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Abstract: The paper addresses a problem of robotic manipulator calibration. The main contributions are in the area of 
the elastostatic parameters identification. In contrast to other works, the considered approach takes into ac-
count elastic properties of both links and joint. Particular attention is paid to generation of the complete and 
irreducible stiffness model that is suitable for the identification. To solve the problem, physical and algebra-
ic model reduction methods are proposed. They are based on taking into account the physical properties of 
the manipulator elements and structure of the corresponding observation matrix. The advantages of the de-
veloped approach are illustrated by an application example that deals with elastostatic calibration of an in-
dustrial robot. 

1 INTRODUCTION 

Industrial robots are gradually finding their niche in 
manufacturing, replacing less universal and more 
expensive CNC-machines. Application area of ro-
bots is constantly growing, they begin to be used not 
only for the assembly and pick-and-place operations, 
but also for the machining. The latter requires spe-
cial attention to the accuracy of the model, which is 
used to control the manipulator movements. Fur-
thermore, for this process, the robot is usually sub-
ject to essential external loading caused by the ma-
chining force that may lead to non-negligible deflec-
tions of the end-effector (Dépincé and Hascoët, 
2006) and, accordingly, degrade the quality of the 
final product. This issue becomes extremely im-
portant in the aerospace industry, where the accura-
cy requirements are very high. In this case, the ma-
nipulator stiffness modeling and corresponding error 
compensation technique are the key points (Karan 
and Vukobratović, 1994; Kövecses and Angeles, 
2007), where in addition to accurate geometric mod-
el a sophisticated elastostatic one is required. 

In practice, the robot positioning accuracy can be 
improved by means of either on-line or off-line error 
compensation techniques (Abele, Schützer et al., 
2012; Chen, Gao et al., 2013). Usually geometric 

errors (such as offsets and link lengths) can be effi-
ciently compensated by modifying internal parame-
ters of the robot controller (Mooring, Roth et al., 
1991). In contrast, the compliance errors have to be 
compensated via modification of the controller in-
puts. In such a case, an off-line error compensation 
technique is aimed at adjusting the target trajectory 
in accordance with the errors to be compensated and 
the geometric model used in the robot controller 
(Klimchik, Pashkevich et al., 2013). It is evident that 
the efficiency of the latter approach is quite sensitive 
to the model completeness and the accuracy of its 
parameters. 

To achieve desired degree of accuracy, the ma-
nipulator model should be calibrated for each partic-
ular manipulator (Meggiolaro, Dubowsky et al., 
2005). In modern robotics, there exist a number of 
techniques that allow user to identify geometric and 
elastostatic parameters of either serial or parallel 
manipulators. In general, classical calibration proce-
dure contains four basic steps: modeling, measure-
ment, identification and implementation (Roth, 
Mooring et al., 1987). The first step is aimed at de-
velopment of a model, which is accurate enough and 
also is suitable for the identification (i.e. without re-
dundant parameters that can cause the convergence 
breakdown). At the following step, the measure-
ments data are obtained. These data can be gotten 
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using open-loop and closed-loop methods (Takeda, 
Shen et al., 2004; Nubiola and Bonev, 2013). The 
identification step is aimed at tuning the model pa-
rameters in accordance with the experimental data. 
The last step, implementation, deals with modifica-
tion the robot control software in accordance with 
the identified parameters. 

In the manipulator stiffness modeling, there are 
currently three main approaches: the Finite Element 
Analysis (FEA), the Matrix Structural Analysis 
(MSA), and the Virtual Joint Method (VJM). As fol-
lows from our experience, the VJM method (Alici 
and Shirinzadeh, 2005; Klimchik, Chablat et al., 
2014) provides reasonable trade-off between the 
model accuracy and computational complexity and 
will be further used in this paper. It is based on the 
extension of the traditional rigid model by adding 
the virtual joints describing the elastic deformations 
of the links, joints and actuators.  

It should be mentioned that calibration of the 
elasto-static model is much more difficult compared 
to the geometric one. For a simple case, when only 
elasticity of the actuated joints is taken into account, 
an efficient approach has been proposed in (Dumas, 
Caro et al., 2011), but this simplification does not 
allow describing some important deflections of the 
end-effector. More sophisticated model describing 
both  the joint and link elasticity can be developed 
use CAD-based technique proposed in our previous 
work (Klimchik, Pashkevich et al., 2013). However, 
this model includes huge number of parameters that 
cannot be identified separately using conventional 
measurement data describing the end-effector de-
flections caused by external force/torque. It means 
that from mathematical point of view, this technique 
may produce redundant models that are not suitable 
for calibration.  

Similar problem is also known in geometric cali-
bration where the concept of complete-irreducible-
continues model has been introduced (Khalil and 
Dombre, 2004). However, in elastostatic calibration 
there is an additional difficulty caused by huge 
number of model parameters (258 for 6 dof manipu-
lator) and essential difference in their magnitudes. 
For this reason, this paper deals with developing 
stiffness model suitable for identification and pro-
poses model reduction methods that allow obtaining 
reliable results in industrial environment. 

It is worth mentioning that the adopted approach 
deals with quasi-static modeling that is motivated by 
the considered application area. In particular, it is 
assumed that trajectory tracking compensation does 
not takes into account dynamic effects and load dis-
turbances over frequencies.  

To address the above mentioned problem, the 
remainder of the paper is organized as follows. Sec-
tion 2 presents the stiffness modeling background 
and problem statement. In Section 3, the developed 
model reduction methods are presented. Section 4 
contains application examples that illustrate ad-
vantages of the proposed technique. And finally, 
Section 5 summarizes the main contributions of the 
paper.  

2 THEORETICAL 
BACKGROUND AND 
PROBLEM STATEMENT 

Let us consider an elastostatic model of a general 
serial manipulator, which consists of a fixed “Base”, 
a serial chain of flexible “Links”, a number of flexi-
ble actuated joints “Ac” and an “End-effector” (0). 
In order to describe the stiffness of the considered 
manipulator, let us apply the virtual joint method 
(VJM), which is based on the lump modeling ap-
proach. According to this approach, the rigid model 
should be extended by adding localized spring de-
scribing links elasticity. Besides, in order to take in-
to account the stiffness of the control loop, the virtu-
al springs should be included in the actuated joints. 

 

Figure 1: VJM model of serial robot. 

For the considered manipulator the force-
deflection relation for given robot configuration q  

is defined by the Cartesian stiffness matrix CK  as 

C·ΔW K t  (1)

In these equations, the end-effector displacement Δt  
is treated as the model input and the external wrench 
W  is the model output. The stiffness matrix CK  

can be computed as follows 

  11 T
C θ θ θ

  K J K J
 

(2)

Here, the Jacobian matrix θJ  depends on the manip-

ulator configuration q  and can be computed as a 

partial derivative of the end-effector location with 
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respect to a set of desired virtual joint coordinates 
θ . Expression (2) allows us to compute the Carte-
sian stiffness matrix assuming that the matrix 

(1) (2)
θ θ θ( , , ...)diagK K K , defining elastostatic 

properties of the manipulator links/joins is given. 

However, in practice, the matrices  (i)
θ , 1, 2,...i K  

are unknown and should be identified from relevant 
experiments.  

To estimate the desired matrices describing elas-
ticity of the manipulator components (i.e., compli-
ances of the virtual springs), the elastostatic model 
(1) should be rewritten as 

 (i) (i) (i)T
θ θ θ1

·
n

i
  J k Jt W

 
(3)

where the matrices (i) (i) 1
θ θ( )k K  denote the 

link/joint compliances that should be identified via 
calibration, and the matrices (i)

θJ  are corresponding 

sub-Jacobians obtained by the fractioning of the ag-

gregated Jacobian (1) (2)
θ θ θ[ , ,...]

T TT J J J .  

In the case when  the matrices (i)
θk  are known 

the end-effector deflections Δt  caused by external 
loading W  can be compensated by means of either 
on-line or off-line error compensation techniques 
(Lo and Hsiao, 1998; Klimchik, Bondarenko et al., 
2014). Usually main geometric errors (such as off-
sets and link lengths) can be efficiently compensated 
by modifying internal parameters of the robot con-
troller (Mooring, Roth et al., 1991). In contrast, the 
compliance errors have to be compensated via modi-
fication of the controller inputs. Relevant on-line 
compensation strategy requires external measure-
ment system that continuously provides the end-
effector coordinates, which are compared with the 
computed ones and the differences are used for ad-
justing the input trajectory (Lu and Lin, 1997). 
However, suitable measurement systems are quite 
expensive and often cannot ensure tracking the ref-
erence point in a whole robot workspace. Moreover, 
behavior of some technological processes hampers 
the end-effector observability (cutting chip in mill-
ing, for instance) and may damage the measurement 
equipment. In such a case, an off-line error compen-
sation technique looks more reasonable; it is aimed 
at adjusting the target trajectory in accordance with 
the errors to be compensated and the geometric 
model used in the robot controller (Chen, Gao et al., 
2013; Klimchik, Pashkevich et al., 2013). 

However for the majorit of industrial robots the 
values of compliance matrices (i)

θk  should be identi-

fied from the dedicated experimental study. So, for 

the identification purposes, this expression should be 
transformed into more convenient form, where all 
desired parameters (elements of the matrices 

(i)
θ , 1, 2,...i k ) are collected in a single vector 

(1) (1) ( )
θ11 θ12 θ66( , ,... )nk k kπ . It yields the following linear 

equation   

· t A π  (4)

where  

1 21 2[ , ,...., ]T T
m

T
m A J J W J J W J J W  (5)

is so-called observation matrix that defines the map-
ping between the unknown compliances π  and the 
end-effector displacements t  under the loading 
W  for the manipulator configuration q . In the ob-

servation matrix A  the subscript defines the pa-

rameters set for which the observation matrix is 
computed. Here, the vectors iJ  are the columns of 

the matrix θJ , i.e. θ 1 2[ , ,...., ]mJ J J J . 

Taking into account that the calibration experi-
ments are carried out for several manipulator con-

figurations defined by the actuated joint coordinates 

, 1,j j mq , the system of basic equations for the 

identification can be presented in the following form 

; 1· ,j j j j m  π εAt  (6)

where jε  describes the measurement noise impact. 

Further, using these notations and assigning proper 
weights for each equation, the identification can be 
reduced to the following optimization problem 

1
( ) ( ) min

m T T
j j j jj

F  
     

π
A π t Aη tη π

 

(7) 

where η  is the matrix of weighting coefficients that 

normalizes the measurement data. In practice, the 
matrix η  is used for two main purposes: (i) to avoid 

the problem of non-homogeneity due to different 
units of equations in the system (6) (position and 
orientation components, in this particular case) and 
(ii) to give higher weights for the measurements 
whose precision is obviously higher. An example of 
such an approach has been given in (Klimchik, Wu 
et al., 2013). Relevant minimization (7) yields the 
following solution  

   1

1 1
ˆ ·

m mT T T T
j j j jj j   



 
  π A A A tη η η η (8)

If the measurement noise is Gaussian (as it is as-
sumed in conventional calibration techniques), ex-
pression (8) provides us with an unbiased estimates 
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for which  ˆE π π .  

It is clear that expression (8) gives reliable esti-
mates of the parameters π  if and only if the matrix 

1

1

m T T
j jj  

 
 A Σ Σ A  is invertible. It leads to the 

problem of the parameter identifiability that have 
been studied by a number of authors for the problem 
of geometrical calibration (Pashkevich, 2001; Khalil 
and Dombre, 2004). Relevant techniques are based 
on the information matrix rank analysis. However, 
they cannot be directly applied for the case of elasto-
static calibration. 

Let us assume that the vector of desired elasto-
static parameters π  should be identified from the set 
of the linear equations (4) whose least square solu-
tion is defined by the expression (8). Depending on 

the matrix set  jA , corresponding system of line-

ar equations can be solved for π  either uniquely or 
may have infinite number of solutions. In general, if 
the information matrix is rank-deficient, a general 
solution of the system (6) can be presented in the 
following form 

 ˆ · · 
    π A IB A A λ  (9)

where the superscript "+" denotes the Moore–

Penrose pseudo-inverse, 
1

m T T
j jj   

  η ηA A A , 

1

m T T
j jj   

  η ηB A t  and λ  is an arbitrary vector 

of the same size as π . So, all desired parameters 
contained in the vector π  can be divided into three 
non-overlapping groups (Pashkevich, 2001): 

G1: Identifiable parameters that can be obtained 
from (9) in unique way;   

G2: Non-identifiable parameters that cannot be 
computed uniquely from (9) and do not influence on 
the right-hand side of the equation (4);  

G3: Semi-identifiable parameters that are also 
cannot be computed uniquely but have influence on 
the right-hand side of the equation (4).  

To present typical examples of the parameters 
belonging to the groups G1, G2 and G3, it is possi-
ble to use the ideas similar to geometrical calibra-
tion. For instance, the elastostatic parameters of the 
actuated joints and adjacent links are redundant in 
their totality and belong to the group G3. Besides, if 
the loading direction cannot be altered, a number of 
parameters belong to the group G2 and cannot be 
identified from the corresponding experimental data.  
So, complete and irreducible model should contain 
all parameters from the group G1 and partially pa-
rameters of the group G3.  

Hence, to obtain reliable stiffness model that is 

suitable for calibration, it is necessary to develop 
dedicated model reduction techniques and relevant 
rules allowing us to minimize the number of pa-
rameters to be estimated and to reconstruct the orig-
inal VJM-based model from these data taking into 
account mathematical relations between the model 
parameters caused by their physical sense. 

3 MODEL REDUCTION  

3.1 Physical Approach 

Straightforward stiffness modeling approach pro-
vides the exhaustive but redundant number of pa-
rameters to be identified. For instance, each links is 
described by a 6 6  matrix that includes 36 parame-
ters that are treated as independent ones. However, 
as follows from physics, number of pure physical 
parameters is essentially lower. Hence, there are 
strong relations between these 36 parameters but this 
fact is usually ignored in elastostatic calibration. Be-
sides, due to fundamental properties of conservative 
system, the desired compliance matrices should be 
strictly symmetrical and positive-definite. In addi-
tion, for typical manipulator links, the compliance 
matrices are sparsed due to the shape symmetry with 
respect to some axis, but this property is not taken 
into account also in the identification of the elasto-
static parameters.   

To use the advantages of the compliance matrix 
properties and to increase the identification accura-
cy, three simple methods can be applied that allow 
us to reduce the number of parameters to be comput-
ed in the identification procedure (8). They can be 
treated as the physics-based model reduction tech-
niques and formalised in the following way.  

M1:Symmetrisation. For all compliance matri-
ces k  to be identified, replace the pairs of symmet-

rical parameters 
 ,ij jik k

 by a single one 
,ijk i j

.  
For each link, this reduction procedure is equiva-

lent to re-definition of the model parameters vector 
in the following way  

· π M π  (10)

where the binary matrix M  of size 36 21  de-
scribes the mapping from the original to reduced pa-
rameter space. It can be proved that corresponding 
basic expression for the identification (4) can be re-
written as  

· πAt π  (11)
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where · π πA A M  denotes the reduced observation 

matrix. The later can be also computed as 

θ 1 θ θ 2 θ θ 21 θ[ ], , ...T T T
 πA J ω J w J ω J w J ω J w  (12)

where 1 2, ,...ω ω  denote the binary matrices of size 

6 6  for which non-zero elements (i.e. equal to 1) 
are located in the following way: for the parameter 

l  corresponding to the matrix elements 
,ijk i j

, 

the non-zero elements are 1ij ji   . It is clear 

that this idea allows us to reduce the number of links 
compliance parameters from 36 to 21 (and from  258 
to 153 for the entire 6 d.o.f. manipulator).  

M2:Sparcing. For all compliance matrices k  to 
be identified, eliminate from the set of unknowns the 

parameters ijk
 corresponding to zeros in the stiff-

ness matrix template 0k  derived analytically for the 
manipulator link with similar shape.  

To obtain a desired template matrix, is conven-
ient to use any realistic link-shape approximation. 
For example using the trivial beam (Timoshenko and 
Goodier, 1970), the desired template can be present-
ed as  

0

* 0 0 0 0 0
0 * 0 0 0 *
0 0 * 0 * 0
0 0 0 * 0 0
0 0 * 0 * 0
0 * 0 0 0 *

 
 
 
 
 
 
  

k  (13)

where the symbol "*" denotes non-zero elements. It 
allows further reducing the number of the unknown 
parameters from 21 to 8, taking into account only 
essential ones from physical point of view. It can be 
also proved that the template (13) is valid for any 
link whose geometrical shape is symmetrical with 
respect to three orthogonal axes. But it is necessary 
to be careful if this property is not kept strictly.  

It should be stressed that the actuated joint com-
pliances cannot be identified separately. So, they 
should be included in the compliance matrix of the 
previous link by means of modification of the corre-
sponding diagonal elements. This idea does not con-
tradict to the physical nature of the problem even if 
the actuated joint compliance dominates correspond-
ing compliance in the link stiffness matrix.  

M3:Aggregation. Eliminate from the set of 
model parameters the ones that corresponds to joint 
compliances before which there is an elastic link; in 
terms of parameters identifiability the compliance of 
those joints cannot be split from the links.  

Summarizing these methods, it should be men

tioned that the above presented approach essentially 
reduce the number of parameters to be identified (by 
the factor 4.5) but they do not violate such basic 
properties as the mode completeness, i.e. the ability 
to describe any deflection caused by the external 
loading. Below, these reduced set of the original 
model parameters π  will be referred to as π . How-
ever, the obtained reduced model may still have 
some redundancy in the frame of entire manipulator, 
where the virtual springs of adjacent joints/actuators 
cause similar impact on the end-effector deflections 
under the loading.  

As it known from the geometrical calibration, in 
spite of the fact that redundant model is suitable for 
direct and inverse computations, it cannot be used in 
identification since the observation matrix does not 
have sufficient rank. Similar problem arises in elas-
tostatic calibration where some stiffness matrix ele-
ments of adjacent links/joints are coupled and cannot 
be identified separately. Let us present an algebraic 
technique allowing to overcome this difficulty. 

3.2 Algebraic Approach 

The physical approach described in the previous 
sub-section allows us essentially reducing the num-
ber of model parameters. However, it does not guar-
antee that the obtained model is suitable for calibra-
tions (i.e. that the model is non-redundant and the 
number of parameters is equal to the observation 
matrix rank). In practice, the following inequality is 
often satisfied:    dimrank  πA π . To over-

come the problem, this sub-section presents some 
algebraic tools aimed at further reduction of the 
model parameter set from π  to π , which ensures 
full identifiability: 

     dimrank rank   π πA A π  (14)

These tools are based on the partitioning of the pa-
rameters set π  into three non-overlapping groups 
(identifiable, non-identifiable and semi-identifiable), 
which are either eliminated from the model or re-
duced to ensure the equality (14).  

To introduce relevant algebraic technique, let us 
apply the SVD decomposition and present the ag-

gregated observation matrix πA  as the product of 

three matrices · · TU Σ V  (orthogonal, diagonal and 
orthogonal, respectively): 

 
1

1 '

1
' ' '

, ..
, ..

)
·.

(
·

T

r n

m r m

r

T

n

m
n

diag   


 


 

   
    

  
π

V
0

A
0

U
0

V

U  (15)
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Here 1[ ,... ]mU U U  and 1[ ,... ]vV V V  are orthog-

onal matrices of the size m m  and n n  respective-
ly whose columns are denoted as iU  and jV ; the 

second factor Σ  is a rectangular diagonal matrix of 
the size m n  containing r  positive real numbers 

1,... r   in descending order;  dim am  t  is the 

number of rows in the observation matrix (i.e. num-
ber of equations used for the identification), 

 dimn  π  is current number of the model param-

eters, and r  is the rank of the aggregated observa-

tion matrix, 'm m r  , 'n n r   . It is clear that 
r  defines the maximum number of parameters that 

can be identified using given set of manipulator con-
figurations  iq  and corresponding wrenches  iW . 

Further, after substitution (15) into (11) and left-
multiplication by TU , the original system of m  
identification equations (4) can be rewritten as  

1
1 1

'

' ' '

0

· ... · ... ·
0

T T

r n

a
T T

n m
m r m

r

n






 

  

                         

V U
0

π t

V U0 0


  

 (16)

where the number of equation is equal to n  and per-
fectly corresponds to the vector π  dimension (it is 
obvious that n m ). Taking into account particulari-
ties of the sparse matrix Σ  (with r  non-zero ele-

ments only), it is possible to rewrite the system (16) 
in the form 

;· · · 1,2,...,

0 ; 1,. .· · ,· .

T
i

T
i

T
i i a

T
i a

i r

i r n

 

 

  

  

UV π t

V π tU
 (17)

where the second group of 'm m r   equations 
should be excluded from further consideration be-
cause relevant residuals do not depend on the pa-
rameters of interest π  (since they are multiplied by 

zero matrix). It can be proved that · a
T
i  tU 0  for 

i r  if the measurement vector at  does not con-

tain noise. It is also worth mentioning that for real 
identification problems (with the measurement 
noise), the second group of equations produces con-
stant residuals that cannot be minimised in the least-
square objective (7) by varying the vector of un-
known parameters π .  

Hence, for the identification of n  parameters in-
cluded in the vector π , a system of r  linear equa-
tions have been obtained that cannot be solved 
uniquely in a general case. Its partial solution can be 

found by dividing on 0i   each of r  linear equa-

tions · · ·T
i i a

T
i   V π tU  and further straightforward 

multiplication of the left and right sides by the ma-
trix  1 2 ,. ,, .. rVV V , which yields  

   
1 1 1

1 1

/

..., ... · ., .., .. ·, .

/

T T

r r a
T T

r r r




  

   
   
   
      

V U

V V π V V t

V U

(18)

Using the first set of r  equations of system (17) one 
can obtain partial solution of system (16)  

 1
0

1

· ·
r

T
i i i a

i

 



  π V U t  (19)

This allows us to present the general solution (9) as 
the sum of this partial solution and an arbitrary vec-
tor from the subspace with the basis 1 2, ,...r r n V V V   

1

ˆ
n

o i i
i r


 

    Vπ π  (20)

where i , 1,i r n   are arbitrary real values.  

Hence, as follows from analysis of (17) and (19), 
depending on the properties of the matrix V , all 
model parameters π  can be partitioned into three 
groups: G1   identifiable parameters that are 
uniquely defined by the equation (20) and do not de-
pend on the arbitrary values i , for these parameters 

the corresponding row of the sub-matrix 

1[ ,..., ]r mV V  is equal to zero; G2   non-identifiable 

parameters that do not effect the residuals of system  
(17), for these parameters the corresponding row of 
the sub-matrix 1[ ,..., ]rV V  is equal to zero; G3  

semi-identifiable parameters that effect the residuals 
but cannot be identified uniquely, couplings between 
these parameters is defined by the vectors iV , 

1,i r . Thus, based on this decomposition, the al-
gebraic-based model reduction techniques can be 
formalised in the following way: 

M4a:Partitioning. Divide the reduced set of 
the model parameters π  into three non-overlapping 
groups G1, G2 and G3 in accordance with the fol-

lowing rules applied to all i  , 1,dim( )i  π : 

Rule 1: Include the parameter i   into the group 

G1 if the ith row of the sub-matrix 1[ ,..., ]r mV V  is 

equal to zero; 
Rule 2: Include the parameter i   into the group 

G2 if the ith row of the sub-matrix 1[ ,..., ]rV V  is 

equal to zero; 
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Rule 3: If the parameter i   is not included in G1 

or G2, include it in the group G3. 
M4b:Elimination. Eliminate from the set of 

unknowns (model parameters) non-identifiable pa-
rameters that correspond to group G2.  

After application of these methods, the current 
set of model parameters π  is reduced to the sub-set 

 2\ Gπ π
 that does not influence the rank of the ob-

servation matrix, i.e.    
2\ G

rank rank π π πA A . 

Nevertheless, relevant model may be redundant yet, 

i.e.     
2 2\ \dim

G Grank  π πA π π . It should be 

noted that    
1 1dim

G Grank πA π  while 

   
3 3dim

G Grank πA π . So, another, and the most 

difficult problem that arises after M4, is to define the 
sub-set of identifiable parameters inside of 3Gπ  (the 

remaining ones should be set to constant values). 
It is clear that the above mentioned problem has 

infinite number of solutions. Let us presents an algo-
rithm that is able to split the set of parameters 3Gπ  

into the non-overlapping groups of coupled parame-
ters 3

j
Gπ  and then choose identifiable one from the 

group based on their physical scene:  
M5a:Splitting. Split the set of semi-identifiable 

model parameters 3Gπ  into the non-overlapping 

groups of coupled parameters 3
j
Gπ  for which the fol-

lowing conditions are satisfied: 
(a) 1 2

3 3 3 3.... m
G G G Gπ π π π  , 3 3

i j
G G π π  

                                                                    i j  ; 

(b)     
3 3 3\i i i

G G G j
rank rank

π π π
A A   

                                                     31: dim( )i
Gj  π  

(c)     
3 3 3 )i ji

G G G k
rank rank

π π π
A A


  

                                             3, 1: dim( )j
Gi j k   π  

In practice, when this grouping is not evident, it 
is possible to use numerical technique, which is 
based on the SVD-decomposition of the reduced ob-
servation matrix 

3Gπ
A . Using similar notation, the 

matrix V  can be presented as  1 2, ,...V VV  in ac-

cordance with the rank of 
3Gπ

A . So, the couplings 

between the elements are defined by the sub-matrix 

 1 .., ., rV V . One of the easiest ways to find the de-

sired couplings is to compute the matrix  

  
11*

1 .., ., ...

T

r
T
r


 
    
  

V
L V V

V
 (21)

where the symbol “*” denotes operation of the row 
selection that conserve the matrix rank. The latter 
leads to a full-rank square matrix presented above as 
the first term of (21). It should be noted that this op-
eration is not unique, nevertheless, it allows to ob-
tain the couplings between the model parameters de-
scribed by the sparse matrix L . Then, the desired 
groups of parameters can be easily detected after 
transformation L  into the block-diagonal form.  

Using the above presented idea, the next step can 
be presented as follows:  

M5b:Selection. In each group of parameters 

3
j
Gπ , specify 

 
3

i
G

j rankn 
π

A
 parameters that will 

be treated as identifiable 
M5c:Assigning. In each group of parameters 

3
j
Gπ , fix remaining

   
3

3dim i
G

j
j Gm rank 

π
π A

 

parameters to some constants; these parameters will 
be treated as non-identifiable   

It should be noted that the sequence of methods 
M5b and M5c is not strict; identifiable and non-
identifiable parameters can be selected and fixed it-
eratively, using the methods M5b and M5c several 
times. After application  of the methods M5a, M5b 
and M5c, the set of parameters  3Gπ  is split into two 

subsets: the subset of the parameters that will be 
treated as identifiable 3

id
Gπ  and subset that will be 

treated as non identifiable ones 3
ni
Gπ  and will be as-

signed to some constant values ( 3
ni
G constπ ); i.e. 

3 3 3
id ni
G G Gπ π π , 3 3

id ni
G G  π π . 

After application of the algebraic approach, the 
complete set of parameters π  is reduced to π , It 
includes all parameters from the group G1 and as-
signed-to-be-identifiable ones from the group G3. It 
is clear that the presented algebraic methods do not 
violate the model completeness, i.e. 

   rank rank π πA A . 

4 APPLICATION EXAMPLE 

To demonstrate benefits of the developed techniques 
for industrial applications, this section presents some 
experimental results on the elastostatic calibration of 
industrial robot Kuka KR-270 employed in high pre-
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cession machining of aircraft parts.. For the consid-
ered application area, the technological process gen-
erates essential interaction between the workpiece 
and manipulator, which causes non-negligible de-
flections of the end-effector. To compensate related 
positioning errors on the control level (via adjusting 
a target trajectory), an accurate but simple enough 
elasto-static model is required. In practice, the de-
sired model is not usually provided by robot manu-
factures and should be obtained from dedicated ex-
perimental study. Let us apply the developed tech-
nique to get the desired model and to identify its pa-
rameters in real industrial environment. 

The considered manipulator contains 7 links sep-
arated by 6 actuated joints. Taking into account that 
in general the elastostatic properties of each link are 
defined by 6x6 stiffness matrix, the complete but 
obviously redundant model contains 258 parameters. 
As a result of application model reduction tech-
niques (M1-M5), the number of parameters to be 
identified has been reduced down to 26. More details 
on each step are given in 0. Additional restrictions 
here are caused by the partial-pose measurement 
technique and the gravity-based loading generating 
the desired deflections.  Relevant experimental setup 
is presented in 0. Because of such measurement 
method, 10 elastostatic parameters are not identifia-
ble from the available measurement data. The ma-
nipulator configurations for the elastostatic calibra-
tion were generated using the design of experiments 
and previously developed test-pose technique, which 
is based on the industry-oriented performance meas-
ure (Klimchik, Wu et al., 2012). Another particulari-
ty of the industrial robot KUKA KR270 that should 
be taken into account in an accurate elasto-staic 
model is a gravity compensator that is attached in 
parallel to the second actuated joint. Its equivalent 
model was presented in  (Klimchik, Wu et al., 2013). 
In the frame of the complete and irreducible model, 
the gravity compensator impact is taken into account 
by introducing a configuration dependant virtual 
spring in the second joint. More details on this ap-
proach are given in (Klimchik, Wu et al., 2013). 

In order to ensure higher identification accuracy, 
the measurement configurations have been selected 
using the design of experiment theory. In contrast to 
other works, an industry-oriented performance 
measure has been used (Wu, Klimchik et al., 2013), 
which evaluates the robot positioning accuracy after 
calibration. In total, 15 measurement configurations 
for 5 different angles q2 have been generated. 

For the comparison purposes, calibration was 
performed using several elastostatic models that dif-
fer in their basic assumptions: (i) complete irreduci-

ble stiffness model and (ii) conventional model for 
the manipulator with rigid links and compliant actu-
ated joints. Here, conventional elastostatic models J1 
and J2 take into account the actuated joint compli-
ances only. Both models (complete and reduced 
ones) have been examined with and without taking 
into account the effect of the gravity compensator. 
The obtained results are summarized in 0 showing 
capability to compensate the compliance errors us-
ing different elastostatic models. As follows from 
them, the lowest compliance errors can be achieved 
using the model C2 (obtained using the developed 
model reduction technique), which ensures the posi-
tional accuracy 0.21 mm. In contrast, the conven-
tional elasto-static model with rigid links gives accu-
racy 3.5 times worse comparing to model C2. The 
difference in the efficiency of the compliance errors 
compensation between the models J1/J2 and C1/C2 
confirms that link compliances have essential impact 
on the robot positioning accuracy and cannot be ne-
glected in accurate manufacturing. According to ex-
perimental results presented in 0, by means of the 
complete elastostatic model, it is possible to com-
pensate 95% of the compliance errors. In contrast, 
using the conventional model that takes into account 
the joint elasticity’s merely, only 84% of positioning 
errors caused by external force can be compensated. 
This emphasizes the advantage of the proposed 
model. The histograms of the errors distribution for 
the model C2 (0) show that the non-compensated 
compliance errors in all directions are unbiased and 
almost normally distributed. 

Hence, using the developed low-order stiffness 
model for the compliance error compensation gives 
essential improvement of the precision for the robot-
ic based milling.  It allowed us to compensate more 
than 95% of deflections caused by external loading 
and to guarantee the precision of about 0.2 mm un-
der the loading of 2.5 kN (it is comparable with the 
robot repeatability of 0.06 mm). 

5 CONCLUSION 

The paper deals with the problem of the manipulator 
stiffness modeling. The main attention is paid to the 
elastostatic parameters identification and model re-
duction. In contrast to previous works, the manipula-
tor stiffness properties are described by the sophisti-
cated model, which takes into account the flexibili-
ties of all mechanical elements described by 6×6 
stiffness matrices. This obviously yields extremely 
high number of the model parameters that cannot be 
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Figure 2: Experimental setup for elastostatic calibration. 

Table 1: Summary of the elasto-static model reduction process for industrial robot Kuka KR-270.  

Approach Step Model description 
Number of pa-

rameters 

Original model  6 joints +7 links (36 parameters per link) 258 

Physical 

M1: Symmetrisa-
tion  

6 joints +7 links (21 parameters per link) 153 

M2: Sparcing  6 joints +7 links (8 parameters per link)  62 

M3: Aggregation  7 links (8 parameters per link)  56 

Algebraic 

M4a:Partitioning 
M4b:Elimination 

G1: Identifiable parameters – 1 
G2: Non-identifiable parameters - 10  
G3: Semi-identifiable parameters – 45  

46 

M5a:Splitting 
M5b:Selection 
M5c:Assigning 

Selection of 25 independent parameters 
 from 45 semi-identifiable ones  

26 

Table 2: Efficiency of the compliance errors compensation using complete and reduced models. 

Stiffness model 
Number of 
parameters 

Compliance errors, mm 

x-direction y-direction z-direction positional 

MAX RMS MAX RMS MAX RMS MAX RMS 

Deflections magnitude without compensation 2.51 1.03 3.14 1.02 8.14 1.91 8.18 4.58 

Complete model C1 26 0.27 0.10 0.43 0.13 0.38 0.12 0.45 0.22 

Complete model C2 30 0.28 0.10 0.45 0.14 0.32 0.11 0.49 0.21 

Conventional model J1 5 1.42 0.43 1.73 0.41 0.66 0.23 1.78 0.75 

Conventional model J2 9 1.42 0.42 1.73 0.42 0.49 0.19 1.76 0.73 

Model C1: Complete irreducible stiffness model without gravity compensator 

Model C2: Complete irreducible stiffness model with gravity compensator 

Model J1: Conventional model for the manipulator with rigid links and compliant actuators, without gravity compensator 

Model J2: Conventional model for the manipulator with rigid links and compliant actuators, with gravity compensator 
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Figure 3: Statistical distribution of compliance errors after compensation 

identified separately. To solve the problem, physical 
and algebraic model reduction methods were devel-
oped. They take into account mathematical relations 
between the elements of the compliance matrices. 
The advantages of the developed approach are illus-
trated by an application example that deals with 
elastostatic calibration of an industrial robot used in 
aerospace industry.  

In future, the problem of the complete model 
generation from the obtained set of parameters will 
be in the focus of our attention, i.e. re-construction 
of the joint compliances and 6x6 link stiffness ma-
trices from the reduced model obtained after the 
identification. It is clear that this procedure requires 
additional knowledge on the coupling between the 
stiffness matrix elements that are induced by their 
physical nature. 
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