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Abstract: Measurements of various properties of the process models in the last few years become relatively widely 
explored area. These are properties such as uncertainty, complexity, readability or cohesion of process 
models. Quantification of these properties can provide better insight in term of, for instance, user-
friendliness, predictability, clarity, etc. of the process model. The aim of this work is to design a method for 
quantification of fairness in the process models which are modelled using stochastic Petri nets. The method 
is based on mapping the set of all reachable markings of Petri net into Markov chain and then quantification 
of entropy from stationary probabilities of the individual places (all places or a specific subset). The 
resulting value of fairness is from the interval <0, 1>. 

1 INTRODUCTION 

There are a number of modelling languages that are 
used to describe business processes. Individual 
modelling languages differ from each other mainly 
in notation, modelling ability (power), mathematical 
foundation, etc. In recent years a several metrics 
began to disseminate that measure specific 
characteristics in the models, which were developed 
by specific modelling languages. These properties 
are for instance uncertainty (Jung et al., 2011, Ibl, 
2013), complexity (Lassen and van der Aalst, 2009) 
or cohesion (Reijers and Vanderfeesten, 2004). The 
measurement of these properties can be used for 
evaluation of variety assumptions, which are relative 
to the model and outline more detailed information 
about their structure and behaviour. The evaluation 
of these properties can provide useful information 
during analysis of, for instance, user-friendliness, 
understandability, usability, maintainability and 
other (González et al., 2010). 

In this work is proposed a procedure for the 
analysis and evaluation of fairness in the models 
created using stochastic Petri nets. Quantification of 
fairness in process models can implies a number of 
factors such as the overload of nodes, bottleneck, 
starvation, etc. Increasing of fairness in the process 
model can lead to more effective static and dynamic 
characteristics of the modelled system / process.  

Petri nets (Petri, 1962) are an appropriate tool for 
modelling processes, which are characterized by a 
non-determinism, synchronization, parallelism and 
concurrency. Stochastic Petri nets (Molloy, 1982) 
extends the classic Petri nets with the possibility to 
allocate exponential distribution to each transition, 
which allows to refine the behaviour of the modelled 
system and also to execute various performance 
analysis. 

According to ("Fairness", 2011), the concept of 
fairness is defined as: „The quality of treating people 
equally or in a way that is right or reasonable”.  

When analysing reactive and concurrent systems 
(Völzer and Varacca, 2012), this term is understood 
more generally and formally, for instance, fairness 
does not need to be in connection with people, but 
any abstract entities (machinery, departments, 
communication channels, etc.). The term “treating” 
specifies any process, which is in association with 
these entities. From this perspective, it is then 
possible to divide these entities into those for which 
is the process defined (e.g., packets in the process of 
network communication) and those, which provide 
the process (e.g., switches and communication 
channels in the process of network communication). 
On the fairness can thus be regarded as a 
prerequisite (predicate), which is related to the 
system / process. The classic view of fairness in 
reactive and concurrent systems is associated with a 
number of (usually infinite) occurrences of some 
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specific events (e.g., thread A is waiting to enter the 
critical section) in an infinite sequence of events 
(execution), which can occur in a given system 
(Baier and Katoen, 2008). 

One of the most widespread theories of fairness 
is linked to the issue of formal specification and 
verification. In this area, the concept of fairness is 
regarded as a temporal property, which, along with 
safety and liveness represents the behavioural 
properties that are verified on the system / model (e. 
g., model checking) (Baier and Katoen, 2008). 

Another area, which deals with the notion of 
fairness, is the queuing theory (Larson, 1987, Palm, 
1953). In this area was always preferred the 
examination of performance characteristics such as 
throughput, response time, queue length, etc. In the 
last decade, however, the fairness has begun to be 
more important. According to (Raz et al., 2004), the 
fairness in the queuing theory is divided into fairness 
with regard to the order (time of arrival), time of 
service and operational deployment. 

The above described “classic” view of farness is 
associated with the entities whose progress 
(concurrency) is modelled (e.g., processes in an 
operating system, customers in a supermarket, users 
of a website, material in the manufacture, etc.). The 
second way to look at fairness is associated with the 
entities that provide the process (e.g., machinery, 
employees, processors, servers, etc.). In this work 
presented view of fairness is associated with this 
second way. Fairness in this context is understood as 
the uniformity of the workload of specific entities 
that provide the process. Fairness as defined in the 
area of scheduling, formal verification or Petri nets 
is usually a categorization. This means that the 
assumption is verified and the result is only to 
determine whether a system / model meets this 
assumption or not (True or False). The approach 
presented in this work allows quantifying fairness in 
terms of uniformity of workload, i.e. what specific 
proportion of time each entity has against other 
entities (portion of time each state of system occurs 
against all states. 

The aim of this work is to define a method that 
allows quantifying the fairness of stochastic Petri net 
models. This objective is achieved using the 
concepts of information theory (Shannon´s entropy 
(Shannon, 1948)) and stochastic processes (Markov 
chains). 

2 STOCHATIC PETRI NETS 

The following is the definition of stochastic Petri 
nets (Molloy, 1982) and few  basic concepts that 
will be needed in the following . A solid 
introduction to stochastic Petri nets can be found in 
(Marsan, 1990). 

Definition 2.1: Stochastic Petri net is a 5-tuple, 
ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,  :where	ሻܯ,ܥ

 ܲ	 ൌ 	 ሼ	ଵ, ,ଶ ,,ଷ … ,  ሽ –  a finite set of
places, 

 ܶ	 ൌ 	 ሼݐଵ, ,ଶݐ ,ଷݐ … ,  – a finite set of	ሽݐ
transitions, 

 ܲ	 ∩ 	ܶ	 ൌ 	∅ – places and transitions are 
mutually disjoint sets, 

 ܨ	 ⊆ 	 ሺܲ	 ⨯ 	ܶሻ 	∪ 	ሺܶ	 ⨯ 	ܲሻ – a set of 
edges, defined as a subset of the set of all 
possible connections, 

 Λ: ܶ	 → 	ܴା – an exponentially distributed 
firing rate of transitions, 

 W:F → N1 – a weight function, defines the 
multiplicity of edges, 

 C:P → N_1 – capacities of places,, 
 ܯ: ܲ	 → 	 ܰ – an initial marking. 

Definition 2.2: Marking of Stochastic Petri net 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a stochastic	ሻܯ,ܥ

Petri net. Map	ܯ: ܲ	 → 	 ܰ, is called marking of 
Petri net SPN. 

Marking represents the state of the network after 
execution a specific number of steps, i.e. the firing a 
specific number of enabled transitions. If a transition 
is enabled (or not) depends on the net structure and 
the actual marking. 

Definition 2.3: Pre-set, Post-set 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a stochastic	ሻܯ,ܥ

Petri net. Pre-sets and post-sets are defined as: 
 	• ൌ ሼݐ|ሺݐ, ሻ ∈  ሽ – the set of inputܨ

transitions of 	,	
 ݐ	• ൌ ሼ|ሺ, ሻݐ ∈  ሽ – the set of input placesܨ

of	ݐ, 
 • ൌ ሼݐ|ሺ, ሻݐ ∈  ሽ – the set of outputܨ

transitions of	, 
 ݐ• ൌ ሼ|ሺݐ, ሻ ∈  ሽ – the set of outputܨ

places of	ݐ. 
Definition 2.4: Enabled transition 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a stochastic	ሻܯ,ܥ

Petri net. Transition ݐ	 ∈ 	ܶ is called enabled with	
marking	M	ሺM‐enabledሻ,	if	

∀ ∈ •	ݐ ሻሺܯ:  ܹሺ,  ሻݐ

∀ ∈ ሻሺܯ:•ݐ  ሻሺܥ െܹሺݐ,  ሻ
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Definition 2.5: Next marking 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a stochastic	ሻܯ,ܥ

Petri net and ܯ is its marking. If a transition ݐ ∈ ܶ is 
enabled at marking	ܯ, then by its execution is 
obtained next marking	ܯ´, which is defined as 
follows: 

∀ ∈ ሻሺ´ܯ:ܲ ൌ

ൌ

ە
۔

ۓ
ሻሺܯ െܹሺ, ,ሻݐ 	݂݅ ∈ •	ݐ •ݐ\

ሻሺܯ ܹሺݐ, ,ሻ 	݂݅ ∈ \•ݐ •	ݐ

ሻሺܯ െܹሺ, ሻݐ ܹሺݐ, ,ሻ 	݂݅ ∈ •ݐ ∩ •	ݐ

ሻሺܯ ݁ݏ݅ݓݎ݄݁ݐ

 

The situation that the transition ݐ changes the 
marking ܯ to	ܯ´, is usually expressed as ܯሾܯۧݐ´. 

Definition 2.6: Sequence of transitions, 
reachability 

Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a stochastic	ሻܯ,ܥ
Petri net. Sequence of transitions ߪ is the sequence 
of enabled transition that lead from marking ܯ to 
another marking	ܯ´. This situation is denoted 
as	ܯሾܯۧߪ´. A marking for which there is a sequence 
of transitions from the initial marking is called 
reachable marking. 

Definition 2.7: The set of all reachable marking 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a stochastic	ሻܯ,ܥ

Petri net and ܯ is its marking. The set of all possible 
markings reachable from initial marking ܯ	in a 
Petri net ܵܲܰ is denoted by ܴሺܲܰ,ܯሻ or 
simply	ܴሺܯሻ. 

ܴሺܯሻ ൌ

ۏ
ێ
ێ
ۍ
ଵሻሺܯ ଵሻଵሺܯ ⋯ ଵሻோሺெబ|ሺ|ܯ
ଶሻሺܯ ଶሻଵሺܯ ⋯ ଶሻோሺெబ|ሺ|ܯ

⋮ ⋮ ⋱ ⋮
ሻሺܯ ሻଵሺܯ ⋯ ےሻோሺெబ|ሺ|ܯ

ۑ
ۑ
ې
 

Definition 2.8: Boundedness 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a stochastic	ሻܯ,ܥ

Petri net. Place  ∈ ܲ is called ݇-bounded if: 

∃݇ ∈ ଵܰ: ܯ∀ ∈ ܴሺܯሻ:ܯሺሻ  ݇ 

Place  ∈ ܲ is called bounded, if it is k-bounded 
for some	݇ ∈ ଵܰ. If every place in PN is bounded, 
then this net is called bounded Petri net. 

Definition 2.9: Live marking, live net 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a stochastic	ሻܯ,ܥ

Petri net. Marking ܯ ∈ ܴሺܯሻ is live, if 	∀ݐ ∈ ܶ 
exist some marking ܯଵ ∈ ܴሺܯሻ such that transition 
ܯ∀ ଵ-enabled. Ifܯ is ݐ ∈ ܴሺܯሻ is live, then ܵܲܰ is 
live. 

3 PROBABILITY OF MARKINGS 
AND MARKOV CHAINS 

The set of all reachable markings can be expressed 
in terms of Markov chains (Molloy, 1982). For the 
purposes of defining the stationary probability of 
each marking ܯ ∈ ܴሺܯሻ is important to define the 
transition rate matrix. 

Definition 3.1: Transition rate matrix 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a Petri net	ሻܯ,ܥ

and ܴሺܯሻ its reachability set. Transition matrix Q 
of Petri net SPN is defined as: 

:ࡽ ൫ܴሺܯሻ ൈ 	ܴሺܯሻ൯ → R 

Where values are made according following rule 
and the matrix ܣ	form right stochastic matrix: 

,ࡽ ൌ

ە
ۖ
۔

ۖ
ۓ  ,ߣ
௧ೖ∈ሼ:∈்∧ெஹଵ∧ெሾۧெೕሽ

݂݅	݅ ് ݆

െ  ܳ,,

|ோሺெబሻ|

ୀଵ

݂݅	݅ ൌ ݆

 

Definition 3.2: Stationary probabilities 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,   is a Petri net	ሻܯ,ܥ

and ࡽ is its transition rate matrix. Stationary 
distribution vector ࣁ is defined as normalized left 
null space of transition matrix	ࡽ: 

ࡽࣁ ൌ  
்ࣁ ൌ 1 

Vector ࣁ then represents the probability of each 
ܵܲܰ marking: 

ࣁ ൌ ൦

Pr	ሺܯሻ
Pr	ሺܯଵሻ

⋮
Pr	ሺܯ|ோሺெబሻ|ሻ

൪ 

Definition 3.3: Long term probability of 
marking ܯ ∈ ܴሺܯሻ is defined as a corresponding 
element of vector	ࣁ: 

ߟ ൌ Pr	ሺܯሻ 

The probability of marking M can be seen as a 
joint probability of markings of individual places: 

ሻܯሺݎܲ ൌ Pr	ሺܯሺଵሻ ൌ ଶሻሺܯ,ଵݔ ൌ …,ଶݔ ሻሺܯ,
ൌ  ሻݔ

When calculating the stationary probabilities it is 
appropriate to check whether the model fulfil the 
liveness property, since each dead marking of Petri 
net corresponds to absorb state in terms of Markov 
chains.  Each absorption state can always occur, i.e. 
its probability equal 1 and thus all live markings 
have probability equal 0. This would lead to a fully 
deterministic model without any uncertainty.  
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4 ENTROPY AND FAIRNESS 

Entropy (Shannon, 1948) can measure the 
amount of disorder, which is associated with a 
random variable. 

Definition 4.1: Entropy  

ሺܵሻܪ ൌ െܲݎሺݏሻ logଶ ሻݏሺݎܲ


ୀଵ

 

0 ∙ logଶሺ0ሻ ≡ 0 
where ܵ represents the system (random variable) 

and ݏ its states (the specific values of a random 
variable). 

Definition 4.2: Maximum entropy 
The maximum entropy of the system	ܵ, which 

can be in ݊ different states can be expressed as 
follows: 

୫ୟ୶ሺܵሻܪ ൌ logଶ ݊ 
Definition 4.3: Stationary probability of places 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,  is a stochastic	ሻܯ,ܥ

Petri net and ࣁ is the vector of the stationary 
probabilities (of all reachable markings). Stationary 
probability vector of individual places ࢙࣋ is defined 
as: 

࢙࣋ ൌ ࡹሺ݉ݎ݊ ∗ ሻࣁ ൌ
ࡹ ∗ ࣁ

∑ሺࡹ ∗ ሻࣁ
 

࢙࣋ ൌ ൦

Pr	ሺሻ
Pr	ሺଵሻ
⋮

Pr	ሺሻ

൪ 

where ࡹ represents a matrix of all reachable 
markings. In the case that the specific place in a 
specific marking comprising more than one token, 
than the partial probability is multiplied by the 
number of tokens in that place. 

Definition 4.4: Entropy of places 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,  is a stochastic	ሻܯ,ܥ

Petri net and ࢙࣋ its stationary probability vector of 
places. Entropy of places in ܵܲܰ is defined as: 

ሺܵܲܰሻܪ ൌ െߩ௦logଶ ߩ
௦


||

ୀଵ

 

The same relationship can be used to quantify 
the entropy of certain subset of places. Let ܦ௦ ⊂ ܲ, 
then the entropy of this subset is defined as: 

௦ሻܦሺܪ ൌ െߩ௦logଶ ߩ
௦


|ೞ|

ୀଵ

 

Definition 4.5: Fairness of stochastic Petri net 
Let ܵܲܰ	 ൌ 	 ሺܲ, ܶ, ,ܨ Λ,ܹ,  is a stochastic	ሻܯ,ܥ

Petri net and ܪሺܵܲܰሻ entropy of its places. 
Fairness of ܵܲܰ is defined as: 

ሺܵܲܰሻݏݏ݁݊ݎ݅ܽܨ ൌ
ሺܵܲܰሻܪ

௫ሺܵܲܰሻܪ
 

and similarly for ܦ௦ ⊂ ܲ: 

௦ሻܦሺݏݏ݁݊ݎ݅ܽܨ ൌ
௦ሻܦሺܪ

ܦ௫ሺܪ
௦ሻ

 

The value of fairness is then located in the 
interval <0,1>, where 0 represents a fully unfair 
situation and 1 absolutely fair situation. Higher 
value fairness indicates the higher uniformity of 
stationary probability of places and vice versa. 

5 EXAMPLE OF SIMPLE MODEL 

As a simple example, consider a stochastic Petri net, 
which is composed of 5 places and 5 transitions, see  
Figure 1. The model contains some typical elements 
that are abundant in classic process models. These 
elements are for instance sequence (transition T2), 
AND-split (transition T1), XOR (transition T4 and 
T5) and cycle (transition T5). For more information 
on the mapping of these (and other) elements into 
Petri net can be found in (Jung et al., 2011). 
 

 

Figure 1: Stochastic Petri net example. 

The set of all reachable markings ܴሺܯሻ of the 
Petri net contains five markings: 

	 ܯ ଵܯ ଶܯ ଷܯ ସܯ
ଵ 1 0 0 0 0
ଶ 0 1 0 1 0
ଷ 0 1 1 0 0
ସ 0 0 1 0 1
ହ 0 0 0 1 1

 

When considering the exponential distribution 
Λ ൌ ሺߣଵ, ,ଶߣ ,ଷߣ ,ସߣ  ହሻ, the corresponding stateߣ
space graph (Markov chain) is shown in Figure 2. 

This state space corresponds to Markov chain, 
which generates for Λ ൌ ሺ28, 5, 1, 42, 142ሻ the 
following transition rate matrix: 

	 ܯ ଵܯ ଶܯ ଷܯ ସܯ
ܯ െ28 28 0 0 0
ଵܯ 0 െ47 5 42 0
ଶܯ 0 1 െ43 0 42
ଷܯ 0 0 0 െ5 5
ସܯ 142 0 0 1 െ143
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Figure 2: State space / Markov Chain. 

The solution of this matrix is a vector of 
stationary probabilities: 

ࣁ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.145
0.086
0.010
0.731
ے0.029

ۑ
ۑ
ۑ
ې

 

The stationary probability of places can therefore 
be quantified as follows: 

Prሺܲሻ ൌ ࡹሺ݉ݎ݊ ∗ ሻࣁ ൌ	

ൌ ݉ݎ݊

ۉ

ۈ
ۇ

ۏ
ێ
ێ
ێ
ۍ
1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 1 0 0 1
0 0 0 1 ے1

ۑ
ۑ
ۑ
ې

∗

ۏ
ێ
ێ
ێ
ۍ
0.145
0.086
0.010
0.731
ے0.029

ۑ
ۑ
ۑ
ې

ی

ۋ
ۊ
ൌ

ൌ ݉ݎ݊

ۉ

ۈ
ۇ

ۏ
ێ
ێ
ێ
ۍ
0.144
0.817
0.096
0.38
ے0.759

ۑ
ۑ
ۑ
ې

ی

ۋ
ۊ
ൌ

ۏ
ێ
ێ
ێ
ۍ
0.078
0.440
0.052
0.021
ے0.409

ۑ
ۑ
ۑ
ې

 

It is then possible to quantify the fairness of the 
presented example: 

ሺܵܲܰሻݏݏ݁݊ݎ݅ܽܨ ൌ
ሺܵܲܰሻܪ

௫ሺܵܲܰሻܪ
ൌ 

ൌ	െሺ0.078 logଶ 0.078  0.440 logଶ 0.440  
0.052 logଶ 0.052 0.021 logଶ 0.021  

0.409 logଶ 0.409ሻ/ logଶ 5 ൌ 

ൌ
1.673
2.3219

ൌ 0.721 

This result can be loosely interpreted as the fact 
that fairness of sample stochastic Petri net reaches 
72.1%, which can be classified as a higher degree of 
fairness. The resulting value is associated with the 
distribution of the stationary probability of places 
Prሺܲሻ – the places P2 and P5 have a significantly 
higher stationary probability than other places. 

6 DISCUSSION 

Fairness is an important property that is placed on 
the modelled system. Verification of fairness is 
associated with a number of specific disciplines such 
as queuing (Avi-itzhak et al., 2008, Raz et al., 2004), 
distributed programming (Alpern and Schneider, 
1985, Apt et al., 1988) or networking (flow fairness) 
(Kelly, 1997, Jaffe, 1981). In the most cases, the 
verification of the fairness is associated with the 
choice of a suitable predicate whose validity is 
verified on the model. Another way to verify the 
fairness is its measurement (preferably as the value 
from the fixed interval, e.g. (Raz et al., 2004)). 
These approaches are based on the assessment of 
fairness for entities that are subjects in the process 
(users, documents, packets, etc.). In Petri nets are 
these entities represented as tokens (which are 
located in different states – places). This paper 
presents an approach for measuring fairness in 
stochastic Petri nets using the Shannon entropy and 
Markov chains. This approach presents the 
measurement of fairness for entities that provide a 
specific state of token (place). The value of fairness 
is influenced by a number of different factors that 
are associated with network structure (number and 
distribution of elements such as OR, XOR, AND 
and LOOP), the values of Λ and initial marking 
(number and distribution of tokens). 

Advantages of this Approach 

 The universal method for evaluation of 
fairness in concurrent and reactive systems. 
The only requirement is the need for 
modelling the system using stochastic Petri 
nets. 

 Flexible measuring of fairness among 
different subsets of places (from one 
particular place to the whole network). 

 The possibility of simulation of the network 
with various parameters (e.g., number of 
tokens in an initial marking, firing rate, etc.) a 
monitor the progress of fairness, i.e. the 
possibility of finding local optima around a 
specific operation point (initial values of 
model parameters). 

Disadvantages of this Approach 

 Basic shortcomings of Petri nets in general, 
i.e. state space explosion, restrictions based 
on the definition, etc. 
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 The need to specify amongst which places the 
fairness will be measured and what the 
resulting value of fairness represents. 

7 CONCLUSION AND FUTURE 
WORK 

Measuring of fairness in the process model can be a 
good indicator for overload detection of different 
nodes in the model (bottleneck, overwork, etc.) 
In this paper has been defined method for 
calculating the fairness of any process model, which 
can be modelled by stochastic Petri net. Defined 
method can be applied to a specific sublet of places, 
as well as the whole Petri net.  
The actual fairness quantification is based on the 
measurement of entropy from steady-state 
probabilities of all places (or a specific subset of 
places). On the prime example is presented the 
calculation of the fairness. 

The future research will be focused on defining 
this method using coloured Petri nets, which allow 
diversification of tokens. This allows measurement 
of fairness for entities that provide process (states) 
as well as entities that are subjects in the process 
(tokens). 
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