
Speed up of Co-Simulation by a Heuristic Time Warp Mechanism

Christian Bartelt, Karina Rehfeldt and Stefan H. A. Wittek
Department of Software Systems Engineering, Clausthal University of Technolog, Clausthal-Zellerfeld, Germany

Keywords: Simulation, Time-Warp, Scheduling.

Abstract: Nowadays many engineered systems are modelled and simulated before their production. A common
problem is that all modules and properties of complex systems cannot be modelled within only one
simulation suite because they require different (proprietary) simulation software. This makes it desirable to
be able to simulate a whole system simulation as cooperating simulation modules. To be efficient the
communication between the modules has to be fast and must not be a bottleneck. In this paper we propose a
theoretical concept to connect heterogeneous simulation modules. We utilize the mechanism of optimistic
scheduling but expand it by using a heuristic to fast determine values. Our concept uses the rollback known
from time warp mechanism. A module needs a certain amount of input data to process and when this data is
not present at the given time of processing we use the heuristic to get all missing data. With these two
enhancements we can limit the amount of rollbacks while speeding up the processing time of the whole
system simulation.

1 INTRODUCTION AND
RELATED RESEARCH

Cooperative processing of heterogeneous
simulations is addressed by several approaches and
software infrastructures (Bartelt et al., 2013). The
Functional Mockup Interface (FMI) allows to
orchestrate a number of slave simulation within a
single master algorithm (MODELISAR, 2010). The
definition of such algorithm is not part of the
specification and has to be provided by an engineer
who designs the co-simulation architecture and
scheduling. The High-Level-Architecture (HLA)
(IEEE, 2010) is a framework designed to integrate
technically heterogeneous simulation modules. Its
runtime infrastructure implements Jefferson’s Time
Warp protocols (Jefferson, 1985) as part of its time
management (Fujimoto, 1998; Vardnega and
Maziero, 2000). The Time Warp protocol aims to
synchronize concurrent processes that
communicating only by passing messages. The
process receiving a message takes it as an input and
may send output messages as a reaction on it. The
received messages have to be processed in the order,
in which they were sent, but may be delayed through
the network connecting the processes. Time Warp
allows the processes to handle the messages as they
arrive. If a message with a time stamp is earlier than

the last processed message arrives, a rollback is
triggered. The process receiving this delayed
message is reverted to the state at which the message
should have been processed and sends so called anti
messages to cancel the messages sent by this process
based on this inconsistent sequence. This
approached is called optimistic, since it assumes
everything will work out well and later handles the
occurring problem if this assumption is broken.

The approach, which is presented in this position
paper, is based on the general Time Warp
mechanism. However our presented approach
proposes the usage of heuristics for an
approximation of simulated values at runtime to
avoid rollbacks. This allows to speed up co-
simulations by parallel processing and optimistic
scheduling. The protocol assumes that no messages
will arrive out of order and provides rollbacks as a
mechanism to fix the problems occurring if they do.
We assume that the missing inputs will arrive at the
module at a later time stamp, but that they will not
change the output and provide mechanism to check,
if they do, when they arrive. A rollback is only
needed if such delayed input has a relevant impact.
This reduces the amount of expensive rollbacks if
the probability of changes is low. To allow the
modules to start processing with missing inputs,
these inputs are guessed using a predefined heuristic.

267
Bartelt C., Rehfeldt K. and Wittek S..
Speed up of Co-Simulation by a Heuristic Time Warp Mechanism.
DOI: 10.5220/0005107502670273
In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2014),
pages 267-273
ISBN: 978-989-758-038-3
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

There are also many alternative improvements of
the Time Warp. Some researches focus on temporal
uncertainty in distributed simulations (Beraldi and
Nigro, 2000; Beraldi et al., 2002, 2002; Fujimoto,
1999; Quaglia and Beraldi, 2004), several other
focus on more efficient rollbacks. This includes
optimized storage mechanism for states (Prasad and
Cao, 2003) and the definition of reverse operation to
those operations changing the state of the process
(Perumalla and Georgia, 1999) in order to avoid
storing states at all. Other Works reduce the amount
of rollbacks by adapting the optimism in the
protocol. In (Ferscha, 1995) processes that have
advanced further than the rest of the system are
supposed to generate messages that will trigger
rollbacks and slowed down. Another approach is to
predict the timestamp of future messages, using the
history of received messages (Srinivasan et al.,
1995). Only messages received with a lower time
stamp than this predicted time stamp are processed.

2 Optimistic Co-Simulation
Scheduling

In our approach every simulation calculates a new
value when it gets a message with a value from
another simulation module. In most cases the
simulation needs more than one input for complete
and correct processing. It may not get all necessary
data and missing data would have to be guessed. The
processing with the guessed data would later be
reversed when the correct data arrives. If the data is
guessed in a very simple way, there is only a small
chance, that the guessed values are close enough to
the real ones. Therefore the calculation would have
to be reversed. To increase the chances, we propose
to use a heuristic provided by the modeller to predict
missing values and avoid rollbacks.

To provide a mechanism to check predicted
values, data is declared as unconfirmed when it is
calculated with some estimated or with unconfirmed
input data. Every unconfirmed data is marked with a
condition. All unconfirmed data can still become a
victim of a rollback. There exist two different times
in the co-simulation. The calculation time is the time
span a module needs for calculating a new value.
The other time is the virtual simulation time, which
is used for synchronization between the various
modules. While the calculation time is represented
by an actual time, the simulation time is a virtual
time stamp. Due to the absence of synchronized
clocks, this is widely used in distributed systems. All
messages sent are marked with a time stamp. The
time advances with every calculation in the

following way: The new time stamp is the old time
stamp plus the reaction time of the module.

In this section the proposed scheduling
mechanism is explained based on a more formal
component model for simulation infrastructures.
For a more intuitive explanation of the formalism,
we introduce a simplified example of two robots in
separated working spaces. The two robots are
mounted onto skids (kinematics) and move along a
circular rail. Each skid has its own control and is
regulated by a controller. Figure 1 shows the
structure of a corresponding co-simulation. Each
robot has a kinematic, a controller and a control.

Figure 1: Schematic view of the co-simulation.

Both kinematics do not need to know the
position of each other as long as they are not about
to collide. The exact position only gets interesting
when the two kinematics are close to each other.

2.1 Static View

The acting elements in this concept are modules. A
module MOD is a tuple of eight sets of values (1).
These sets represents the current state of the module
and its behaviour.

MOD ൌௗ௘௙ CON ൈ HIS ൈ INPUT ൈ OUTPUT ൈ ݎ
ൈ ݐݒ݈ ൈ ݐ݈݃ ൈ ݂	

(1)

CON ൌௗ௘௙ MOܦ *

HIS ൌௗ௘௙ ሼDATAൈSTATEሽ	*

(2)
(3)

INPUT ൌௗ௘௙ ሼMSGሽ	∗	

OUTPUT ൌௗ௘௙ DATA	*	

(4)
(5)

DATA ൌௗ௘௙ TIME ൈ RESULT ൈ ሼCONDሽ	∗	 (6)
COND ൌௗ௘௙ CONDR ∪ CONDP	 (7)

CONDR ൌௗ௘௙ MOD ൈ TIME	
CONDPER ൌௗ௘௙ MOD ൈ TIME ൈ TIME	

(8)
(9)

MSGൌdef SIGNൈDATAൈMOD	
SIGNൌሼ൅,‐ሽ

(10)
(11)

r	∈Z\ሼ0ሽ
lvt	∈Z	\ሼ0ሽ	
lgt	∈Z\ሼ0ሽ	

f:MSG*→RESULT	

(12)
(13)
(14)
(15)

The connection CON of a module is a set of all
modules, which this is connected to (2). This may
also include the module itself. In the history HIS are
all past values together with a state saved (3). The
state is needed to perform checks and rollbacks and
should therefore save all relevant data to perform

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

268

them. What the state saves has to be decided by the
designer of the module. In accordance to the time-
warp concept a module contains two queues, an
input queue INPUT and an output queue OUTPUT
(4-5).

The data needs a timestamp which indicates the
simulation time for which the value was calculated
and possible conditions COND. The conditions
indicate that the calculation was based on heuristic
data. Period conditions CONDP on output data
indicates missing, respectively estimated input data.
The timespan is between the referenced modules
local guaranteed time (see below) and the timestamp
of the output data. This is the timespan which is
interesting for the calculated value. Referencing
conditions CONDR on output data appear every time
when input data with conditions, was used for a
calculation (7-9).

Figure 2 gives an example for the creation of
conditions. K0 is the calculating module and it gets
two input data. On the calculated value comes up
one referencing condition for R0, because the input
data from R0 has a condition. And we get a new
condition for K1, because the input data from K1 is
not for timestamp 1 but 0 and therefore is a guessed
value.

Figure 2: Example for conditions.

An Expansion of data is a message MSG (10).
This is data together with the module which
produced this data and a sign. The sign is used for
deleting messages from the input queue in rollbacks
(11). A negative message deletes its positive
counterpart.

The module has got some time attributes, which
are quite similar to the ones used by Jefferson. The
time a simulated instance needs to 'react' in the real
world is called r. This time period is not related to
the actual calculation time, which can be a lot
greater than r. It can also be called the step-width of
the simulation.

A module has got a local virtual time (lvt) and a
local guaranteed time (lgt). lvt is the current time of
the simulation. lgt again, is the time of the last data
without conditions.

Also important is the calculation function f (15).
This is in fact the simulation itself which takes input
data from the input queue and calculates new values.

Besides this every module has a heuristic for fast
calculating or guessing values. To indicate that these
values are ‘guessed’ they get a timestamp which is
earlier than the real one. As prior stated this is later
needed for determining the conditions.

Figure 3: Example: Schematic view (l), module (r).

Figure 3 gives a schematic overview of the
example and one module, respectively K0, one of
the kinematics. The kinematic in this figure would
be modelled in the following way (16).

0ܭ ൌ ሺܥ௄଴, ,௄଴ܪ ,௄଴ܫ ܱ௄଴, 1, 2, 0, ௄݂଴ሻ		
௄଴ܥ ൌ ሼܴ0,1ܭ, 0ሽܭ
௄଴ܪ ൌ ൛൫ሺ	2, 4, ሼሺ1ܭ, 0,2ሻሽሻ, 	ଵ൯ൟݏ
ଵݏ ∈ STATE	

௄଴ܫ ൌ ቐ
ሺ൅, ሺ0, 2, ∅ሻ, ,1ሻܭ
ሺ൅, ሺ	1, 5, ∅ሻ, ܴ0ሻ,

ሺ൅, ሺ2, 4, ሼሺ1ܭ, 0, 2ሻሽሻ, 		0ሻܭ
ቑ	

ܱ௄଴ ൌ ሼሺ2, 4, ሼ1ܭ, 0, 2ሽሻሽ	

(16)

K0 is connected with R0, K1 and itself. In the
history is a value 4 with timestamp 2 and a condition
on K1 between 0 and 2. With the value the state of
the module is saved. K0’s input queue stores three
values, one from each connected module. In the
output queue is also stored the calculated value.

2.2 Dynamic View

Every module executes the simulate function itself.
There is no need for a master component which has
to control the execution order. This is due to the fact
that every module just sends messages to others and
changes only their own state.

2.2.1 Simulate

The simulate function transfers one state of a
module into another (17). At first all pending data,
respectively messages which arrived during the last
simulation step, are inserted into the input queue
with putData. When there is a message with a
timestamp less than the module’s lvt, then lvt is set
back before the data’s timestamp. But no rollback to
an old state will be executed at this step. Before the
rollback takes place, a check is done, which will
determine whether a rollback is necessary or not.

Speed�up�of�Co-Simulation�by�a�Heuristic�Time�Warp�Mechanism

269

݁ݐ݈ܽݑ݉݅ݏ ∶ MOD → MOD	
ሺ݉ሻ݁ݐ݈ܽݑ݉݅ݏ ൌ ݉ᇱ

݉଴ ൌ ,൫݉ܽݐܽܦݐݑ݌ 	ሺ݉ሻ൯ܽݐܽܦ݃݊݅݀݊݁ܲݐ݁݃
ݐ ൌ 	ሺ݉଴ሻ݌݉ܽݐݏ݁݉݅ܶݐݔ݁݊
ܦ ൌ ,ሺ݉଴ܽݐܽܦݐݔ݁݊ ሻݐ

݉ᇱ

ൌ

ە
ۖ
۔

ۖ
ۓ

,ሺ݉଴݁ݐ݈ܽݑ݈ܿܽܿ ,ݐ ,ሻܦ
݂݅	∄݀൫݀ ∈ History݉଴ ∧ Timeௗ ൌ ݐ ൅ ௠బݎ

൯

,ሺ݉଴݃݊݅ݐݏ݅ݔܧ݄݇ܿ݁ܿ ,ݐ ,ሻܦ
		else.

	

(17)

After inserting the data in the input queue, the next
timestamp for calculation is determined.

With nextData all required data for the prior
determined timestamp is collected.

When there is already a calculated data for
timestamp t+r in the history, this one has to be
checked. This will occur if lvt was set back while
processing incoming messages. Furthermore this
means that a connected module now has calculated
new data which was prior heuristically calculated.
So the module needs to check if the ‘real’ data
changes anything for its calculation. A rollback is
performed if the former calculated data was too
inaccurate. Otherwise the data may change its
conditions but a rollback is averted.

2.2.2 Receiving and Sending Data

Every time a module inserts a new value in its
history or changes a condition it sends a message to
all connected modules about this. For this it uses the
send function for every module.

݀݊݁ݏ ∶ MOD ൈMSG → MOD	 (18)

MOD:ܽݐܽܦݐݑ݌ → MOD (19)

Send inserts the message into a temporary buffer
of the module to avoid unwished side effects (18). It
fulfils our condition, that the critical state of a
module isn’t changed by another one.

The temporarily saved messages are inserted into
the input queue with putData (19). It also adjusts the
time if required. The module can only process data
which has a timestamp bigger than its lvt. If a
message with a timestamp earlier than module’s lvt
arrives, lvt is set back to an even earlier time. The
order in which the messages are taken out of the
buffer and inserted into the input queue does not
matter. The execution order will stay the same,
because lvt is always set to the earliest timestamp of
all processed messages

Consider now our example again. Especially we
are looking at K1. The input queue of K1 is assumed
as in (20) and lvt of K1 is three.

௄ଵܫ ൌ ൜
ሺ൅, ሺ 1, 3, ∅ሻ, ܴ1ሻ,

ሺ൅, ሺ2, 4, ሼ1ܭ, 0, 2ሽሻ, 			0ሻܭ
ൠ	

௄ଵݐݒ݈ ൌ 3
(20)

We assume that K1 got a message from its
controller R1 and from K0. In the temporary buffer
are therefore two messages.

ݎ݂݂݁ݑܾ ൌ ሼሺ൅, ሺ1, 1, ∅ሻ, ,0ሻܭ ሺെ, ሺ1, 3, ∅ሻ, ܴ1ሻሽ	 (21)

putData will insert the messages in the input
queue and because one is less than two (lvt-r) it will
set the local virtual time of K1 to one. The second
message is a negative message. It will delete its
positive counterpart in the input queue. So after
inserting it the input queue has gotten smaller.

௄ଵܫ ൌ ൜
ሺ൅, ሺ1, 1, ∅ሻ, ,0ሻܭ

ሺ൅, ሺ2, 4, ሼ1ܭ, 0, 2ሽሻ, 			0ሻܭ
ൠ	

௄ଵݐݒ݈ ൌ 1
(22)

2.2.3 Calculating Data

݌݉ܽݐݏ݁݉݅ܶݐݔ݁݊ ∶ MOD → TIME (23)

:ܽݐܽܦݐݔ݁݊ MOD ൈ TIME → 	MSG∗	 (24)

݁ݐ݈ܽݑ݈ܿܽܿ ∶ MOD ൈ TIME ൈ MSG∗ → MOD (25)

݂ܴ݁݀݊݋ܿ ∶ MOD ൈ DATA → CONDR (26)

ݎ݁ܲ݀݊݋ܿ ∶ TIME ൈMOD ൈ DATA → CONDP (27)

݁ݑ݈ܽݒݐݔ݁݊ ∶ MOD ൈMSG* → DATA	
ሺ݉,ܯሻ ↦ ሺݐ, ,ݒ ሻܥ

ݐ ൌ ,ሺTime௡.஽௔௧௔ݔܽ݉ ∀݊ ∈ ሻܯ ൅ 	௠ݎ
ݒ ൌ ௠݂ሺܯሻ	

ܥ ൌራܿݎ݁ܲ݀݊݋ሺ݉ܽݔሺTime௡.஽௔௧௔, ∀݊
௜∈ெ

∈ ሻܯ ,Modul௜,Data௜ሻ
∪ 	ሻ	ሺModul௜,Data௜݂ܴ݁݀݊݋ܿ

(28)

To calculate new data one has to know at first for
which timestamp. To get this the smallest timestamp
in the input queue bigger than lvt-r is searched with
nextTimestamp (23).

Afterwards, nextData gets this timestamp and
searches for all data in the input queue of the module
which has the same timestamp (24). Now some data
might still be missing. All modules which had not
provided data with the searched timestamp are asked
for a heuristically calculated value. nextData returns
a set of all needed input values.

The gathered data is now given to calculate (25).
At first nextvalue is called by calculate (28). It
calculates a new result value with the f-function of

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

270

the module. It uses the condition-functions to
determine all necessary conditions. After that
calculate sends the data to all connected modules
and saves the data in the module’s own history and
output queue. At last calculate increases the local
virtual time. It takes the timestamp of the input data
(which is bigger than lvt-r) and adds r to it.
Therefore, time advances over the simulation steps.

The two types of conditions are calculated by
(26) and (27). CONDP are created if the time of the
input data is smaller than the given time. A CONDR
is created every time the input has conditions.

Again we will show the functions on our
example. K0 might look like in (29) before.

0ܭ ൌ ሺܥ௄଴, ,௄଴ܪ ,௄଴ܫ ܱ௄଴, 1, 1, 1, ௄݂଴ሻ		
௄଴ܥ ൌ ሼܴ0,1ܭሽ	
௄଴ܪ ൌ ൛	൫ሺ	1, 1, ∅ሻ, 	ଵ൯ൟݏ
௄଴ܫ ൌ ሼ	ሺ൅, ሺ	1,2, ሼሺܵ0,0,1ሻሽሻ, ܴ0ሻ		ሽ	
ܱ௄଴ ൌ ሼ ሽ	

(29)

Then the functions (30-32) are called
sequentially. Which leads to the state of K0 as seen
in (33)

0ሻܭሺ݌݉ܽݐݏ݁݉݅ܶݐݔ݁݊ ൌ 1	 (30)

0,1ሻܭሺܽݐܽܦݐݔ݁݊ ൌ ሼ	ሺ൅, ሺ 1,2, ሼሺܵ0,0,1ሻሽሻ, ܴ0ሻሽ
∪ K1ሻ	ሺ1,ݏ݁ݑ݈ܽݒݐݏܾ݁ (31)

,0,1ܭሺ݁ݐ݈ܽݑ݈ܿܽܿ 0,1ሻሻ (32)ܭሺܽݐܽܦݐݔ݁݊

0ܭ ൌ ሺܥ௄଴, ,௄଴ܪ ,௄଴ܫ ܱ௄଴, 1, 2, 1, ௄݂଴ሻ		

௄଴ܪ ൌ ቊ
	൫ሺ	1, 1, ∅ሻ, ଵ൯ݏ

൫ሺ	2, 2, ሼሺܴ0, 1ሻ, ሺ1ܭ, 0, 1ሻሽሻ, ଶ൯ݏ
ቋ	

௄଴ܫ ൌ ሼ	ሺ൅, ሺ	1,2, ሼሺܵ0,0,1ሻሽሻ, ܴ0ሻ		ሽ	
ܱ௄଴ ൌ ሼሺ	2, 2, ሼሺܴ0, 1ሻ, ሺ1ܭ, 0, 1ሻሽሻሽ	

(33)

The newly calculated value was inserted in the
history and output queue and sent to the connected
modules. The input queue was not changed because
the data might be needed for a later calculation.

2.2.4 Check Existing Data

If there is already data in the history for a given
timestamp, this data is checked with checkExisting
whether it should be updated (34). It may trigger a
rollback but with good heuristics and light
dependencies between the modules this can be
prevented. We make the assumption that some light
changes in the input data will not cause an effect on
calculations and use this to speed up a whole
simulation.

MOD:݃݊݅ݐݏ݅ݔܧ݄݇ܿ݁ܿ ൈ TIME	 ൈ MSG* 	→ MOD
,ሺ݉݃݊݅ݐݏ݅ݔܧ݄݇ܿ݁ܿ ,ݐ ሻܦ ൌ ݉ᇱ	
ܣܶܣܦ ∋ ݀ ൌ ሺ݀	 ∈ 	History௠	|	Timeௗ	ݐ	 ൅ ௠ሻݎ	

(34)

݉ᇱ ൌ

ە
ۖ
۔

ۖ
ۓ

,ሺ݉଴ܽݐܽܦ݁ݐܽ݀݌ݑ ݀, ,ሻܦ
if	conditions	change

,ሺ݉଴ܾ݈݈݇ܿܽ݋ݎሺ݁ݐ݈ܽݑ݈ܿܽܿ ,ሻݐ ,ݐ ,ሻܦ
if	݀ incorrect.

ܽݐܽܦ݁ݐܽ݀݌ݑ ∶ MOD ൈ DATA ൈ 	MSG → 	MOD (35)

UpdateData updates the conditions of an existing
data for new input but will not change the value
(35). What happens to the conditions of the data
depends on the module. The old data is deleted from
history and output queue and the connected modules
are informed about the update. This should not be
confused with a rollback. In the connected module
the message will just trigger an update, not a
rollback.

For our example this could mean that when K0
gets a new value from K1 it may not have to do a
new calculation. Assume the former calculated
position of K0 was 10 and there was no collision.
The new position of K1 now is 20. Clearly this has
no effect on the old calculation, so instead of doing a
rollback only a condition has to be deleted.

In our example K0 is in the state of (36). After
executing checkExisting it is in the state like in (38).

0ܭ ൌ ሺܥ௄଴, ,௄଴ܪ ,௄଴ܫ ܱ௄଴, 1, 2, 1, ௄݂଴ሻ		
௄଴ܥ ൌ ሼܴ0, 1ሽܭ

௄଴ܪ ൌ ቊ
	൫ሺ	1, 1, ∅ሻ, ଵ൯ݏ

൫ሺ	2, 2, ሼሺ1ܭ, 0, 1ሻሽሻ, ଶ൯ݏ
ቋ	

௄଴ܫ ൌ ൜
	ሺ൅, ሺ	1,2, ∅ሻ, ܴ0ሻ	
ሺ൅, ሺ1, 0, ∅ሻ, 	1ሻܭ

ൠ	

ܱ௄଴ ൌ ሼሺ 2, 2, ሼሺ1ܭ, 0, 1ሻሽሻሽ	

(36)

,0,1ܭ൫݃݊݅ݐݏ݅ݔܧ݄݇ܿ݁ܿ 0,1ሻ൯ܭሺܽݐܽܦݐݔ݁݊

0,1ሻܭሺܽݐܽܦݐݔ݁݊
ൌ ሼ ሺ൅, ሺ 1, 2, ∅ሻ, ܴ0ሻ, ሺ൅, ሺ1, 0, ∅ሻ, 1ሻሽܭ

(37)

௄଴ܪ ൌ ቊ
൫ሺ 1, 1, ∅ሻ, ଵ൯ݏ

൫ሺ 2, 2, ∅ሻ, ଶ൯ݏ
ቋ	

ܱ௄଴ ൌ ሼሺ 2, 2, ∅ሻሽ	
(38)

We assume that checkExisting will call updateData
because the new value of K1 just changes the
conditions of (2, 2). The state of K0 is then changed
by updateData. After that it looks like in (38).

While the execution of updateData the old value
ሺ2, 2, ሼሺ1ܭ, 0, 1ሻሽሻ from the outputqueue is sent as a
negative message and afterwards deleted.

2.2.5 Rollback

Rollback deletes all data before the given timestamp
(39). Every message which is deleted in the output
queue is sent to all connected modules as a negative

Speed�up�of�Co-Simulation�by�a�Heuristic�Time�Warp�Mechanism

271

one. This will delete their positive counterparts in
the input queue of connected modules.

MOD:ܾ݈݈݇ܿܽ݋ݎ ൈ ܧܯܫܶ → MOD (39)

3 CONCLUSION, LIMITATIONS
AND OUTLOOK

The efficient processing of coupled heterogeneous
simulations of engineering products is a serious
challenge. In many (co-)simulation infrastructures,
all connected simulation modules wait for the
slowest part though parallel processing. To
overcome this problem, a theoretic approach to
schedule efficiently the parallel processing of
connected simulation modules is presented based on
a formal component model. The optimization
potential of this approach depends on a suitable
heuristic for the interaction behaviour of connected
simulation modules. To evaluate the approach, the
component model was implemented and tested by an
exemplary simulation scenario.

Our approach is subject to some assumptions
which limit the spectrum of applicable co-simulation
environments: A central aspect of our approach is
the use of a heuristic to provide fast the result values
of slow modules. To design such heuristics, domain
knowledge is needed, so we rely on the experts
modelling the module to provide it. The quality of
this heuristic has high impact on the occurrence of
rollbacks in or approach and so on its potential to
speed up the simulation. Additionally the coupling
structure of co-simulated modules determines the
possible speedup. Scenarios in which the modules
form dents webs around a single slow module tend
to produce more rollbacks. This is due to the fact
that the heuristically produced data is used at many
distinct modules. The probability that one of these
modules will produce a different output using the
accurate data simply adds up.

 In further work more complex case studies for
simulation of whole tool machines are currently
implemented. Additionally further research on more
sophisticated heuristics for the prediction of
connected simulation behaviour is planned.

REFERENCES

Bartelt, C., Böss, V., Brünning, J., Denkena, B., Rausch,
A., Tatou, J.P., 2013. A Software Architecture to
Synchronize Interactivity of Concurrent Simulations in
Systems Engineering, in: In Proceedings of the 20th

ISPE International Conference on Concurrent
Engineering.

Beraldi, R., Nigro, L., 2000. Exploiting Temporal
Uncertainty in Time Warp Simulations, in:
Proceedings of the Fourth IEEE International
Workshop on Distributed Simulation and Real-Time
Applications, DS-RT ’00. IEEE Computer Society,
Washington, DC, USA, p. 39–.

Beraldi, R., Nigro, L., Orlando, A., Pupo, F., 2002.
Temporal Uncertainty Time Warp: An Agent-Based
Implementation, in: Proceedings of the 35th Annual
Simulation Symposium, SS ’02. IEEE Computer
Society, Washington, DC, USA, p. 72–.

Ferscha, A., 1995. Probabilistic Adaptive Direct Optimism
Control in Time Warp, in: In Proceedings of the 9th
Workshop on Parallel and Distributed Simulation. pp.
120–129.

Fujimoto, R.M., 1998. Time Management in the High
Level Architecture. Simulation 71, 388–400.

Fujimoto, R.M., 1999. Exploiting temporal uncertainty in
parallel and distributed simulations, in: Thirteenth
Workshop on Parallel and Distributed Simulation,
1999. Proceedings. Presented at the Thirteenth
Workshop on Parallel and Distributed Simulation,
1999. Proceedings, pp. 46–53.
doi:10.1109/PADS.1999.766160

IEEE, 2010. std 1516-2010, IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA) - Framework and Rules. The Institute of
Electrical and Electronic Engineers.

Jefferson, D.R., 1985. Virtual time. ACM Trans. Program.
Lang. Syst. 7, 404–425.

MODELISAR consortium, 2010. Functional Mock-up
Interface for Co-Simulation v1.0 [WWW Document].
URL
https://svn.modelica.org/fmi/branches/public/specificat
ions/FMI_for_CoSimulation_v1.0.pdf (accessed
4.30.14).

Perumalla, K.S., Georgia, R.M.F., 1999. Efficient
optimistic parallel simulations using reverse
computation. ACM Trans. Model. Comput. Simul. 9,
126–135.

Prasad, S.K., Cao, Z., 2003. Parallel Distributed
Simulation and Modeling Methods: SyncSim: A
Synchronous Simple Optimistic Simulation Technique
Based on a Global Parallel Heap Event Queue, in:
Proceedings of the 35th Conference on Winter
Simulation: Driving Innovation, WSC ’03. Winter
Simulation Conference, New Orleans, Louisiana, pp.
872–880.

Quaglia, F., Beraldi, R., 2004. Space uncertain simulation
events: some concepts and an application to optimistic
synchronization, in: 18th Workshop on Parallel and
Distributed Simulation, 2004. PADS 2004. Presented
at the 18th Workshop on Parallel and Distributed
Simulation, 2004. PADS 2004, pp. 181–188.
doi:10.1109/PADS.2004.1301299

Srinivasan, S., Srinivasan, S., Jr, Reynolds, P.F.,
Reynolds, P.F., 1995. NPSI Adaptive Synchronization

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

272

Algorithms for PDES, in: In 1995 Winter Simulation
Proceedings. pp. 658–665.

Vardnega, F., Maziero, C., 2000. A Generic Rollback
Manager for Optimistic HLA Simulations, in:
Proceedings of the 4th IEEE International Workshop
on Distributed Simulation and Real-Time
Applications. pp. 79–85.

Speed�up�of�Co-Simulation�by�a�Heuristic�Time�Warp�Mechanism

273

