
A Comprehensive Evaluation Model for BASE Transaction Processing

Sachi Nishida and Yoshiyuki Shinkawa
Graduate School of Science and Technology, Ryukoku University,

1-5 Seta Oe-cho Yokotani, Otsu, Shiga, Japan

Keywords: Data Integrity, Colored Petri Net, Cloud Computing, Transaction Processing.

Abstract: Transaction processing has been thought to be not suitable for cloud computing. The primary reason is that the
data integrity principle is much relaxed from the traditional ACID. This new principle is known as BASE. In
order to deploy transaction processing systems over cloud environments, we need to reveal the characteristics
of transaction behavior under the BASE principle. The paper proposes a CPN (Colored Petri Net) based
comprehensive integrity evaluation model with high modularity, which can easily be customized, or enhanced
for diverse application domains and cloud environments.

1 INTRODUCTION

Cloud computing is recently used in many applica-
tion domains as a flexible, highly available, scalable,
and low-cost platform. However, most applications in
this environment are so-called non-mission-critical or
ad-hoc ones, whereas one of the most high-volume
applications is the database transaction processing,
which is thought to be not suitable for cloud com-
puting. The major reason for this unsuitability is
“data integrity”, which traditional database and trans-
action systems have regarded as the most important
issue. In these systems, the principle for the data
integrity is called “ACID”, standing forAtomicity,
Consistency, Isolation, andDurability (Weikum and
Vossen, 2001). This principle requires fully isolated
operations on databases for data integrity.

On the other hand, cloud computing adopts more
relaxed principle for data integrity, being referred to
as BASE, standing forBasically Available, Soft state,
and Eventually consistent(Pritchett, 2008). In or-
der to deploy database transaction systems over cloud
computing environments, we first have to reveal how
the characteristics of the BASE principle affect the
data integrity in transaction processing. Since the
BASE principle allows non-isolated concurrent ac-
cess to databases, the behavior of BASE transac-
tions becomes much more complicated than tradi-
tional ACID ones. Therefore, it seems unrealistic to
evaluate the data integrity logically, considering all
the possible data access patterns. Instead, it seems re-
alistic to evaluate it through simulation using accurate
BASE transaction models.

The simulation model must represent the function-
ality and behavior of both the cloud platform and ap-
plication programs for the transactions. While the
platform is common among diverse application do-
mains, each application program is unique to a spe-
cific domain. In order to make the model comprehen-
sive to deal with many kinds of different domains, it
should be built in high modularity, so that the domain
unique parts can easily be plugged in or out.

This paper proposes a simulation based evaluation
model for data integrity in cloud transaction process-
ing. For the modeling and simulation, Colored Petri
Net (CPN) is used, since it can express complicated
concurrent systems from behavioral, functional, and
structural viewpoints simultaneously with high modu-
larity. The rest of the paper is organized as follows. In
section 2, we discuss the characteristics of the behav-
ior of the BASE transactions, along with the concept
of data integrity in generalized transaction process-
ing. In addition, CPN based evaluation framework is
introduced. Section 3 presents how the BASE trans-
action processing platform and application logic are
modeled and integrated using CPN. Section 4 shows
the mechanism and algorithm for the evaluation of the
data integrity in the above CPN models.

2 CLOUD TRANSACTION
MODEL FOR DATA INTEGRITY

In the cloud environments, data integrity shows

393Nishida S. and Shinkawa Y..
A Comprehensive Evaluation Model for BASE Transaction Processing.
DOI: 10.5220/0005099703930400
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 393-400
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



the different facets from traditional database transac-
tion processing. Before discussing the integrity eval-
uation, we first reveal the characteristics of the cloud
regarding data integrity

2.1 Data Integrity in the Cloud

Data integrity is one of the most important issues in
traditional database transaction processing, or trans-
action processing in short. The ACID principle as-
sures the isolated access to databases for each transac-
tion, in order to prevent unintentional concurrent up-
dates on the same entry in a database, which might
break the data integrity.

This rigorous control for the data integrity often
reduces the performance and throughput of the trans-
action processing, because of the locking and serial-
ization overhead. On the other hand, cloud computing
is aiming for rather high availability and scalability,
and therefore “ACID” principle is regarded as con-
flicting with the goal of cloud computing.

In order to adapt transaction processing to cloud
computing, a more relaxed principle for data integrity
is proposed, which is often referred to as “BASE”.
Following the BASE principle, transactions in the
cloud environments show the different behavior from
traditional ones, because of its unique integrity preser-
vation mechanism.

Therefore, if we plan to run transactions in cloud
environments, we need to understand their behavioral
characteristics from the data integrity viewpoint. In
order to understand it rigorously, we should formalize
the concept ofdata integrity, along with its preser-
vation mechanism. The data integrity is mainly an
application oriented matter, and could be differently
defined among application domains. Therefore, there
seems no way to give the common definition of it. In-
stead, it seems more practical to define the standard-
ized notation for data integrity rules or constraints.

One of the rigorous ways to express these
constraints is to use the predicate logic formulae
(Shinkawa and Matsumoto, 2001)(Shinkawa, 2012).
Since the logic formulae for data integrity define the
constraints on database values, the domain of dis-
course is composed of

D = (
⋃

i

Di)∪ (
⋃

i, j

r i j )∪ (
⋃

i, j ,k

a(k)i, j )

whereDi is the i-th database,r i j is the j−th entry or

record in the databaseDi , anda(k)i j is thek-th attribute
of ther i j .

In addition to this domain of discourse, we have
to define the functions, predicates, variables, and con-
stants rigorously. Assuming we have defined all these

elements of the logic, any constraints on the databases
can be represented by a prenex conjunctive normal
form (PCNF) as

Q1 · · ·Qn
(
∨

j

∧

i

Pi j (t
(i j )
1 · · · t(i j )mi j )

)

whereQi is a variable with the quantifier “∀” or “ ∃”,

e.g. ∀xi or ∃xi , Pi j is a predicate, andt(i j )k is a
term composed of variables, constants, and functions
(Schoening, 2008).

On the other hand, the mechanism for preserving
data integrity in the cloud is an implementation of the
BASE principle, and is equivalent to the optimistic
locking (Kung and Robinson, 1981). This mechanism
allows arbitrary concurrent access to any entry in the
databases, and the integrity preservation is attempted
only at the commit point, examining whether the re-
ferred entries have been modified during the transac-
tion execution.

The concurrent database access makes the behav-
ior of the transactions more complicated than the
ACID ones, since all the database references and up-
dates might be interleaved between the transactions.
In order to evaluate the data integrity for such a com-
plicated transaction behavior, a simulation approach
is more suitable than logical analysis.

2.2 CPN Based Integrity Evaluation
Model

For effective and efficient simulation, we need to
build an executable model reflecting the behavior
and functionality of all the related transactions, along
with the cloud platform structure including databases.
Therefore, we have to select a modeling tool having
the capability for expressing the three orthogonal as-
pects of a system simultaneously, namely, the func-
tional, behavioral, and structural aspects. In addition,
the created models must be executable for simulation.
For these requirements, Colored Petri Net (CPN) is
one of the most suitable modeling tools, since it ex-
tends Petri Net from functional viewpoint, which can
express the behavior and the structure of systems pre-
cisely (Jensen and Kristensen, 2009) (Jensen et al.,
2007).

CPN is formally defined as a nine-tupleCPN=(P,
T, A,Σ, V, C, G, E, I), where

P : a finite set of places.
T : a finite set of transitions.

(a transition represents an event)
A : a finite set of arcsP∩T = P∩A= T ∩A= /0.
Σ : a finite set of non-empty color sets.

(a color represents a data type)

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

394



V : a finite set of typed variables.

C : a color functionP→ Σ.

G : a guard functionT → expression.
(a guard controls the execution of a transition)

E : an arc expression functionA→ expression.

I : an initialization function :P→ closed expression.

In order to make the model comprehensive and
reusable, modularity is the key to build it. In this pa-
per, we focus on the two types of modularity in build-
ing the model. One is the modularity in the evaluation
process, and the other is that in transaction execution.

The first modularity is implemented as the CPN
model that is composed of serially-connected three
major modules as shown in Figure 1. In this figure,
each double-lined rectangle represents a module in
the form of a CPN hierarchical substitution transition
including the detailed CPN model inside. The second
modularity is implemented by separating the appli-
cation unique part from the common functional part.
This modularity is discussed in the next section.

In Figure 1, the “INIT” module initializes the
whole model by marking the places with initial to-
kens. These tokens are generated by this module
according to the tokens in the “DBIP” and “TRIP”
places, which meanDatabase Initialization Param-
eter and Transaction Initialization Parameter. The
“EXEC” module performs the database updates by
simulating the behavior and functionality of each
transaction according to the cloud platform character-
istics embedded in the module. The “EVAL” module
evaluates the simulation results by examining the to-
kens marked in the database place “DBBody”. Each
model represents a phase in the integrity evaluation
process, and is controlled by the token in the “PC”
(Phase Control) place.

EXEC

EXEC

EVAL

EVAL

INIT

INIT

RST

DBBodyTRA

TRIP

DBIP

PC

INIT EVALEXEC

Figure 1: Top Level CPN Model.

3 CPN BASED CLOUD
TRANSACTION MODEL

For the data integrity evaluation in the cloud, we first
need to build a simulation model reflecting the cloud
characteristics of both the platform and application.
This model is designated by the “EXEC” module in
Figure 1. The purpose of the “EXEC” module is
to simulate the behavior and functionality of each
transaction based on the cloud platform characteris-
tics. Since transaction processing is logically com-
posed of three major functional components, namely,
“scheduling”, “application logic”, and “database ac-
cess”, we build the “EXEC” module with three func-
tional sub-modules, namely, “Scheduling”, “Applica-
tion”, and “Database” as shown in Figure 2.

3.1 Scheduling Sub-module

The “Scheduling” sub-module throws transactions
into the system, maintaining appropriate concurrency
level. In order to control the concurrency level, this
module uses an integer list “COMPA”, each element
of which represents the thread availability. The ele-
ment value of “0” means anavailable thread, while
the value of “1” means abusy thread. This sub-
module works as follows.

1. Examine the token in the place “COMPA”
whether there is an available thread.

2. If there is an available thread, put a transaction
token into the place “Q”, extracting it from the
place “TRA”. Otherwise, wait until there is an
available thread.

3. When one of the transaction running in the “Ap-
plication” sub-module terminates, set “0” to the
corresponding element of the “COMPA” token.

The “Scheduling” sub-module is common among
all the application domains. The only customizable
point is the COMPA token which represents the con-
currency level.

3.2 Application Sub-module

The second sub-module “Application” simulates each
application logic. Therefore it is application domain
unique, and must be built for each application. From
data integrity viewpoint, a transaction is regarded as
a series of database access requests. Consequently
it seems natural to express a transaction as a series
of transitions, each of which generates a token for
database access. However, the sequence and the con-
tent of database access requests may vary with the ar-
guments of the transaction passed at its starting time,

A�Comprehensive�Evaluation�Model�for�BASE�Transaction�Processing

395



Database
Sub-module

Database Sub-module

Scheduling
Sub-module

Scheduling Sub-module

Application
Sub-module

AP sub-module

COMPD

DBRL

DBB

Version

VER

COMPA

Arglist

Q

PC

I/O

TRA

I/OI/O

I/O

AP sub-moduleScheduling Sub-module Database Sub-module

DBBody

Figure 2: EXEC Modulel.

or with the database values that have been read during
the execution. In addition, the sequence includes the
control structures likeif-then-elsebranches andwhile
loops. Taking the above conditions into account, we
compose the “Application” sub-module as follows.

As shown in Figure 3, the “Application” sub-
module is composed of a series of transitions sharing
the places “COMPD”, “DBB”, “DBRL”, and “ARG”
1. The place “COMPD” serializes the transition fir-
ings, along with interfacing with the “Database” sub-
module. This place is associated with the color set

closet COMPD = product TID * VER *
SEQ * OP * RC;

where “SEQ” designates the transition sequence num-
ber to be fired. Each transition is assigned a unique se-
quence number, and it examines this field by its guard
function. The place “DBRL” contains a set of tokens
each of which represents a list of database access re-
quest tokens “DBR” from a specific transition. The
“DBR” has the color set

colset DBR = TID * VER * SEQ * OP *
DBID * KEY * AttList;

where “OP” represents the operation on the database
“DBID” by the key value “KEY” and the attribute val-
ues “AttList”. The place “DBB” works as adatabase
buffer for the database operations, and contains the
accessed database entries in the form of lists. The
place “ARG” contains the arguments or parameters of
the transaction. These arguments determine the appli-

1In order to avoid crossing arcs, the figure usesfusion
places. The places with the same tag designate the same
single place.

cation logic. The place “Q” contains thetransaction
tokenswith the color set

closet TRAN = product TID * VER * ArgList;
where TID is a unique transaction id, and VER is a
version to express the timestamp, which will be dis-
cussed later in conjunction withoptimistic locking.

The transitions are “Li”, “LS i ”, “LE i ”, “TE”, and
“TF”. “L i” represents a single database access op-
eration, possibly including theif-then-elsestructure.
“LS i” and “LEi” represent the starting and ending
points of a loop structure respectively. “LE” and
“LF” represent thetransaction endand finalization
processes respectively.

Using the above places and transitions, the sub-
module works as follows.

1. Obtain the transaction tokenwith the proper
“TID” from the “Q” place.

2. The first transition set the “SEQ” field value of
the token “COMPD” with “1”. This value is in-
cremented by the “Database” sub-module, so that
the next transition becomes eligible to fire.

3. If the firing transition is “Li” or “LS i”, a database
access token “DBR” is appended to the “DBRL”
token.

4. If the firing token is “LEi”, it sets the “SEQ” field
value of the “COMPD” token with either the se-
quence number of “LSi” or “++SEQ”, according
to theloopcondition.

5. If the firing transition is “TE”, perform theend-
of-transactionprocess. Usually, it depends on the
application requirements, e.g. deleting some work

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

396



L1 LC3LS2 ARG

ARG

ARG

ARG

ARG

ARG

DBRL

DBRL

DBB

DBB
DBRL

DBRL

DBB

DBB

DBRL

DBRL

DBB

DBB

Q

DBB DBRL DBB DBRL DBB DBRL

ARG ARG ARG

COMPD

DBB

DBBDBB

DBRL

DBRLDBRL

L4 ARG

ARGARG

TFARG

ARGARG

DBRL

DBRLDBRL

DBB

DBBDBB

ARG

ARGARG

TE ARG

ARGARG

L6

DBRL

DBRLDBRL
DBB

DBBDBB

LE5 ARG

ARGARG

DBB

DBBDBB

COMPA

DBRL

DBRLDBRL

DBB

DBBDBB

Figure 3: Application Sub-module.

entries in the databases.

6. If the firing transition is “TF”, perform thefinal-
ization process of the transaction. It deletes the
related elements in the “ARG”, “COMPD”, and
“DBRL” tokens. In addition, reset abusyentry of
the “COMPD” token to “0”, that is, toavailable.

Since this sub-module represents a specific applica-
tion logic, a unique instance must be built for each
application. The structure of each instance is basi-
cally the same. Each instance is assigned an unique
“TID” (a transaction id).

3.3 Database Sub-module

Each time a transition in the “Application” sub-
module marks a token for the database access re-
quest, “Database” sub-module is activated to process
it. In order to simulate the concurrent access to the
databases, this sub-module consists of multiple in-
stances for each database. All the instances have the
same structure as shown in Figure 4, and work as fol-
lows.

1. The first transition examines the value of the field
“DBID” in the “DBR” token to determine whether
the request is directed toward this instance.

2. According to the value of the “OP” field in
DBR, one of the conflicting transitions “READ”,
“WRITE”, or “COMMIT” is fired, which per-
forms database read, write or commit operation
respectively. The value of “OP” field is defined
as “1” (select), “2” (update), “3” (insert), “4”
(delete), or “5”(commit).

3. The “READ” transition of the ith instance
searches for the token with the given “KEY” in

the “DBBodyi” place, which consists of a list of
database entries. If found, append the database
entry to the list token in “DBB” place, other-
wise do nothing. The DBB place works as a
database buffer for each transaction thread. Then
set the operation result code in the “RC” field of
“COMPD” field.

4. The “WRITE” transition also search the place
“DBBodyi” for the designated key in the same
way as “READ”. If found, in case of “OP = 2”
or “OP = 4”, that is, for the update or delete op-
eration, append the DBR token to the list in the
“DBB” place. On the other hand, in case of “OP
= 3”, that is, for the insert operation, do noth-
ing. Then set the result code in the same way as
“READ”. If not found, only the insert operation
is performed.

5. The “COMMIT” transition performs the commit
process that finalizes the database modification re-
quest on the database, which is implemented as
the place “DBBodyi”. This process follows the
optimistic locking mechanism stated below.

The basic operation of the optimistic locking is to
ensure that “no other transactions update the database
entries that have been referred to during this trans-
action scheduling. In order to identify transactions
that update the specific database entries, we prepare
a common place “WSET among the “Database sub-
module instances, which includes the token repre-
senting the history of database updates by the trans-
actions. This token is expressed as a list of each
database update with the associated transaction infor-
mation. The list element has the color set

colset WSETE = product TID * VER *
DBID * KEY * AttList

A�Comprehensive�Evaluation�Model�for�BASE�Transaction�Processing

397



DB

COMMIT

WRITE

READ

result

dbr

DBB

DBRL

updateDBRL

COMPD

compd

updateDBB

dbr

dbr

dbr

Database
Process

Database ProcessDatabase Process

dbr

result

dbr
result

dbr

result

DBBody

dbbe

dbbe

updateCOMPD

dbb

Figure 4: Database Sub-module.

This element is appended to the token after the suc-
cessful comit.

The “COMMIT” process examines the “WSET”
list whether it has the element that satisfies

1. The “KEY” field value is identical to that of an
“DBB” element with “OP = 1”, namely, an entry
that has been read from a database.

2. The “VER” (version) valuev satisfiesv1 < v< v2,
wherev1 is the “VER” value assigned to the cur-
rently committing transaction, andv2 is the cur-
rent “VER” value.

If the same key is found, the transaction is aborted,
otherwise it is committed.

In case of “commit, “WSETE token is created and
appended to the “WSET token, by extracting the DBB
elements with the OP field of “2”, “3”, or “4”. In this
process, the “VER” value is changed to “v2”. Then
the “write elements in the DBB token are moved to
the “DBBodyi” place to reflect the database update.
On the other hand, in case of “abort, all the updates in
DBB token are discarded. In both cases, the COMPD
token is modified to indicate that the transaction has
been committed or aborted.

As discussed so far, the modularity of the “EXEC”
module is a bit complicated. The module consists of
three sub-modules. Two of them, namely, “Schedul-
ing” and “Database” are common among application
domains, and therefore non-customizable. On the
other hand, “Application” sub-module is unique for
each application, and therefore is fully customizable.

4 CPN BASED DATA INTEGRITY
EVALUATION

After the simulation of the model that was built in the
previous section is completed, the database tokens are
updated according to the initial database state, the ap-
plication logic, and the concurrency control that are
performed on the actual cloud platform being consid-
ered.

In order to perform the simulation , we have to
prepare the appropriate sets of databases and transac-
tions in the form of CPN tokens. As for the databases,
they should reflect the actual database characteristics,
in terms of database schema and key/attribute distri-
bution.

For simulation convenience, we assume all the
keys and attributes are expressed by integers. There-
for a database record can be expressed as a tuple of
integers. However, since the number of attributes is
variable, they are packed into a list, and a database
entry is a tuple of a key and an attribute list. As a
color set, a database entry and database itself are ex-
pressed as

closet DBRec = product KEY * AttList;
closet DBBody = product DBID * DBRecL;

where “AttList” is a list of attributes, “DBRecL” is a
list of “DBRec”, and “DBID” represents a database
identifier.

On the other hand, a transaction has a more simple
form, namely, is composed of a a pair of atransac-
tion id and anargument list. For the same reason as
databases, we assume transaction id and argument list
are also expressed in the form of integers.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

398



As stated in section 3, these database and trans-
action tokens are generated by the “INIT” module in
Figure 1.

DBBody1

DBBody2

DBBody3

E1

E2

IV

Figure 5: EVAL Module.

When generating a database token, the distribu-
tion of the key values and attribute values must be as
similar as possible to the actual database to be mod-
eled. In order to realize this requirement, the database
generation transition “GENDB” is designed to receive
the initialization parameters including the information
on the probabilistic distribution. This information is
expressed as a color set

closet GenInfo = product KEY * KEY *
MEAN * VAR * FUNC;

where the first two elements represent the key value
range, “MEAN” represents the mean value of the
key values, “VAR” represents the variance of the key
distribution, and “FUNC” represents the distribution
function that the key values follow. The “FUNC” val-
ues are currently defined as

1. uniform distribution

2. normal distribution

3. exponential distribution

, however, we can easily add a new distribution func-
tion from the CPN ML library. The arc function on
the arc from the transition “GENDB” to the place
“DBBodyi” use the above information to generate the
database transitions.

As for transaction generation, we need the infor-
mation on thetransaction mixand the probabilistic
distribution of the argument values. Such informa-
tion can be implemented in the similar way to the
databases discussed above.

After all the needed databases and transactions are
generated in the form of tokens by the “INIT” module,
the “EXEC” module commences to update the gener-
ated databases by simulating the behavior and func-
tionality of the generated transactions. When all the
generated transactions are committed or aborted, the

“EVAL” module is initiated. This module has rather
simpler structure than other two modules, as shown in
Figure 5.

As stated in section 2, the data integrity is de-
fined as a set of predicate logic formulae{Pi}. For
each Pi , an evaluation transition Ei is located be-
tween the database places DBBodyjs and the place
“IV” which holds the evaluation result token with
the color set “IV”. The color set “IV”, stand-
ing for integrity vector, is a pair of integer lists
([c1,c2, · · · ,cn], [r1, r2, · · · , rn]), wheren is the num-
ber of the constraint logic formulae,ci represents the
completion of integrity evaluation for the formulaPi .
If ci = 1, ther i represents the evaluation result for the
formulaPi. The evaluation process works as follows.

1. Mark the initial token([0,0, · · · ,0], [0,0, · · · ,0]) at
the place “IV”.

2. When the evaluation process starts, each Ei tran-
sition examines the value ofci . If ci = 0, then
examine the database places DBBodyis whether
they satisfy the formula Pi .

3. If the Pi is NOT satisfied, then set “r i = 1”, else
set “r i = 0”.

4. set “ci = 1”.

After all the logic formulae are evaluated, that is, “IV”
token becomes([1, ,1, · · · ,1], [r1, r2, · · · ,cn]), the sec-
ond element indicates whether the data integrity is
preserved by the transaction executions. Ifr i = 1
holds, it means theith constraint formulaPi is not
satisfied. In such case, the transactions must be re-
considered from the application and cloud platform
viewpoints.

5 CONCLUSIONS

The BASE is a new concept for data integrity for
transaction processing in cloud environments. In or-
der to deploy newly developed or currently used trans-
action systems over cloud environments smoothly, we
need to evaluate the systems from the data integrity
viewpoint, since the BASE is too different concept
from the traditional ACID. This paper introduced a
CPN based BASE transaction evaluation model with
high modularity and simulation capability.

In order to make the model comprehensive, the
model is composed of three major modules based
on the evaluation process, namely,data generation
phase,model executionphase, andintegrity check-
ing phase. In addition, the model is divided into two
parts, that is,common functionalitypart andapplica-
tion uniquepart.

A�Comprehensive�Evaluation�Model�for�BASE�Transaction�Processing

399



The above model characteristics make it possi-
ble to plug-in any application model to the proposed
model, or to plug-out any unnecessary one. There-
fore, we can evaluate many kinds of applications to
run in cloud environments at lower cost than prepar-
ing the exclusive models for them.

The data integrity in this paper is assumed to be
expressed in the form of the first order predicate logic
formulae, however there could be other forms of in-
tegrity constrains, e.g. those expressed in the form of
modal logic like temporal logic, or those by higher
order logic. For these enhancements, we need to
develop more CPN ML codes to handle these con-
straints.

The paper focused on the generalized BASE trans-
action processing, which can commonly be applicable
to any cloud environments. However, each environ-
ment, e.g. Google App Engine (Sanderson, 2009) or
Amazon EC2 (van Vliet and Paganelli, 2011) has its
own options. In order to reflect such options, more
platform oriented models are needed.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant
Number 25330094.

REFERENCES

Jensen, K. and Kristensen, L. (2009).Coloured Petri
Nets: Modeling and Validation of Concurrent Sys-
tems. Springer-Verlag.

Jensen, K., Kristensen, L. M., and Wells, L. (2007).
Coloured Petri Nets and CPN Tools for Modelling
and Validation of Concurrent Systems. InInter-
national Journal on Software Tools for Technology
Transfer (STTT) Volume 9, Numbers 3-4, pages 213–
254. Springer-Verlag.

Kung, H. T. and Robinson, J. T. (1981). On Optimistic
Method for Concurrency Control. InACM Transac-
tions on Database Systems (TODS) Volume 6 Issue 2,
pages 213–226. ACM.

Pritchett, D. (2008). BASE: An ACID alternative. InACM
QUEUE Volume 6 Issue 3, pages 48–55. ACM.

Sanderson, D. (2009).Programming Google App Engine.
Oreilly & Associates Inc.

Schoening, U. (2008).Logic for Computer Scientists (Mod-
ern Birkhaeuser Classics). Birkhaeuser Boston.

Shinkawa, Y. (2012). CPN Based Data Integrity Evalua-
tion for Cloud Transactions. InProc. 6rd International
Conference on Software Paradigm Trends, pages 267–
272.

Shinkawa, Y. and Matsumoto, M. (2001). An Informa-
tion System View of Consistency and Integrity in En-
terprise Operations. InProc. 3rd International Con-
ference on Enterprise Information Systems Volume 2,
pages 709–716.

van Vliet, J. and Paganelli, F. (2011).Programming Amazon
EC2. Oreilly & Associates Inc.

Weikum, G. and Vossen, G. (2001).Transactional Informa-
tion Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kauf-
mann.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

400


