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Abstract: Heat transfer enhancement of the film flow falling along vertical rectangular fluted plates is investigated in 
this study. We have calculated the temporal evolution of the film flow by using the CLSVOF and GF 
methods, and obtained the steady state film and velocity distributions. It is found that the film flow goes 
inside the fluted part due to the effect of the surface tension for the fluted plate and the thickness near the 
fluted edge is thinner. This may lead to the heat transfer enhancement. Therefore, the temperature 
distribution is calculated in the thermally inlet region, which corresponds to the problem of two-phase 
version of the well-known Graetz-Nusselt's problem. Finally, we show the relation among the heat transfer, 
fluted geometries and the surface tension effect. 

1 INTRODUCTION 

Absorption refrigeration systems have taken an 
increasing interest due to the global warming 
problem. The systems are regarded not only as 
environmentally friendly alternatives to the 
fluorocarbon-based systems, but also as energy 
efficient heating and cooling technology (Berlitz et 
al., 1999). An absorber is a major component in the 
absorption refrigeration systems because it greatly 
affects the overall system performance. There are 
two types of absorbers. One is a plate-type absorber, 
while the other is a tube-type one.  Generally, the 
plate-type absorber is superior to the tube-type one 
from the point of view of lightness, compactness, 
maintenance, etc. under the same operating 
conditions. Therefore we focus our attention on the 
plate-type absorber in this study. 

In the plate-type absorber, a thin liquid film flow 
is observed and plays an important role in heat and 
mass transfer. Therefore, the characteristics of the 
thin falling liquid film along a vertical flat plate and 
the corresponding temperature characteristics have 
been extensively investigated both experimentally 
and numerically (Kapitza and Kapitza, 1965, Kranz 
and Goren, 1971, Pierson and Whitaker, 1977).    

Recently, increasing the demand for smaller 
space and lower noise level tends to make 
representative size and velocity smaller. Therefore, 

it is important to enhance the heat transfer in the 
laminar flow regime. In order to enhance the heat 
transfer, rectangular, triangular or sinusoidal fluted 
parts along the stream-wise direction have been 
established on the plate. This is because the liquid 
film spreads as thinly as possible over the plate 
surface since strong surface tension aids in the 
removal of film from the top to bottom of the fluted 
parts, thereby producing a very thin liquid film. This 
is called a drainage effect (Gregorig, 1954, 
Kedzierski and Webb, 1990). 

However, it is difficult to clarify the detailed 
mechanism of the heat transfer enhancement, 
because the film flow has thin, three-dimensional 
and unsteady behaviour. Actually, it has been shown 
that the film flow on the flat plate behaved like a 
wave and thickness of the film flow became thinner 
locally in the wavy flow regime, which leads to  the 
enhance of the heat transfer enhancement (Miyara, 
2000, 2001, Al-Sibai, 2002). In case of the fluted 
plate, the situation must be more complicated. So, it 
is greatly depends on numerical calculations to 
clarify the flow and temperature characteristics.   

In this study, we numerically investigate the thin 
liquid film flow on the vertical rectangular fluted 
plates in laminar flow resume. Our objective is to 
clarify effects of grooved geometries and surface 
tension on both the flow patterns and the heat 
transfer by setting the fluted parts on the vertical flat 
plate. Then, we treat our study under the well-known 
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Graetz-Nusselt's problem. This means that the film 
flow is three-dimensional and fully developed in the 
stream-wise direction, while the temperature is 
developing in the thermally inlet region.  We will try 
to show the relation among the heat transfer, fluted 
geometries and the surface tension effect. 

2 MATHEMATICAL 
FORMULATION 

2.1 Mathematical Model 

We consider a two-phase flow along a fluted plate as 
shown in Fig.1 (a). We take a half of groove which 
is enclosed by broken lines in Fig.1 (a). Figure 1 (b) 
depicts the plate cross section taken from Fig.1 (a) 
and indicates the geometric quantities that define its 
shape. The plate consists of smooth part of width ݓ௟

∗, 
fluted part of width ݓ௕

∗ and height ݀∗ measured from 
the bottom of the groove, which is symmetric with 
respect to the broken lines in Fig.1 (b). We pay 
attention only to the typical cross-section shown in 
Fig.1 (b) by considering symmetric condition.  

2.2 Governing Equations 

The flow is assumed to be three-dimensional, 
incompressible and fully developed steady state. In 
addition, a velocity is assumed to be unchanged in z 
direction. It is impossible to find the liquid film flow 
distribution along the fluted plate surface at steady 
state in advance, so we calculate the unsteady 
momentum equations in x and y directions. Next, we 
calculate the momentum equations in z direction 
under the steady condition due to fully developed 
flow. After that, the film flow distribution is 
calculated by using the velocity profiles. Finally, the 
energy equation in the thermally inlet region is 
solved. This is recognized as a problem of two-phase 
version of the well-known Graetz-Nusselt's problem.  

The governing equations for the velocity and 
pressure are written in non-dimensional forms as 
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Figure 1: Physical model and coordinates. 

ߩ ൬
ݒ߲
ݐ߲

൅ ݑ
ݒ߲
ݔ߲

൅ ݒ
ݒ߲
ݕ߲
൰ ൌ 

1
ܴ݁

൜
߲
ݔ߲

൬ߤ
ݒ߲
ݔ߲

൅ ߤ
ݑ߲
ݕ߲
൰ ൅

߲
ݕ߲

൬2ߤ
ݒ߲
ݕ߲
൰ൠ െ

݌߲
ݕ߲
	, 

(3) 

 

ߩ ൬ݑ
ݓ߲
ݔ߲

൅ ݒ
ݓ߲
ݕ߲
൰ ൌ 

1
ܴ݁

൜
߲
ݔ߲

൬ߤ
ݓ߲
ݔ߲
൰ ൅

߲
ݕ߲

൬ߤ
ݓ߲
ݕ߲
൰ൠ ൅ ݎܨߩ െ

݌߲
ݖ߲
	 

(4) 

 

where velocity gradient in z direction is ignored such 
as  ߲ݑ ⁄ݖ߲ ൌ ݒ߲ ⁄ݖ߲ ൌ ݓ߲ ⁄ݖ߲ ൌ 0 in the equations 
(1), (2), (3) and (4) because of assumption as 
velocity u is unchanged in z direction. 

The governing equations for the temperature is 
written in non-dimensional forms as 
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where heat conduction term in z direction is omitted 
in the equation (5) because heat conduction in z 
direction is smaller than one in x and y directions. 

All the variables have been non-dimensionalized 
using a characteristic length ∗ߜ , a film surface 
velocity ݓ଴∗, the density of the liquid phase ߩ௟

∗, the 
temperature on the plate ௪ܶ

∗  and the temperature in 
gas phase ௦ܶ

∗ as  
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where we represent physical quantities with their 
dimensions by attaching a superscript * to them.  

We consider that the density, viscosity, thermal 
conductivity and specific heat change 
discontinuously across the interface between the 
liquid and gas phases and are written as  
 

݂ ൌ ሚ݂ ൅ ൫1 െ ሚ݂൯(7) , ܪ 
where H is the discontinuous step function 
(Heaviside function) defined as  
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where ߶ is the level-set function which is defined as 
a distance function between the center point of 
calculation cell and gas-liquid interface. In addition, 
the density, viscosity, thermal conductivity and 
specific heat are non-dimensionalized based on the 
values of liquid phase, and they are unity in the 
liquid phase, defined as follows in the gas phase 
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where subscript l is physical properties in liquid 
phase and v is physical properties in gas phase. 

Non-dimensional geometric parameters are 
defined as 
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Non-dimensional parameters in equations are 
Reynolds number Re and Prandtl number Pr, 
defined as 
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where l*
 is kinematic viscosity of the liquid phase 

and l* the temperature conductivity. 
Because there is a special relation between 

Froude number and Reynolds number(Adachi, 2013), 
the Froude number is defined as 
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where ݄ ൌ ݄∗ ⁄∗ߜ  is the computational domain in y 
direction as shown in Fig. 1(b) and h=4 in this study. 

2.3 Boundary Conditions 

The conservation equations (1)-(4) for each phase 
are coupled through the discontinuous jump 
conditions at the interface written in non-
dimensional forms as 
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where is a curvature of the film surface, n is an 
unit normal vector at the interface from the gas 
phase to the liquid phase and Bo is bond number 
defined as 

݋ܤ ൌ
௟ߩ
∗ଶ݃∗ߜ∗

௟ߪ
∗  (13c) 

where l* is the surface tension coefficient and g* is 
the gravitational acceleration. It should be noted that 
the temperature is assumed to be constant in the gas 
phase because it plays a model of mass transfer in 
the gas phase simultaneously. So, the temperature is 
a saturation constant and unity in the gas phase.  

The boundary conditions on the plate surface are 
given by 
 

ݑ ൌ 0, ݒ ൌ ݓ,0 ൌ 0, ܶ ൌ 0	. (14) 
 

In addition, the flow is assumed to be symmetric 
along the broken lines indicated in Fig.1 (b). Then 
the symmetry conditions are expressed as 
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Finally, the Sommerfeld radiation condition is 
imposed at the boundary of the computational 
domain at y=h as  
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where U is a advection velocity adopted as U=1 in 
this study.  

3 NUMERICAL METHOD 

In order to calculate the fully developed film flow, 
we calculate the velocity u by solving equations (1)-
(3) under the boundary condition given by equations 
(13)-(16). Then we use Highly Simplified Marker 
and Cell (HSMAC) method and Ghost Fluid (GF) 
method (Kang et al., 2000 and Gibou et al., 2002). 
HSMAC method is used to be able to calculate 
velocity and pressure avoiding the calculation of 
Poisson equation and GF method is used to obtain 
sharp changes of some physical quantities across the 
interface between the liquid and gas phases, where a 
semi-implicit method is used for the calculation of 
the viscous term (Li et al., 1998).   

In addition, we use a Coupled Level Set and 
Volume of Fluid (CLSVOF) method (Son and Dhir 
2007 and Wang et al., 2009) to determine the gas-
liquid interface. This method can preserve mass 
convection and accurately calculate unit normal 
vector at the interface by using a fluid fraction F and 
level set function ߶. The fluid fraction F is defined 
as a ratio of volume of liquid phase in a cell such as 
F=1 for the cell filled with liquid phase, F=0 for the 
cell filled with gas phase and 0<F<1 for gas-liquid 
interface, while the level set function  ߶ is defined 
as a distance function between gas-liquid interface 
and center of the cell.  
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The pressure gradient in Eq. (4) must be constant 
because the flow field is fully developed in z 
direction. The velocity component w is calculated 
iteratively by using the obtained u, v and p and by 
changing the value of the constant pressure gradient 
until satisfying the condition that the flow rate in z 
direction converges to the corresponding quantity 
for the flat plate without groove. It should be noted 
that the flow rate is defined as an integration of the 
velocity w over the liquid film distribution.  

Finally, the energy equation (5) is solved in the 
thermally inlet region by using the steady velocity 
field. The temperature is steady but develops in z 
direction. Therefore, the derivative of temperature 
with respect to z is discretized with the first order 
forward differencing. The semi-implicit method is 
also used for the calculation of the diffusion term. 

4 RESULTS 

Numerical calculations are carried out for the 
geometric parameters as follows. 
 

௕ݓ ൌ ௟ݓ,2 ൌ 3, ݀ ൌ 0, 1,3, 5 (17) 
 

where four different values of height d are used in 
order to examine an influence of groove on the 
liquid film flow distribution. Also the other non-
dimensional parameters are as follows.  
 

ܴ݁ ൌ 50, ݎܲ ൌ 2, ݋ܤ ൌ 1, 10, 100, 
෤ߩ ൌ 0.001, ෤ߤ ൌ 0.05, λ෨ ൌ 0.0456, ܿ௣෥ ൌ 0.1 (18) 

 

where three different values of Bond number are 
used in order to examine an influence of surface 
tension on the liquid film flow distribution. The 
calculation have been performed by using 	
ݔ∆ ൌ ݕ∆ ൌ 5 ൈ 10ିଶ	and	∆ݐ ൌ 10ିହ. 

4.1 Shape of the Liquid Film Flow at 
Steady State 

In order to examine an effect of wettability at the 
plate surface, we calculate for two different contact 
angles such as °and° We show the film and 
velocity distributions of the fully developed flow at 
Bo=1, 10 and 100 in Fig.2 for ° and 
°respectively In all cases, the distribution of the 
liquid film becomes thinner at the groove edge as 
seen in Fig.2. It should be emphasized that a break 
of the liquid film occurs at the groove edge when the 
Bond number decreases which corresponds to an 
increase of surface tension. Namely, removal of the 
film from the top to bottom decreases due to the 
break when the surface tension increases. Therefore 

the drainage effect becomes weaker for the stronger 
surface tension. Furthermore, we can see the 
difference for the two different contact angles 
especially for the break part shown in Fig.2 (a) and 
(b). The liquid film for 60° is much more pulled into 
the bottom and the break region becomes larger 
compared with the case of 90°. This is because the 
film flow for 60° is more hydrophilic compared with 
the one for 90°. Therefore, the film distribution after 
the break depends on the contact angle.  

 
(a) Bo = 1, = 60       (b) Bo = 1, = 90 

 
(c) Bo = 10, = 60      (d) Bo = 10, = 90 

 

(e) Bo = 100, = 60      (f) Bo = 100, = 90  

Figure 2: Steady film flow for various Bond numbers and 
contact angles for d=3. 

4.2 Heat Transfer 

We consider an effect of groove on the heat transfer 
from the plate to the gas phase through the film flow. 
A local Nusselt number Nu is defined as 
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∗
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 (20) 

 

where * is the heat transfer coefficient. A local 
heat flux q* is defined as 
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where ሺ߲ܶ∗ ⁄∗ܖ߲ ሻ is the normal temperature gradient 
to the wall along the plate surface including the 
groove surface. By introducing equation (21) into 
equation (20), we can obtain 
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where n is a normal direction to the wall and has a 
positive value from the liquid phase to the plate wall. 
It should be noted that the local Nusselt number of 
the flat plate is Nu=1. In addition, we define length s 
along the wall including groove surface, where the 
start point of s is origin O. 

We take the fully developed case of Bo = 10, d=3 
and =60° shown in Fig.2 (c) as a typical example of 
heat transfer and depict the corresponding local 
Nusselt number distribution in Fig.3. As seen in 
Fig.2 (c), since the thickness of the liquid film is 
decreasing toward the groove edge, the local Nusselt 
number in Fig.3 slowly increases along the flat 
surface region (s < 3).  It has a local maximum at the 
groove edge (s~3). On the other hand, the local 
Nusselt number suddenly decreases to nearly zero 
due to the effect of the break of the film flow(s~3). 
After that, it suddenly increases to a local maximum 
value and decreases to zero again (3< s < 6). It is 
almost zero at the bottom edge of groove (s=6) 
because thickness of liquid film flow is too thick to 
transport the heat to the wall normal direction. It 
slowly increases again along the surface of groove 
(6 < s ≤ 8) due to decrease of thickness of liquid film. 

Finally we define a mean Nusselt number Num to 
investigate an overall heat transfer performance as 
 

௠ݑܰ ൌ
1

௟ݓ ൅ ௕ݓ
න ݑܰ
௦

 (23) .ݏ݀
 

If the film distribution is corresponding to the 
Nusselt’s solutions along the flat plate, the mean 
Nusselt number is as Num=1. On the other hand, the 
mean Nusselt number for the case of Fig.2 (c) is 
Num= 4.071. It is found that the value of Num is 
larger than 1. It should be noted that the increase of 
the heat transfer area for d=3, defined as 
(wl+d+wb)/(wl+wb), is 1.6 compared with the flat 
plate. Therefore, the heat transfer performance for 
the fluted plate is larger than the increase of the heat 
transfer area and that of the flat plate in this case.  

In addition, we show the results for the other 
values of d and Bond number in Fig.4. This figure 
shows the relation between heat transfer, fluted 
geometries and surface tension. The mean Nusselt 
number is nearly unity for d=1 because the height d 
is small and the liquid film covers completely the 
fluted part so as to cancel the groove effect. When 
the Bond number decreases, the mean Nusselt 
number for d=3 slowly increases due to the effect of 
decrease of film thickness at the side of groove, 
while it decreases for the smaller Bond number. This 
is because the break of the film flow proceeds at 
groove edge as previously mentioned. On the other 
hand, the mean Nusselt number for d=5 gradually 

increases even for the smaller Bond numbers, where 
any break does not occur yet. 

5 CONCLUSIONS 

A numerical investigation has been performed for 
the two-phase film flow falling down along fluted 
plates. Numerical simulations of three-dimensional 
flow field have been carried out by using the 
HSMAC method, GF method and the CLSVOF 
methods based on the finite difference methods for 
the plate configuration ݓ௟ ൌ ௕ݓ,3 ൌ 2, ݀ ൌ 1,3,5  and 
for the non-dimentional parameters ܴ݁ ൌ 50, 
ݎܲ	 ൌ 2, and 	݋ܤ ൌ 1, 	10, 	100. 

It is found that the thickness of the film flow 
becomes thinner than that of the flat plate because 
the film flow falls down into fluted part removing 
the film from the top to bottom. However, the break 
of the liquid film occurs at the groove edge which 
restricts the removal of the film. Heat transfer is 
enhanced for the film flow falling down along the 
fluted plate, because the liquid film becomes thinner. 
Once the break of the film occurs, however, the heat 
transfer across the liquid film disappears. So, the 
mean Nusselt number decreases for the film flow 
with the break even if the averaged film thickness is 
thin.   

It should be noted that the film flow falling under 
the influence of gravity ceases to be laminar and 
constant in the stream-wise direction when the flow 
rate is increased. Waves tend to appear on the free 
surface, and the flow becomes turbulent as the flow 
rate is further increased. It is our future work to 
investigate such unsteady flow and temperature 
fields in the fluted plates.  

 

Figure 3: Local Nusselt number along fluted plate. 
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Figure 4: Mean Nusselt number for difference parameters. 
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