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Abstract: Nowadays many engineered systems are modelled and simulated before their production. A common 
problem is that all modules and properties of complex systems cannot be modelled within only one 
simulation suite because they require different (proprietary) simulation software. This makes it desirable to 
be able to simulate a whole system simulation as cooperating simulation modules. To be efficient the 
communication between the modules has to be fast and must not be a bottleneck. In this paper we propose a 
theoretical concept to connect heterogeneous simulation modules. We utilize the mechanism of optimistic 
scheduling but expand it by using a heuristic to fast determine values. Our concept uses the rollback known 
from time warp mechanism. A module needs a certain amount of input data to process and when this data is 
not present at the given time of processing we use the heuristic to get all missing data. With these two 
enhancements we can limit the amount of rollbacks while speeding up the processing time of the whole 
system simulation. 

1 INTRODUCTION AND 
RELATED RESEARCH 

Cooperative processing of heterogeneous 
simulations is addressed by several approaches and  
software infrastructures (Bartelt et al., 2013). The 
Functional Mockup Interface (FMI) allows to 
orchestrate a number of slave simulation within a 
single master algorithm (MODELISAR, 2010). The 
definition of such algorithm is not part of the 
specification and has to be provided by an engineer 
who designs the co-simulation architecture and 
scheduling. The High-Level-Architecture (HLA) 
(IEEE, 2010) is a framework designed to integrate 
technically heterogeneous simulation modules. Its 
runtime infrastructure implements Jefferson’s Time 
Warp protocols (Jefferson, 1985) as part of its time 
management (Fujimoto, 1998; Vardnega and 
Maziero, 2000). The Time Warp protocol aims to 
synchronize concurrent processes that 
communicating only by passing messages. The 
process receiving a message takes it as an input and 
may send output messages as a reaction on it. The 
received messages have to be processed in the order, 
in which they were sent, but may be delayed through 
the network connecting the processes. Time Warp 
allows the processes to handle the messages as they 
arrive. If a message with a time stamp is earlier than 

the last processed message arrives, a rollback is 
triggered. The process receiving this delayed 
message is reverted to the state at which the message 
should have been processed and sends so called anti 
messages to cancel the messages sent by this process 
based on this inconsistent sequence. This 
approached is called optimistic, since it assumes 
everything will work out well and later handles the 
occurring problem if this assumption is broken.  

The approach, which is presented in this position 
paper, is based on the general Time Warp 
mechanism. However our presented approach 
proposes the usage of heuristics for an 
approximation of simulated values at runtime to 
avoid rollbacks. This allows to speed up co-
simulations by parallel processing and optimistic 
scheduling. The protocol assumes that no messages 
will arrive out of order and provides rollbacks as a 
mechanism to fix the problems occurring if they do. 
We assume that the missing inputs will arrive at the 
module at a later time stamp, but that they will not 
change the output and provide mechanism to check, 
if they do, when they arrive. A rollback is only 
needed if such delayed input has a relevant impact. 
This reduces the amount of expensive rollbacks if 
the probability of changes is low. To allow the 
modules to start processing with missing inputs, 
these inputs are guessed using a predefined heuristic. 
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There are also many alternative improvements of 
the Time Warp. Some researches focus on temporal 
uncertainty in distributed simulations (Beraldi and 
Nigro, 2000; Beraldi et al., 2002, 2002; Fujimoto, 
1999; Quaglia and Beraldi, 2004), several other 
focus on more efficient rollbacks. This includes 
optimized storage mechanism for states (Prasad and 
Cao, 2003) and the definition of reverse operation to 
those operations changing the state of the process 
(Perumalla and Georgia, 1999) in order to avoid 
storing states at all. Other Works reduce the amount 
of rollbacks by adapting the optimism in the 
protocol. In (Ferscha, 1995) processes that have 
advanced further than the rest of the system are 
supposed to generate messages that will trigger 
rollbacks and slowed down. Another approach is to 
predict the timestamp of future messages, using the 
history of received messages (Srinivasan et al., 
1995). Only messages received with a lower time 
stamp than this predicted time stamp are processed.  

2 Optimistic Co-Simulation 
Scheduling 

In our approach every simulation calculates a new 
value when it gets a message with a value from 
another simulation module. In most cases the 
simulation needs more than one input for complete 
and correct processing. It may not get all necessary 
data and missing data would have to be guessed. The 
processing with the guessed data would later be 
reversed when the correct data arrives. If the data is 
guessed in a very simple way, there is only a small 
chance, that the guessed values are close enough to 
the real ones. Therefore the calculation would have 
to be reversed. To increase the chances, we propose 
to use a heuristic provided by the modeller to predict 
missing values and avoid rollbacks.  

To provide a mechanism to check predicted 
values, data is declared as unconfirmed when it is 
calculated with some estimated or with unconfirmed 
input data. Every unconfirmed data is marked with a 
condition. All unconfirmed data can still become a 
victim of a rollback. There exist two different times 
in the co-simulation. The calculation time is the time 
span a module needs for calculating a new value. 
The other time is the virtual simulation time, which 
is used for synchronization between the various 
modules. While the calculation time is represented 
by an actual time, the simulation time is a virtual 
time stamp. Due to the absence of synchronized 
clocks, this is widely used in distributed systems. All 
messages sent are marked with a time stamp. The 
time advances with every calculation in the 

following way: The new time stamp is the old time 
stamp plus the reaction time of the module. 

In this section the proposed scheduling 
mechanism is explained based on a more formal 
component model for simulation infrastructures. 
For a more intuitive explanation of the formalism, 
we introduce a simplified example of two robots in 
separated working spaces. The two robots are 
mounted onto skids (kinematics) and move along a 
circular rail. Each skid has its own control and is 
regulated by a controller. Figure 1 shows the 
structure of a corresponding co-simulation. Each 
robot has a kinematic, a controller and a control. 
 

 

Figure 1: Schematic view of the co-simulation. 

Both kinematics do not need to know the 
position of each other as long as they are not about 
to collide. The exact position only gets interesting 
when the two kinematics are close to each other.  

2.1 Static View 

The acting elements in this concept are modules. A 
module MOD is a tuple of eight sets of values (1). 
These sets represents the current state of the module 
and its behaviour. 
 

MOD ൌௗ௘௙ CON ൈ HIS ൈ INPUT ൈ OUTPUT ൈ ݎ
ൈ ݐݒ݈ ൈ ݐ݈݃ ൈ ݂	

(1) 

CON ൌௗ௘௙ MOܦ *

HIS ൌௗ௘௙ ሼDATAൈSTATEሽ	* 

(2) 
(3) 

INPUT ൌௗ௘௙ ሼMSGሽ	∗	

OUTPUT ൌௗ௘௙ DATA	*	

(4) 
(5) 

DATA ൌௗ௘௙ TIME ൈ RESULT ൈ ሼCONDሽ	∗	 (6) 
COND ൌௗ௘௙ CONDR ∪ CONDP	 (7) 

CONDR ൌௗ௘௙ MOD ൈ TIME	
CONDPER ൌௗ௘௙ MOD ൈ TIME ൈ TIME	

(8) 
(9) 

MSGൌdef SIGNൈDATAൈMOD	
SIGNൌሼ൅,‐ሽ

(10) 
(11) 

r	∈Z\ሼ0ሽ
lvt	∈Z	\ሼ0ሽ	
lgt	∈Z\ሼ0ሽ	

f:MSG*→RESULT	

(12) 
(13) 
(14) 
(15) 

 

The connection CON of a module is a set of all 
modules, which this is connected to (2). This may 
also include the module itself. In the history HIS are 
all past values together with a state saved (3). The 
state is needed to perform checks and rollbacks and 
should therefore save all relevant data to perform 
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them. What the state saves has to be decided by the 
designer of the module. In accordance to the time-
warp concept a module contains two queues, an 
input queue INPUT and an output queue OUTPUT 
(4-5). 

The data needs a timestamp which indicates the 
simulation time for which the value was calculated 
and possible conditions COND. The conditions 
indicate that the calculation was based on heuristic 
data. Period conditions CONDP on output data 
indicates missing, respectively estimated input data. 
The timespan is between the referenced modules 
local guaranteed time (see below) and the timestamp 
of the output data. This is the timespan which is 
interesting for the calculated value. Referencing 
conditions CONDR on output data appear every time 
when input data with conditions, was used for a 
calculation (7-9). 

Figure 2 gives an example for the creation of 
conditions. K0 is the calculating module and it gets 
two input data. On the calculated value comes up 
one referencing condition for R0, because the input 
data from R0 has a condition. And we get a new 
condition for K1, because the input data from K1 is 
not for timestamp 1 but 0 and therefore is a guessed 
value. 

 

 

Figure 2: Example for conditions. 

An Expansion of data is a message MSG (10). 
This is data together with the module which 
produced this data and a sign. The sign is used for 
deleting messages from the input queue in rollbacks 
(11). A negative message deletes its positive 
counterpart. 

The module has got some time attributes, which 
are quite similar to the ones used by Jefferson. The 
time a simulated instance needs to 'react' in the real 
world is called r. This time period is not related to 
the actual calculation time, which can be a lot 
greater than r. It can also be called the step-width of 
the simulation. 

A module has got a local virtual time (lvt) and a 
local guaranteed time (lgt). lvt is the current time of 
the simulation. lgt again, is the time of the last data 
without conditions. 

Also important is the calculation function f (15). 
This is in fact the simulation itself which takes input 
data from the input queue and calculates new values. 

Besides this every module has a heuristic for fast 
calculating or guessing values. To indicate that these 
values are ‘guessed’ they get a timestamp which is 
earlier than the real one. As prior stated this is later 
needed for determining the conditions.  

 

 

Figure 3: Example: Schematic view (l), module (r). 

Figure 3 gives a schematic overview of the 
example and one module, respectively K0, one of 
the kinematics. The kinematic in this figure would 
be modelled in the following way (16). 

 

0ܭ ൌ ሺܥ௄଴, ,௄଴ܪ ,௄଴ܫ ܱ௄଴, 1, 2, 0, ௄݂଴ሻ		
௄଴ܥ ൌ ሼܴ0,1ܭ, 0ሽܭ
௄଴ܪ ൌ ൛൫ሺ	2, 4, ሼሺ1ܭ, 0,2ሻሽሻ, 	ଵ൯ൟݏ
ଵݏ ∈ STATE	

௄଴ܫ ൌ ቐ
ሺ൅, ሺ0, 2, ∅ሻ, ,1ሻܭ
ሺ൅, ሺ	1, 5, ∅ሻ, ܴ0ሻ,

ሺ൅, ሺ2, 4, ሼሺ1ܭ, 0, 2ሻሽሻ, 		0ሻܭ
ቑ	

ܱ௄଴ ൌ ሼሺ2, 4, ሼ1ܭ, 0, 2ሽሻሽ	

(16) 
 

K0 is connected with R0, K1 and itself. In the 
history is a value 4 with timestamp 2 and a condition 
on K1 between 0 and 2. With the value the state of 
the module is saved. K0’s input queue stores three 
values, one from each connected module. In the 
output queue is also stored the calculated value. 

2.2 Dynamic View 

Every module executes the simulate function itself. 
There is no need for a master component which has 
to control the execution order. This is due to the fact 
that every module just sends messages to others and 
changes only their own state.  

2.2.1 Simulate 

The simulate function transfers one state of a 
module into another (17). At first all pending data, 
respectively messages which arrived during the last 
simulation step, are inserted into the input queue 
with putData. When there is a message with a 
timestamp less than the module’s lvt, then lvt is set 
back before the data’s timestamp. But no rollback to 
an old state will be executed at this step. Before the 
rollback takes place, a check is done, which will 
determine whether a rollback is necessary or not.  
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݁ݐ݈ܽݑ݉݅ݏ ∶ MOD → MOD	
ሺ݉ሻ݁ݐ݈ܽݑ݉݅ݏ ൌ ݉ᇱ 

݉଴ ൌ ,൫݉ܽݐܽܦݐݑ݌ 	ሺ݉ሻ൯ܽݐܽܦ݃݊݅݀݊݁ܲݐ݁݃
ݐ ൌ 	ሺ݉଴ሻ݌݉ܽݐݏ݁݉݅ܶݐݔ݁݊
ܦ ൌ ,ሺ݉଴ܽݐܽܦݐݔ݁݊  ሻݐ

݉ᇱ

ൌ

ە
ۖ
۔

ۖ
ۓ

,ሺ݉଴݁ݐ݈ܽݑ݈ܿܽܿ ,ݐ ,ሻܦ
݂݅	∄݀൫݀ ∈ History݉଴ ∧ Timeௗ ൌ ݐ ൅ ௠బݎ

൯

,ሺ݉଴݃݊݅ݐݏ݅ݔܧ݄݇ܿ݁ܿ ,ݐ ,ሻܦ
		else.

	

(17) 
 

 

After inserting the data in the input queue, the next 
timestamp for calculation is determined. 

With nextData all required data for the prior 
determined timestamp is collected. 

When there is already a calculated data for 
timestamp t+r in the history, this one has to be 
checked. This will occur if lvt was set back while 
processing incoming messages. Furthermore this 
means that a connected module now has calculated 
new data which was prior heuristically calculated. 
So the module needs to check if the ‘real’ data 
changes anything for its calculation. A rollback is 
performed if the former calculated data was too 
inaccurate. Otherwise the data may change its 
conditions but a rollback is averted. 

2.2.2 Receiving and Sending Data 

Every time a module inserts a new value in its 
history or changes a condition it sends a message to 
all connected modules about this. For this it uses the 
send function for every module. 

݀݊݁ݏ ∶ MOD ൈMSG → MOD	 (18) 

MOD:ܽݐܽܦݐݑ݌ → MOD (19) 
 

Send inserts the message into a temporary buffer 
of the module to avoid unwished side effects (18). It 
fulfils our condition, that the critical state of a 
module isn’t changed by another one. 

The temporarily saved messages are inserted into 
the input queue with putData (19). It also adjusts the 
time if required. The module can only process data 
which has a timestamp bigger than its lvt. If a 
message with a timestamp earlier than module’s lvt 
arrives, lvt is set back to an even earlier time. The 
order in which the messages are taken out of the 
buffer and inserted into the input queue does not 
matter. The execution order will stay the same, 
because lvt is always set to the earliest timestamp of 
all processed messages 

Consider now our example again. Especially we 
are looking at K1. The input queue of K1 is assumed 
as in (20) and lvt of K1 is three. 

 

௄ଵܫ ൌ ൜
ሺ൅, ሺ 1, 3, ∅ሻ, ܴ1ሻ,

ሺ൅, ሺ2, 4, ሼ1ܭ, 0, 2ሽሻ, 			0ሻܭ
ൠ	

௄ଵݐݒ݈ ൌ 3
(20) 

 

We assume that K1 got a message from its 
controller R1 and from K0. In the temporary buffer 
are therefore two messages. 

 

ݎ݂݂݁ݑܾ ൌ ሼሺ൅, ሺ1, 1, ∅ሻ, ,0ሻܭ ሺെ, ሺ1, 3, ∅ሻ, ܴ1ሻሽ	 (21) 
 

putData will insert the messages in the input 
queue and because one is less than two (lvt-r) it will 
set the local virtual time of K1 to one. The second 
message is a negative message. It will delete its 
positive counterpart in the input queue. So after 
inserting it the input queue has gotten smaller. 

 

௄ଵܫ ൌ ൜
ሺ൅, ሺ1, 1, ∅ሻ, ,0ሻܭ

ሺ൅, ሺ2, 4, ሼ1ܭ, 0, 2ሽሻ, 			0ሻܭ
ൠ	

௄ଵݐݒ݈ ൌ 1
(22) 

2.2.3 Calculating Data 

݌݉ܽݐݏ݁݉݅ܶݐݔ݁݊ ∶ MOD → TIME (23) 

:ܽݐܽܦݐݔ݁݊ MOD ൈ TIME → 	MSG∗	 (24) 

݁ݐ݈ܽݑ݈ܿܽܿ ∶ MOD ൈ TIME ൈ MSG∗ → MOD (25) 

݂ܴ݁݀݊݋ܿ ∶ MOD ൈ DATA → CONDR (26) 

ݎ݁ܲ݀݊݋ܿ ∶ TIME ൈMOD ൈ DATA → CONDP (27) 

݁ݑ݈ܽݒݐݔ݁݊ ∶ MOD ൈMSG* → DATA	
ሺ݉,ܯሻ ↦ ሺݐ, ,ݒ ሻܥ

ݐ ൌ ,ሺTime௡.஽௔௧௔ݔܽ݉ ∀݊ ∈ ሻܯ ൅ 	௠ݎ
ݒ ൌ ௠݂ሺܯሻ	

ܥ ൌራܿݎ݁ܲ݀݊݋ሺ݉ܽݔሺTime௡.஽௔௧௔, ∀݊
௜∈ெ

∈ ሻܯ ,Modul௜,Data௜ሻ
∪ 	ሻ	ሺModul௜,Data௜݂ܴ݁݀݊݋ܿ

(28) 

 

To calculate new data one has to know at first for 
which timestamp. To get this the smallest timestamp 
in the input queue bigger than lvt-r is searched with 
nextTimestamp (23). 

Afterwards, nextData gets this timestamp and 
searches for all data in the input queue of the module 
which has the same timestamp (24). Now some data 
might still be missing. All modules which had not 
provided data with the searched timestamp are asked 
for a heuristically calculated value. nextData returns 
a set of all needed input values. 

The gathered data is now given to calculate (25). 
At first nextvalue is called by calculate (28). It 
calculates a new result value with the f-function of 
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the module. It uses the condition-functions to 
determine all necessary conditions. After that 
calculate sends the data to all connected modules 
and saves the data in the module’s own history and 
output queue. At last calculate increases the local 
virtual time. It takes the timestamp of the input data 
(which is bigger than lvt-r) and adds r to it. 
Therefore, time advances over the simulation steps. 

The two types of conditions are calculated by 
(26) and (27). CONDP are created if the time of the 
input data is smaller than the given time. A CONDR 
is created every time the input has conditions. 

Again we will show the functions on our 
example. K0 might look like in (29) before. 

 

0ܭ ൌ ሺܥ௄଴, ,௄଴ܪ ,௄଴ܫ ܱ௄଴, 1, 1, 1, ௄݂଴ሻ		
௄଴ܥ ൌ ሼܴ0,1ܭሽ	
௄଴ܪ ൌ ൛	൫ሺ	1, 1, ∅ሻ, 	ଵ൯ൟݏ
௄଴ܫ ൌ ሼ	ሺ൅, ሺ	1,2, ሼሺܵ0,0,1ሻሽሻ, ܴ0ሻ		ሽ	
ܱ௄଴ ൌ ሼ ሽ	

(29) 

Then the functions (30-32) are called 
sequentially. Which leads to the state of K0 as seen 
in (33) 

 

0ሻܭሺ݌݉ܽݐݏ݁݉݅ܶݐݔ݁݊ ൌ 1	 (30) 

0,1ሻܭሺܽݐܽܦݐݔ݁݊ ൌ ሼ	ሺ൅, ሺ 1,2, ሼሺܵ0,0,1ሻሽሻ, ܴ0ሻሽ 
∪ K1ሻ	ሺ1,ݏ݁ݑ݈ܽݒݐݏܾ݁ (31) 

,0,1ܭሺ݁ݐ݈ܽݑ݈ܿܽܿ  0,1ሻሻ (32)ܭሺܽݐܽܦݐݔ݁݊

0ܭ ൌ ሺܥ௄଴, ,௄଴ܪ ,௄଴ܫ ܱ௄଴, 1, 2, 1, ௄݂଴ሻ		

௄଴ܪ ൌ ቊ
	൫ሺ	1, 1, ∅ሻ, ଵ൯ݏ

൫ሺ	2, 2, ሼሺܴ0, 1ሻ, ሺ1ܭ, 0, 1ሻሽሻ, ଶ൯ݏ
ቋ	

௄଴ܫ ൌ ሼ	ሺ൅, ሺ	1,2, ሼሺܵ0,0,1ሻሽሻ, ܴ0ሻ		ሽ	
ܱ௄଴ ൌ ሼሺ	2, 2, ሼሺܴ0, 1ሻ, ሺ1ܭ, 0, 1ሻሽሻሽ	

(33) 

The newly calculated value was inserted in the 
history and output queue and sent to the connected 
modules. The input queue was not changed because 
the data might be needed for a later calculation. 

2.2.4 Check Existing Data 

If there is already data in the history for a given 
timestamp, this data is checked with checkExisting 
whether it should be updated (34). It may trigger a 
rollback but with good heuristics and light 
dependencies between the modules this can be 
prevented. We make the assumption that some light 
changes in the input data will not cause an effect on 
calculations and use this to speed up a whole 
simulation. 
 

MOD:݃݊݅ݐݏ݅ݔܧ݄݇ܿ݁ܿ ൈ TIME	 ൈ MSG* 	→ MOD
,ሺ݉݃݊݅ݐݏ݅ݔܧ݄݇ܿ݁ܿ ,ݐ ሻܦ ൌ ݉ᇱ	
ܣܶܣܦ ∋ ݀ ൌ ሺ݀	 ∈ 	History௠	|	Timeௗ	ݐ	 ൅ ௠ሻݎ	

(34) 

݉ᇱ ൌ

ە
ۖ
۔

ۖ
ۓ

,ሺ݉଴ܽݐܽܦ݁ݐܽ݀݌ݑ ݀, ,ሻܦ
if	conditions	change

,ሺ݉଴ܾ݈݈݇ܿܽ݋ݎሺ݁ݐ݈ܽݑ݈ܿܽܿ ,ሻݐ ,ݐ ,ሻܦ
if	݀ incorrect.

 

 
ܽݐܽܦ݁ݐܽ݀݌ݑ ∶ MOD ൈ DATA ൈ 	MSG → 	MOD (35) 

 

UpdateData updates the conditions of an existing 
data for new input but will not change the value 
(35). What happens to the conditions of the data 
depends on the module. The old data is deleted from 
history and output queue and the connected modules 
are informed about the update. This should not be 
confused with a rollback. In the connected module 
the message will just trigger an update, not a 
rollback. 

For our example this could mean that when K0 
gets a new value from K1 it may not have to do a 
new calculation. Assume the former calculated 
position of K0 was 10 and there was no collision. 
The new position of K1 now is 20. Clearly this has 
no effect on the old calculation, so instead of doing a 
rollback only a condition has to be deleted.  

In our example K0 is in the state of (36). After 
executing checkExisting it is in the state like in (38). 

 

0ܭ ൌ ሺܥ௄଴, ,௄଴ܪ ,௄଴ܫ ܱ௄଴, 1, 2, 1, ௄݂଴ሻ		
௄଴ܥ ൌ ሼܴ0, 1ሽܭ

௄଴ܪ ൌ ቊ
	൫ሺ	1, 1, ∅ሻ, ଵ൯ݏ

൫ሺ	2, 2, ሼሺ1ܭ, 0, 1ሻሽሻ, ଶ൯ݏ
ቋ	

௄଴ܫ ൌ ൜
	ሺ൅, ሺ	1,2, ∅ሻ, ܴ0ሻ	
ሺ൅, ሺ1, 0, ∅ሻ, 	1ሻܭ

ൠ	

ܱ௄଴ ൌ ሼሺ 2, 2, ሼሺ1ܭ, 0, 1ሻሽሻሽ	

(36) 

,0,1ܭ൫݃݊݅ݐݏ݅ݔܧ݄݇ܿ݁ܿ  0,1ሻ൯ܭሺܽݐܽܦݐݔ݁݊

0,1ሻܭሺܽݐܽܦݐݔ݁݊
ൌ ሼ ሺ൅, ሺ 1, 2, ∅ሻ, ܴ0ሻ, ሺ൅, ሺ1, 0, ∅ሻ,  1ሻሽܭ

(37) 

௄଴ܪ ൌ ቊ
൫ሺ 1, 1, ∅ሻ, ଵ൯ݏ

൫ሺ 2, 2, ∅ሻ, ଶ൯ݏ
ቋ	

ܱ௄଴ ൌ ሼሺ 2, 2, ∅ሻሽ	
(38) 

 

We assume that checkExisting will call updateData 
because the new value of K1 just changes the 
conditions of (2, 2). The state of K0 is then changed 
by updateData. After that it looks like in (38). 

While the execution of updateData the old value 
ሺ2, 2, ሼሺ1ܭ, 0, 1ሻሽሻ from the outputqueue is sent as a 
negative message and afterwards deleted. 

2.2.5 Rollback 

Rollback deletes all data before the given timestamp 
(39). Every message which is deleted in the output 
queue is sent to all connected modules as a negative 
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one. This will delete their positive counterparts in 
the input queue of connected modules. 
 

MOD:ܾ݈݈݇ܿܽ݋ݎ ൈ ܧܯܫܶ → MOD (39)

3 CONCLUSION, LIMITATIONS 
AND OUTLOOK 

The efficient processing of coupled heterogeneous 
simulations of engineering products is a serious 
challenge. In many (co-)simulation infrastructures, 
all connected simulation modules wait for the 
slowest part though parallel processing. To 
overcome this problem, a theoretic approach to 
schedule efficiently the parallel processing of 
connected simulation modules is presented based on 
a formal component model. The optimization 
potential of this approach depends on a suitable 
heuristic for the interaction behaviour of connected 
simulation modules. To evaluate the approach, the 
component model was implemented and tested by an 
exemplary simulation scenario. 

Our approach is subject to some assumptions 
which limit the spectrum of applicable co-simulation 
environments: A central aspect of our approach is 
the use of a heuristic to provide fast the result values 
of slow modules. To design such heuristics, domain 
knowledge is needed, so we rely on the experts 
modelling the module to provide it. The quality of 
this heuristic has high impact on the occurrence of 
rollbacks in or approach and so on its potential to 
speed up the simulation. Additionally the coupling 
structure of co-simulated modules determines the 
possible speedup. Scenarios in which the modules 
form dents webs around a single slow module tend 
to produce more rollbacks. This is due to the fact 
that the heuristically produced data is used at many 
distinct modules. The probability that one of these 
modules will produce a different output using the 
accurate data simply adds up.  

 In further work more complex case studies for 
simulation of whole tool machines are currently 
implemented. Additionally further research on more 
sophisticated heuristics for the prediction of 
connected simulation behaviour is planned.  
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