0.235 (0.260)
400 | 0.897 Q851 0821 Q909
(0.118 (0.117) (0.125 (0.129)
1600 | 0.898 Q875 Q876 Q901
(0.059 (0.059) (0.063) (0.064)
6400 | 0.902 Q877 Q0898 Q905
(0.029 (0.028 (0.032 (0.032
| p=0.95 |
n Exact FD Batch  Section
100 | 0.902 Q799 0825 0861
(0.348) (0.330) (0.330) (0.340
400 | 0.902 0848 0646 Q900
(0.174 (0.172) (0.171) (0.188
1600 | 0.900 Q878 Q830 Q900
(0.087) (0.087) (0.092) (0.095
6400 | 0.901 0891 0883 Q0902
(0.043) (0.044) (0.047) (0.047)
| p=0.99 |
n Exact FD Batch  Section
100 | 0.926 Q497 Q024 Q762
(0.614) (0.325 (0.330) (0.502
400 | 0.905 Q913 0696 0841
(0.307) (0.405 (0.267) (0.284)
1600 | 0.907 0891 Q907 Q907
(0.154) (0.160) (0.164) (0.168
6400 | 0.902 0893 Q887 Q0902
(0.077) (0.077) (0.082 (0.083

In each table, the column labeled “Exact” con-
tains the results for the Cls in (6) and (14) but where
we replace the finite difference estimator Jofwith
its exact value. This method is typically not imple-
mentable in practice sindeis usually unknown, but
we include results for it as a benchmark to which we
compare the others. For the finite difference (FD),
we use the bandwidth, = 0.2/,/n in (5) and (13).
Whenp = 1 andnis small, we can havp+ h, > 1,
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| p=0.8 |
n Exact FD Batch  Section
100 | 0.896 Q0895 0892 0898
(0.087) (0.087) (0.093 (0.093
400 | 0.899 0899 0899 0898
(0.043) (0.043) (0.047) (0.047)
1600 | 0.900 0899 Q897 Q897
(0.021) (0.021) (0.023) (0.023
6400 | 0.896 0896 Q896 0896
(0.017) (0.011) (0.012) (0.012
| p=0.95 |
n Exact FD Batch  Section
100 | 0.889 Q898 Q873 Q895
(0.105 (0.209 - (0.102 (0.103)
400 | 0.897 Q898 0893 0898
(0.049 (0.050) (0.052)  (0.052
1600 | 0.892 Q893 Q895 Q897
(0.024) (0.024) (0.026) (0.026)
6400 | 0.895 0895 Q896 Q897
(0.012) (0.012) (0.013) (0.013
| p=0.99 |
n Exact FD Batch  Section
100 | 0.888 0944 0822 0886
(0.172) (0.259 (0.114) (0.116)
400 | 0.893 Q967 0882 0894
(0.065 (0.097) (0.060) (0.061)
1600 | 0.889 Q913 0893 0896
(0.029 (0.032) (0.031) (0.031)
6400 | 0.893 0898 Q897 Q897
(0.014 (0.015 (0.015 (0.015

so the finite differences (5) and (13) become unde-
fined since the inverse of the estimated CDF is eval-
uated outside of its domain. In these cases, we re-
placep+hyandp—hywithg1=1—(1— p)/10and

g2 =2p—1+(1— p)/10, respectively, whergy is
chosen so thai; andqg, are symmetric aroung; the
denominator in the finite difference is thep — gp.
The columns labeled “Batch” and “Section” are for
batching and sectioning, respectively, with= 10
batches. Numerical results in (Nakayama, 2014a)
with b =10 andb = 20 reveal thab = 20 often leads

to poorer coverage thdn= 10 for smalin.

In general, we see that in both tables, the cover-
ages converge to the nominal level mgets large,
demonstrating the Cls’ asymptotic validity. When
p= 1 andnis small, sectioning generally gives better
coverage than batching because the former centers its
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