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Abstract: Finding all minimal keys in a table is a hard problem but also provides a lot of benefits in database design
and optimization. Some of the methods proposed in the literature are based on logic and, more specifically on
tableaux paradigm. The size of the problems such methods deal with is strongly limited, which implies that
they cannot be applied to big database schemas. We have carried out an experimental analysis to compare the
results obtained by these methods in order to estimate their limits. Although tableaux paradigm may be viewed
as a search space guiding the key finding task, none of the previous algorithms have incorporated parallelism.
In this work, we have developed two different versions of the algorithms, a sequential and a parallel one,
stating clearly how parallelism could naturally be integrated and the benefits we get over efficiency. This work
has also guided future work guidelines to improve future designs of these methods.

1 INTRODUCTION

Identifying properly all the keys of a table in a rela-
tional schema is a crucial task for several areas in in-
formation management: data modeling (Simsion and
Witt, 2005), query optimization (Kemper and Mo-
erkotte, 1991), indexing (Manolopoulos et al., 1999),
etc. Key constraints specify sets of attributes in a re-
lation such that their projection univocally identifies
each tuple of the relation. Therefore, each key is com-
posed by a subset of attributes playing the role of a
domainin a given function whoseimageis the whole
set of attributes. This way, the table is viewed as its
extensional definition. These functions are described
by means of aFunctional Dependency (FD)which
specifies a constraint between two subset of attributes,
denotedA→ B, ensuring us that for any two tuples in
a table, if they agree onA, they also agree onB.

All functional dependencies satisfied in a given ta-
ble may be deduced from its dataset using data mining
techniques (Appice et al., 2011; Huhtala et al., 1999),
or may be provided by database designers. It is out the
scope of this work to extract FDs from relational ta-
bles, since it becomes a data mining problem (Fayyad
et al., 1996). Minimal key problem consists in find-
ing all the attribute subsets which make up a minimal
key given a set of FDs occurring within a schema of a
relational table.

Nowadays, several algorithms are capable to
solve this problem using different classical techniques
(Lucchesi and Osborn, 1978; Yu and Johnson, 1976;
Saiedian and Spencer, 1996; Zhang, 2009; Arm-
strong, 1974) (see Section 2 for further details). Re-
cently, some alternative methods have been intro-
duced using logic. In this work we will concentrate
on algorithms guided by logic, and most specifically,
those using tableaux paradigm (Morgan, 1992) for de-
riving keys of a relation schema using inference sys-
tems. As we shall see later, tableaux might be con-
sidered a flexible and powerful framework to design
automated deduction methods to solve complex prob-
lems in a flexible and effective way.

In previous works, several tableaux-like methods
have been introduced (Wastl, 1998a; Cordero et al.,
2013). Efficient versions of both of them have been
implemented. Nevertheless, tableaux-like methods
generate wide search spaces and, in many cases, the
same solution (same minimal key) appears at the end
of several branches of the tree representing the search
space. These intrinsic characteristics of tableaux-like
methods establish a strong limitation in the size of the
problems to be treated by them and, usually, discour-
age their use.

Indeed, sequential implementation of these meth-
ods produces such an explosion of search space that
we go beyond machine capabilities, even with small
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problems (20+ FDs forK’s method (Wastl, 1998a) as
it has been demonstrated in previous studies of this
work (Cordero et al., 2013)). However, a very in-
teresting property within search spaces induced by
tableaux methods, is the fully independence of their
branches, so we can directly consider them as sep-
arated sub-problems leading to several solutions of
the original problem. It is in this spirit that tableaux
paradigm supplies us an optimal guide to build par-
allel algorithms finding all minimal keys in a table,
since the building of the tableaux tree directs the par-
allel and independent processing.

In this work, we have developed parallel imple-
mentations of tableaux-like methods to solve mini-
mal keys finding problems. As shown in the follow-
ing, they have significantly increased the size of the
problem these methods are able to handle. Intention-
ally, we have executed them under different hardware
configurations trying to discover tendencies in which
the efficiency within method could be influenced. As
already implied above, a processing cluster will be
available for us to engage problems with a substantial
size at the input so we can deal with them in terms of
storage capacity and execution time.

The paper is organized as follows: In Section 2
we introduce several background. A brief study of
the state-of-the-art is exposed in Section 3. Section
4 introduces us into sequential tableaux-like methods
showing some experimental results. Parallelism im-
plementations enter the scene in Section 5 presenting
their way to proceed, and showing the high benefits
obtained. Several conclusions are then given in Sec-
tion 6.

2 BACKGROUND

We begin this section with three brief definitions of
basic concepts.

Definition 1 (Functional dependency). Let U be a set
of attributes. A functional dependency (FD) over U
is an expression of the form X→ Y , where X,Y are
attribute sets. It is satisfied in a table R if for every
two tuples of R, if they agree on X, then they agree on
Y.

A key of a relational table is a subset of attributes
that allows us to uniquely characterize each row. It
may be defined by means of functional dependencies
as follows:

Definition 2 (Key). Given a table R over the set of at-
tributes U, we say that K is a key in R if the functional
dependency K→U holds in R.

Definition 3 (Minimal Key). Given the table R, the
attribute set K⊂ U is said to be a minimal key if it
is a key of R and for all attribute k∈ K the subset
K−{k} is not a key of R.

Due to space limitation, we refer those readers non
familiar with the formal notions of FDs, keys and rela-
tional tables to (Elmasri and Navathe, 2010). In Table
1, we just illustrate its semantics by a basic example.

From the information in Table 1, we may ensure
that the following FDs are satisfied:Title,Year→
Country, Title,Year → Director and Director →
Nationality. Moreover, the table has only one min-
imal key:{Title,Year,Star}

Inferring minimal keys from a set of FDs has been
well studied. The algorithm of Lucchesi and Osborn
(Lucchesi and Osborn, 1978) to find all the keys in
a relational schema is considered the first deep study
around this problem. Yu and Johnson (Yu and John-
son, 1976) established that the number of keys is lim-
ited by the factorial of the number of dependencies,
so, there does not exist a polynomial algorithm for
this problem.

3 TABLEAUX-LIKE METHODS

Some authors have used several techniques to solve
this problem. Saiedian and Spencer (Saiedian and
Spencer, 1996) propose an algorithm for computing
the candidate keys using attribute graphs. Zhang in
(Zhang, 2009) uses Karnaugh maps to calculate all the
keys. Nevertheless, we are interested in the use of ar-
tificial intelligence techniques and, more specifically,
in the use of logic. Armstrong’s axiomatic system
(Armstrong, 1974) is the former system introduced to
manage FDs in a logic style. In (Wastl, 1998b), for the
first time a Hilbert-styled inference system for deriv-
ing all keys of a relation schema was introduced. Al-
ternatively, in (Cordero et al., 2013) the authors tackle
the key finding problem with another inference rule
inspired by the Simplification Logic for Functional
Dependencies. These two papers constitute the tar-
get algorithms to be compared in this work. We refer
the reader to the original papers for further details.

Both works are strongly based on tableaux
paradigm. Tableaux-like methods represent the
search space as a tree, where its leaves contain the so-
lutions (keys). Tree building process begins with an
initial root and from there on, inference rules generate
new branches labeled with nodes representing simpler
instances of the parent node. The very best advan-
tage of this process goes to its versatility, since devel-
oping new inference systems –which is not a trivial
task indeed– allows us to design a new method. Com-
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Table 1: Movie table.

Title Year Country Director Nationality Star

Pulp Fiction 1994 USA Quentin Tarantino USA John Travolta

Pulp Fiction 1994 USA Quentin Tarantino USA Uma Thurman

Pulp Fiction 1994 USA Quentin Tarantino USA Samuel L. Jackson

King Kong 2005 New Zealand Peter Jackson New Zealand Naomi Watts

King Kong 2005 New Zealand Peter Jackson New Zealand Jack Black

King Kong 1976 USA De Laurentiis IT Jessica Lange

King Kong 1976 USA De Laurentiis IT Jeff Bridges

Django Unchained 2012 USA Quentin Tarantino USA Jamie Foxx

Django Unchained 2012 USA Quentin Tarantino USA Samuel L. Jackson

parisons between tableaux-like methods can be eas-
ily drawn as its efficiency goes hand-in-hand with the
size of the generated tree.

AlthoughK andSLFD are the two inference sys-
tems which are the basis of two tableaux-like meth-
ods, they are very different.K is the former basis
for a Hilbert-styled method and it deals with unitary
functional dependencies, which produce a significant
growth of the input set.SLFD avoids the use of frag-
mentation by using generalized formulas. It is guided
by the idea of simplifying the set of FDs by removing
redundant attributes efficiently. Moreover,SLFD in-
corporates a pre-processing task at a first step which
prunes the input up to an algebraic characterization
of the problem by providing significant reduction of
the problem’s size to be treated by the tableaux-like
method, which is the hardest task.

4 LIMITS OF SEQUENTIAL
TABLEAUX-LIKE METHODS

As we mentioned in the introduction, in this section
we show the strong limitation that sequential imple-
mentation of tableaux-like methods will face to solve
minimal keys.

We have developed two efficient implementations
of both methods and they have been executed over a
high performance architecture sited in the Supercom-
puting and Bioinnovation Center1. In these experi-
ments we take into account the following parameters:
execution time in seconds (named [Ti]), number of
nodes in the tableaux search space (named [No]) and
number of redundant keys (named [RK]). This last
parameter shows the impact of extra branches, i.e.,
the number of duplicated keys computed by the algo-
rithm.

Execution times may be considered a parameter
linked to the architecture we are using for running the
experiments. Number of nodes and redundant keys

1http://www.scbi.uma.es.

represent the size of the search space and the repeated
operations respectively. They are independent of the
implementation, providing a fair comparison between
methods in the future.

4.1 First Experiment: Benchmarking
Problems

Although there not exists a benchmarking for func-
tional dependency problems, our first intention was to
execute the methods over a set of different and char-
acteristic problems. Thus, we began building a bat-
tery of problems gathered from several related papers
around (Saiedian and Spencer, 1996; Wastl, 1998a)
conforming an initial suitable set of problems in a
benchmarking style. Results obtained for this battery
of problems are shown in Table 2.

As shown in Table 2 only one of the entry prob-
lems needs more than one second to finalize and it
is in the case ofK method. This is due to the small
sets handled by these academic problems. Results for
SLFD are better thanK except for saiedian3 problem.
Indeed, there are cases where we need just one node to
finish the algorithm, corresponding to those problems
where the algebraic characterization used bySLFD re-
duces the problem to its canonical version.

4.2 Second Experiment: Random
Problems

In this subsection we deal with larger randomly gener-
ated problems. We have built several examples vary-
ing two parameters: number of attributes and num-
ber of FDs. We have not established a correlation
between both parameters in the generation because
different ratios between them produce problems with
significant differences. Moreover, observe that num-
ber of minimal keys is not directly influenced by these
two parameters.

The size of the problems in Table 3 is greater
than those presented in previous section. They may
be consideredmedium-size problems, having param-
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Table 2: Sequential executions over benchmarking problems.

Problem Attrib FDs Keys K SLFD

[Ti] [No] [RK] [Ti] [No] [RK]

saiedian1 6 5 1 0 12 5 0 1 0

saiedian2 6 5 3 0 7 0 0 10 3

saiedian3 7 7 4 0 139 64 0 674 284

derivation5 9 4 5 0 17 4 0 41 20

a3rojo 7 5 2 0 81 29 0 4 0

elmasri1 6 3 1 0 1 0 0 1 0

wastl2 7 3 1 0 2 0 0 1 0

wastl10 3 3 1 0 5 2 0 1 0

wastl13 4 4 3 0 10 2 0 13 5

example001 10 7 8 20 55.768 24.174 0 1.090 448

Table 3: Sequential executions over random problems.

Problem Attrib FDs Keys K SLFD

[Ti] [No] [RK] [Ti] [No] [RK]

med1 10 10 3 155 1.463.228 723.372 0 902 404

med2 5 17 4 0 1.906 1.029 0 1.149 772

med3 15 7 2 40 432.104 220.230 0 143 71

med4 30 5 5 12 802.770 300.485 12 23 7

med5 20 10 3 180 2.038.746 1.012.651 3 1.102 666

med6 5 50 5 20 218.892 179.444 1 129.508 117.461

med7 40 10 2 204 1.130.539 467.512 0 122 53

med8 15 15 7 38 6.715.949 3.023.693 5 77.922 41.070

med9 7 50 5 325 32.219.336 21.357.930 18 2.760.961 2.227.596

med10 10 20 4 835 496.380.119 218.275.528 8 20.442 9.966

eters which properly match with real tables in soft-
ware engineering and execution times are quite rea-
sonable, particularly forSLFD method (less than one
minute). Nevertheless, we notice that as far as prob-
lem’s size grows (even just a little), results go consid-
erably beyond. Therefore, we are absolutely limited
when dealing with real problems, where the input size
would be worthy of consideration. So the challenge is
to figure out whether parallelism will help us solving
these kind of problems, and even greater ones.

5 PARALLELIZATION OF
TABLEAUX-LIKE METHODS

As a conclusion of the experiments presented in pre-
vious section, parallel strategy and big hardware re-
sources will be totally indispensable if we want to
compare tableaux-like methods from one to another.
Our intention is to take advantage of tableaux design
to split the original problem intoatomic instances
that may be solved within a reasonable time and re-
sources. Then, we combine the solutions of all these
sub-problems to enumerate all the minimal keys.

Thus, our parallel implementations of the algo-
rithms will work in two steps:

1. Splitting step: It executes the tableaux-like meth-

ods but it will stop in a determinate level that we
will introduce at the process call, generating a set
of sub-problems. The level is induced by the size
of the root (the number of attributes in this level).

2. Parallel step: In this second stage we execute par-
allel task solving those sub-problems and, at the
end, we combine all the solutions to get all mini-
mal keys.

In order to test parallel versions we run another
battery of problems whose results are retrieved in Ta-
ble 4. This time we include several new columns gath-
ering parallel implementation’s parameters: Break-
off value [L] and number of generated sub-problems
[Sp].

It is imperative to state some critical considera-
tions concerning the limit size of the atomic problems.
In one hand, we have observed that the greater this
limit is, the better will be the improvement by par-
allelism, since itwould generate a higher number of
sub-problems. However, as far as we try to make this
improvement to be better by a wide limit value, the
longer the partial version will take to split the entry
problem.

In addition, this is not an independent parameter
among the algorithms, we need to choose a different
break-off value depending on the method we are using
as each one of them will need a particular amount of
resources.
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Table 4: Parallel executions over random problems.

ProbAttr FDs Keys K SLFD

[L] [Sp] [Ti] [No] [RK] [L] [Sp] [Ti] [No] [RK]

cp01 7 50 5 6 87 0 32.219.336 21.357.930 45 50 3 2.760.961 2.227.596

cp02 10 20 4 9 44 0 496.380.119 218.275.528 10 268 11 20.442 9.966

cp03 15 20 3 11 32 1 17.917.662 9.340.225 15 78 4 1.405.153 814.026

cp04 20 20 4 10 27.284 31 3.145.751.761 1.424.991.475 15 47 3 587.765 313.513

cp05 20 30 45 12 1.696 3 1.563.813.853 677.457.455 24 98 136 271.402.277 162.828.760

cp06 10 35 5 8 2.358 3 121.396.806 65.571.971 30 158 8 3.215.995 1.686.149

cp07 25 15 15 14 25.836 28 3.975.400.144 1.980.982.101 8 802 39 220.047 914.80

cp08 15 40 1 9 39.708 46 837.341.359 433.068.418 0 0 1 1 0

cp09 25 20 25 14 33.146 38 123.283.772.804 59.975.556.88612 18.999 1.077 47.014.652 23.418.562

cp10 35 10 37 22 1.370 5 101.429.265.443 68.138.197.993 7 219 10 27.985 13.436

As an example of this last point, we would like to
check execution times for cp09 and cp10 in the case
of K, where the huge difference is due to a wiser split-
ting process.

As a general conclusion, execution times are
pretty reasonable considering the dimension of these
entry problems (several minutes were enough to re-
solve most of cases).

On a separate issue, we can notice that results
are pretty huge for this kind of problems usingK’s
method. The hugest number of nodes of the tableaux
overtakes up to 123 billions of nodes. So, efficiency
of K’s method is so far to be accepted.SLFD reaches
better times and dimensions tableaux in the very most
of cases. Thus, several noteworthy outcomes come
up.

First, problem cp04 needs a tableaux of over half-
million nodes withSLFD, while K goes up to 3 bil-
lions! This is due to the high number of FDs after
the hard fragmentation rule inherent toK. A similar
situation involves cp09 and cp10 problems.

Finally, if we care about useless computing time,
we notice the number of redundant keys is terrible;
the difference here between both methods is as im-
pressive as in the rest of parameters. For instance,
the resulting set of minimal keys for cpx04 problem
contains just 4 minimal keys. However,K generates
1,424,991,475 redundant keys andSLFD 313,513.
This is indeed, a huge waste of space and time.

6 CONCLUSIONS

The first point we want to state clear is that the con-
cept of parallelism we are dealing with refers to a
hardware parallelism. We mean that the benefits we
are obtained from parallelism are due to a cluster of
cores where we can deliver each of our jobs continu-
ously.

In order to resolve real problems where the size of
the input is substantial, it is imperative to count on the

participation of a great amount of resources. More-
over, it is difficult, at a first look, to estimate whether
a given problem will result in a difficult or an easy
one. In some sense we may say that it is a chaotic and
unpredictable problem.

A glance is enough to easily realize thatK algo-
rithm needs more time, more nodes and more redun-
dant keys to reach the solution thanSLFD in the very
most of cases. Indeed, the differences are not trivial
so far. Concerning the size of the tableaux,K builds
up billion of nodes whereasSLFD generates a reason-
able amount of nodes. A similar conclusion may be
established for the number of redundant keys.

Finally, establishing an appropriate limit to split
up the entry problem in the parallel versions of the
algorithms is not an easy issue so far. We have to
run several experiments to reach a good value which
will not spend so much time splitting the entry but
it should spend time enough to take advantage of the
parallelism.
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