
Toward Preventing Stack Overflow Using Kernel Properties

Benjamin Teissier and Stefan D. Bruda
Department of Computer Science,Bishop’s University, 2600 College St, Sherbrooke, Quebec J1M 1Z7, Canada

Keywords: Software and Information Security, Buffer Overflow, Stack Overflow, Privilege Escalation, Kernel, Linux.

Abstract: We contribute to the investigation of buffer overflows by finding a more accurate way of preventing their
exploitation. We work at the highest privilege levels and in the safest part of a GNU/Linux system, namely
the kernel. We provide a system that allows the kernel to detect overflows and prevent their exploitation. The
kernel injects at launch time some (minimal) code into the binary being run, and subsequently uses this code
to monitor the execution of that program with respect to its stack use, thus detecting stack overflows. The
system stands alone in the sense that it does not need any hardware support; it also works on any program,
no matter how that program was conceived or compiled. Beside the theoretical concepts we also present a
proof-of-concept patch to the kernel supporting our idea. Overall we effectively show that guarding against
buffer overflows at run time is not only possible but also feasible. In addition we take the first steps toward
implementing such a defense.

1 INTRODUCTION

IT security is a complex and important field with a
long history. It became recently a subject of general
concern for the main public, for governments, and
for private companies alike. Indeed, the latest news
involving stuxnet, flame, and so many other viruses
made clear to everybody that security threats in gen-
eral and privilege escalation in particular deserve a
greater attention.

One of the oldest issues in this field is buffer
overflow. Its range of exploitations in particular is
very large, ranging from data leaks to taking over a
complete computing system. These are all danger-
ous: most of the time the possibilities of exploitation
are only limited by the skills of the attacking hacker.
This problem appeared early in the history of com-
puters: buffer overflow is first mentioned as early as
1972 (Anderson, 1972), and the first documentation
of a hostile exploitation was written in 1988 (Seeley,
2007). However, as can be seen during events such
as the NDH 2k11 “old hacking” conference (Ker-
ouanton, 2012), the exploitation of buffer overflows
were present earlier, but some times documented pri-
vately and often not documented at all. A few worms
are known to use buffer overflows for gaining access
to the system, including “SQL Slammer” (Knowles,
2007) and “Code Red” (CERT/CC, 2002). They in-
fected a substantial number of computers and servers,

compromising data, consuming computing time and
compromising the security of the entire system.

In its early history the exploitation of buffer over-
flows was reserved for the elite of hackers. This
ceased to the case with the publication of the famous
Phrack paper “Smashing the stack for fun and profit”
(Levy, 1996). The paper popularized buffer overflow
but also provided a good and complete “how to”. All
of a sudden buffer overflow exploitation became ac-
cessible to everybody.

In all, buffer overflow is an old but at the same
time a current and acute problem. One can see this
just by looking at the exploit-db.com Web site, an
archive of exploits and vulnerable software. More
than 100 pages therein (with some 20 articles per
page) are dedicated to buffer overflow vulnerabilities.

Older program running on on older computers of-
ten cannot be patched for buffer overflow bugs. The
reasons range from lack of expertise to source code
unavailability. This motivates our goal, which is to in-
vestigate means of stopping the exploitation of stack
overflows (a particular kind of buffer overflow) for all
the programs running on a particular machine instead
of cleaning overflow conditions from all the pieces of
code one by one. Our thesis is that a solution for stack
overflow implemented at the level of the kernel of an
operating system and not involving recompilation or
supplementary components is possible. This in turn
addresses the problem automatically for all the pro-

369Teissier B. and Bruda S..
Toward Preventing Stack Overflow Using Kernel Properties.
DOI: 10.5220/0005097803690376
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 369-376
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

grams running on a machine.
To substantiate this thesis we propose a patch to

the Linux kernel that mitigates the stack overflow is-
sue. We work on the Linux kernel since it is open
source and is also modifiable by the computing com-
munity at large (so it will be possible to have our patch
accepted in the official kernel source once a produc-
tion variant is reached).

Our patch is a proof of concept that needs substan-
tial further refinement to become a production system.
Such a refinement is however no longer a matter of
“how” but more a matter of spending time to write
the necessary code; a roadmap toward an actual pro-
duction system is described in Section 5. We there-
fore regard out system in its present proof-of-concept
form as a substantial step forward toward more secure
computing systems.

2 BUFFER OVERFLOW

Buffer overflow consists in a program wanting to
write into a variable (e.g., array) but ending up writ-
ing outside the respective variable. Very often a buffer
overflow causes the corruption of another part of the
program’s memory. This results in unpredictable
behavior, ranging from erroneous results to system
crashes. Often buffer overflows can be exploited by
malicious entities.

A stack overflowis a buffer overflow happening
on the stack. The typical cause is the overflow of an
array stored on the stack. Often caused by the use of
strcpy() (which does not check for the size of the des-
tination array), the stack overflow is the most popular
and the easiest buffer overflow to detect (and then ex-
ploit).

A stack overflow attack targets the EIP register
and so takes over the program. Indeed, the register
EIP is the instruction pointer register, which stores the
next instruction to be executed. When the program
calls a function, it will store the actual value of EIP
on the stack to restore it at the end of the function. A
carefully crafted usage of the overflow of a data struc-
ture placed on the stack will overwrite the EIP value
pushed on the stack and so change the program flow.
When the current function “returns” the altered EIP
value produces a jump to some other, malicious code
that runs with the same privileges as the original code.

Other overflows include integer overflow and heap
overflow. The first attacks integer variables and at-
tempts to increase their values beyond their capacity
(so that they roll over), while the second targets the
dynamic arrays created using the malloc() family of
functions (malloc(), calloc(), realloc()).

3 PREVIOUS WORK

We start by presenting general techniques developed
throughout the years for mitigating the buffer over-
flow problem. We then summarize the recent progress
on the matter.

3.1 Techniques

TheNX-bit stands for “Never execute” and is a tech-
nique that identifies two different parts of the memory
(Noexec, 2003). One part contains data, which can be
overwritten but cannot be executed. The other part
contains instructions and cannot be overwritten (but
can be executed). The NX-bit creates a distinction in
the writing permissions between the memory initial-
ized at the start of the program (instructions, locked
for writing), and the memory initialized and modi-
fied on the fly (data, unlocked for writing but not exe-
cutable). The malicious code can still be loaded in the
memory of the program, the EIP register can still be
overwritten to point to the beginning of this code, but
because of the NX-bit the injected code will still not
be executed since the stack is protected for execution.
This protection can however be bypassed relatively
easily with a return-to-libc attack (c0ntex, 2012).

The return-to-libc attack uses the shared library
libc which is linked to every C program. This attack
is useful against the NX-bit defense, for indeed the at-
tack does not need any injection of code, using instead
the powerful system() function included in libc. The
POSIX system call mmap() creates in-memory clones
of files or devices. Therandomization of the mmap()
baseprevents to some degree attacks such as return-
to-libc. The addresses of the linked shared libraries
will be randomized, and so the memory location of
the start of libc is no longer fixed. A brute force ap-
proach (see below) is nonetheless able to overcome
such a protection.

An extension of the above technique isASLRor
Address Space Layout Randomization, which ran-
domizes all the memory space of a program (ASLR,
2003): the position of the stack, the heap and third-
party libraries are all randomized. The virtual ad-
dresses within the randomized space will change at
each start of the program, which counters attacks
based on fixed structures. Automated brute force at-
tacks as well as the insertion of NOP instructions re-
duce however the effectiveness of randomization. In-
deed, an attacking script can test the program quickly,
and if the program crashes or cannot be exploited be-
cause EIP points to a bad address or an illegal instruc-
tion (e.g., data), the script will immediately reload
the program and test again and again (Shacham et al.,

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

370

2004). The NOP instruction will allow a large landing
place for EIP, thus simplifying the process.

A stack canaryis a defined value that is placed
on the stack just after pushing the EIP. This value is
then checked before popping the EIP at the end of the
function (Etoh, 2001). This method detects the mod-
ification of EIP and so prevents in principle the take-
over of the program . Stack canaries can nonetheless
be bypassed (Bulba and Kil3r, 2000; Padmanabhuni
and Tan, 2011).

3.2 Recent Progress

One recent paper (Rascagneres, 2012) summarizes
different ways to take over a program using over-
flow attacks. It also outlines defenses at the developer
level, consisting essentially in secure coding practice.
Another defense presented here is at the compilation
level and consists in the introduction of Stack Guards
or Return Address Defenders, both of which will pro-
vide protection upon re-compilation. A description of
dynamic code analysis and its combination with static
analysis is presented, together with network-based in-
strumentation, where the network data is compared
with signatures from older attacks. Two detection
tools are finally introduced, one at the level of source
code and the other for binary code. The paper essen-
tially explains why the creation of a method to prevent
buffer overflows is impossible (namely, due to the dif-
ferent attack methods). The shortcoming of all these
methods is that they need either re-compilation, or de-
tection before compilation. Without access to source
code (and permission to compile and install software),
these methods cannot be applied.

Another approach to defending against buffer
overflow is at the hardware as well as software level,
proposing two methods that use new assembly func-
tions to secure the system (Shao et al., 2004). The first
method, “Hardware Boundary Check” offers a simple
but effective protection: When a function is called, a
parallel function runs and checks the value of the tar-
get address. The protection is engaged whenever this
address is equal to or larger than the value of the frame
pointer. The second method consists in the rewrit-
ing of function calls and returns with the introduction
of two new opcodes, namely SCALL and SRET. The
first one produces a signature at the point of the call,
while the second checks the signature before the re-
turn and thus detects any modification. This work has
several limitations. The first method adds new control
code at each function call and return, which could be
a performance issue. The second method need a third
party component as well as specialized hardware.

Boundary checking is often used in buffer over-

mov eax, $15f b8 60 01 00 00
int 0x80 cd 80

Figure 1: System call example in assembly (left) and binary
(right).

flow defenses. The main problem with such a solu-
tion remains performance: programs took two to five
times more to run after the introduction of boundary
checks (Shao et al., 2006). A new instruction to limit
the use of resources and optimize execution was then
proposed (Shao et al., 2006). The optimization of a
proven method is generally a good idea but this ap-
proach continues to rely on third party components.

4 A KERNEL PATCH

The basic idea of our patch is the kernel-space control
of the user-space EIP stacking. Theoretically any kind
of control on the software side is possible from within
a kernel so a simple and non-intrusive such a control
should be possible.

The problem of buffer overflows clearly stems
from EIP stacking. An adversary can modify various
other variables with a buffer overflow and thus dodge
any protection. Once EIP stacking is exploited the sit-
uation becomes application specific and so impossible
to control using a general mechanism. We therefore
focus of the common root cause. We do not have a
lot of choices in this respect: we can either forbid the
overwriting of EIP, or check the value of the stacked
EIP before using it. Stack canaries take the second
approach. Our work tried at first to follow the first
route but ends up being close to the second approach
as well, so our solution is similar to stack canaries. It
is however independent on the particular binary being
run: our solution is implemented into the operating
system, just like ASLR.

Hooking into stack manipulation can be done in
several ways. Our starting idea comes from the stack
canaries protection, which adds at compile time a few
instructions before every call or ret instruction. Sim-
ilarly we inject small pieces of code in the program
being run so that we can generate an interrupt and so
enter into the kernel space (where the rest of our pro-
tection resides). As opposed to stack canaries how-
ever the injection happens at run time. The simplest
and most straightforward mechanism to enter kernel
space is system calls. A system call is accomplished
with just two instructions, one to move the system call
number into EAX and one to call the (system call) in-
terrupt 80. An example is given in Figure 1.

Recall however that one of our goals is for our
mechanism to be implemented into the operating sys-

Toward�Preventing�Stack�Overflow�Using�Kernel�Properties

371

tem rather than at compilation time. This create three
new problems: One should find the process, then de-
termine the appropriate places for the insertion of our
system calls into the memory, and finally modify the
text segment appropriately.

The first problem (finding the process) is easy
to solve. The second problem (finding the insertion
places) is complicated by the CISC instruction set
of the processor family used in our testing (and in-
deed in most computers in existence today). Such
an instruction set features several opcodes with es-
sentially the same result (Goodin, 2013). Moreover,
the CISC instruction set features variable instruction
length, which effectively prevents the sequential pars-
ing of the text segment to find the needed instructions.
We will consider this problem in depth a bit later. We
could not find a definite solution to the third and fi-
nal problem (modifying the text segment). Instead we
will present a workaround and we will discuss possi-
ble approaches to a definite solution later (namely, in
Section 5).

We note that memory locking and unlocking (our
initial idea) is unrealistically wasteful and so should
be avoided. We eliminate the need for this by the use
of a kernel-space EIP stack. As the kernel is suppos-
edly safe, we can safely store critical data inside. As
described above, we got a system call into the kernel
space before call and ret instructions. When a call in-
struction happens we pick up the value of EIP plus
the size of the following call and store them into a
kernel variable. Then the call will push on the stack
the EIP value, as usual. Just before the ret instruction
we have a new kernel interrupt which checks the top
of the stack against the value saved into the kernel. If
the two values agree with each other then nothing else
needs to be done and the program continues normally.
If a difference is noted, then the program should be
considered corrupt and appropriate action should be
taken. We chose to terminate the program in such a
case, though other actions can be easily implemented
instead. Our framework even allows for the possibil-
ity of a ret to the kernel-stored address, thus restor-
ing the normal return point of the current function;
however we believe that such an action is not the best
approach, as the program is already known to be cor-
rupted so running it further is likely to result in error-
neous (and potentially dangerous) behaviour.

4.1 Implementation

Figures 2, 3, and 4 summarize the description of our
system. A detailed description is then provided below.
The complete patch code is also available (Teissier
and Bruda, 2014).

SHIFT

mov
call
add
sub
add
call
mov
ret
...

Text segment

add
mov
sys_my_call
call (new args)
add
sub
add
sys_my_call
call (new args)
mov
sys_my_ret
ret
...

New text segment

do_exec

0

01

1

1

1
2

3

2

add

Figure 2: The doexec module rewrites the text segment
from bottom to top into a new text segment, shifting the
addresses to make room for the patches (i.e., new system
calls). The amount of shifting is decreased each time a patch
is injected.

mov
sys_my_call
call (new args)
add
sub
add
sys_my_call
call (new args)
mov
sys_my_ret
ret
...

New text segment

my_call

Alternate EIP stack

EIP 1
EIP 2
...

add

Figure 3: The mycall module probes the system call
sysmy call and copies the current EIP of the program into
the alternate EIP stack.

4.1.1 Kernel Modifications

A few vital modifications into the Linux kernel were
necessary:

• mm/memory.c line 4154

EXPORT_SYMBOL(access_remote_vm);

We allow modules to access virtual memory areas
for reading and writing, which is critical for the
patch.

• include/linux/mmtypes.h line 324

struct Alt_stack{
unsigned long eip;
struct list_head mylist;

}

We use this structure to store the stacked EIP into
the kernel.

• include/linux/mmtypes.h line 444 into the decla-
ration of mmstruct

Struct Alt_stack alt_eip_stack;

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

372

...

mov
sys_my_call
call (new args)
add
sub
add
sys_my_call
call (new args)
mov
sys_my_ret
ret
...

New text segment Alternate EIP stack

EIP 1
EIP 2
...

equal?
my_ret

eip 1

eip 2
...

Real stack

...

add

Figure 4: The myret module probes the systemcall
sys my ret, check the last EIP stacked into the real stack
and the last EIP stacked into the alternate stack. If they are
different, the program is terminated; otherwise the alternate
EIP stack is popped.

We declare the new structure into mmstruct.
Each process has such a structure and only
userspace programs use it.

• arch/x86/syscalls/syscall32.tlb line 360

351 i386 my_call sys_my_call
352 i386 my_ret sys_my_ret

This file contains all the system calls for the x86
32-bit architecture. We define here the number
associated to our new system calls, the platform
where it can be used, the name of the function
called by the respective system call, and the name
of the function displayed in /proc/kallsyms.

• include/linux/syscalls.h line 902

asmlinkage void sys_my_call(void);
asmlinkage void sys_my_ret(void);

A second declaration of the new system calls is
needed in the appropriate header file.

• kernel/mycall.c

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/syscall.h>
asmlinkage void sys_my_call
(unsigned long eip) {}

The system call mycall is exceedingly simple, as
it is empty (does nothing). Indeed, we use this
system call just as an interrupt so that the kernel
can take control in the appropriate places.

• kernel/myret.c

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/syscalls.h>
asmlinkage void sys_my_ret(void) {}

Except for the name of the file and the name of
the function, our system call myret is exactly the
same than mycall and serves exactly the same
purpose.

• kernel/Makefile

obj-y += my_call.o
obj-y += my_ret.o

We add our custom system calls to the compila-
tion process.

4.1.2 Module Implementation

Each module includes a probe and so can handle just
one address (or function). The modules mycall and
my ret are also part of the user space interrupt. Our
modules are as follows:

The do exec moduleprobes the kernel function
“copy process” (so the module should have been
named “copyprocess”; the current name stems from
the original function being probed and we kept the ini-
tial name since the name of the module is immaterial
with respect to the actual function being probed). This
is our main module. It gets access to the program just
after the respective binary is copied into memory. It
then calls the disassembler via a Python script, and
modifies the binary into memory by injecting code
and recalculating shifting. Once all this is done, this
module initializes the linked list of stack EIP values.

Ndisasm and objdump are two disassemblers,
which produce readable assembly code out of a binary
file. They were useful for the comprehension of Linux
binaries (typically ELF files) but also for the modifi-
cation of binaries manually in order to test some fea-
tures of our system.

Objdump is necessary in our system given the
variable length of instructions in the CISC instruction
set. It is used in order to eliminate the need of a dis-
assembler built into the kernel. We found Objdump
better than Ndisasm for our purposes, for indeed Ob-
jdump returns the entire address of instructions and
can also isolate the text segment. Objdump is there-
fore used by our patch in conjunction with a small
script, awk and egrep. The output gives the addresses
and names of the instructions of interest.

The my call moduleprobes the syscall mycall
and so gets a chance to put the actual EIP into the
kernel linked list.

The my ret moduleprobes the syscall myret. It
checks the last stacked EIP against the last EIP from
the kernel linked list. The checks are performed be-
fore the ret so that potential exploitations are detected.

The modules use the *probe family, a mechanism
implemented in the 2.6 version of the Linux kernel
(Panchamukhi, 2004). Kprobe, Jprobe and Kretprobe

Toward�Preventing�Stack�Overflow�Using�Kernel�Properties

373

...

table

.

.

.

F1

0x32

F2

0x35

F1

call F2

...

0x32 F2

ret

...

0x35

...

Function

Figure 5: Normal function call: The function table includes
the name of the function (top) and the address of the func-
tion in memory (bottom).

...

table

.

.

.

F1

0x32

F2

0x48

F1

call F2

0x32 F2

ret

0x35

Probe

...

0x48

call 0x35

ret

...

...

...

...

Function

Figure 6: Probing a function: The address of F2 in the func-
tion table was changed to the address of the probe (0x48).
The program flow is modified before as well as after the
execution of F2.

are all members of this family. Between other things
probes are accessible in modules and so eliminate
the need to modify the kernel proper. The available
probes are different for each mechanism. Kprobe pro-
vides one probe before and one after the target func-
tion, Jprobe provides the arguments as well as a probe
before the target function, and Kretprobe provides the
return value as well as a probe after the target func-
tion.

The probe family uses the hooking technique: The
module using a probe for say, function “foo” will
change the address used to call foo to the address of
entry into that module. The module in turn handles
the actual call to foo, has a chance to execute extra
code both before and after this call, and eventually
returns. When the probe is removed, the original ad-
dress is restored. This is illustrated graphically in Fig-
ures 5 and 6.

4.2 Testing

We provided a “safe” program and an “unsafe” one.
Those two programs were tested first using the tech-
niques described in Section 3.1 (ASLR, NX-bit and

stack canaries), and a second time without the ASLR
protection in place but running under our system.

In the first test (that is, outside our system) the safe
program executed normally and terminated properly,
while the injection of malicious code in the second
program worked.

In our second test (under our system) we first in-
vestigated the in-memory code pre- and post-patch to
ensure the correct injection of system calls, the ap-
propriate shifting, and the correctness of calculations
for the call arguments. Once all of these were found
to be satisfactory, we ran the two programs. As ex-
pected, the first, correct one worked without any prob-
lem, while the second program stopped before the ex-
ploitation of the buffer overflow became possible and
displayed nothing. We also used a a third program,
created to test system calls.

We argue that such a minimal testing suffices. In-
deed, we effectively establish the correct handling of
at least one call/return pair; however, all other such
pairs are handled in the same manner by the kernel,
so there is no way that their behaviour can be any dif-
ferent. This being said, we recognize that compre-
hensive testing should be performed on an eventual
production system, to ensure correctness but also to
validate the effectiveness of the system. Such testing
is however not warranted at this stage of development
(i.e., proof of concept).

5 ROADMAP TOWARD A
PRODUCTION SYSTEM

The patch is a proof of concept that needs to be fur-
ther refined to become a production system. The re-
sults of testing are encouraging and so we believe that
pursuing such a production system is possible and rel-
atively straightforward. The following shortcomings
need however to be addressed for this to happen.

The modification of the text segment is functional
but is not as elegant as we wanted. Indeed the use of
the Python script and disassembler to find the call, ret,
and jump instructions is ugly and not secure. More-
over, the whole process is slow. The CISC instruction
set does not appear to allow any cleaner solution, but
this issue should definitely be investigated in depth.

A program needs to know where the main function
starts, but this entry point is sometimes modified by
the packer. The entry point address should be rewrit-
ten if the patch modifies and moves the entry point by
injecting code before its location.

The memory used by the doexec module (which
reads and modifies the binary being launched) is fixed
and not optimized. Eating so much memory is detri-

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

374

mental, especially on the kernel side which has a lim-
ited address space (Vandecappelle, 2008). The possi-
bility of exhausting the kernel memory space is real
and therefore memory management for the module
should take an important place in the development of
any production version.

Issues related to calls before the main function are
easy to solve, but we did not address them since we
already proved feasibility of our approach with “nor-
mal” calls. Such an issue nonetheless needs to be ad-
dressed in a production system.

Shared libraries are not protected in our system
since they are external to the binary. We believe that
they should also be patched, and that the patching pro-
cess should happen once, just when they are loaded by
the operating system.

The expansion of the text segment for the injec-
tion of the code is not implemented. Given that this
functionality is critical to our system we regard this
shortcoming as the major flaw of our approach.

Our proof of concept patches just three instruc-
tions: a ret, a call, and a simple jump. One prob-
lem with the CISC instruction set is that several more
opcodes accomplish the same thing and so should be
patched as well.

The probe family provides an environment for fast
development, modularity, and an amazing interface.
However, the probe family is better used as a tempo-
rary solution rather than final implementations. Re-
placements should be investigated.

Modules cannot use all the kernel functions, but
only those functions that are exported. For this pur-
pose the function accessremotevm had to be ex-
ported. The implications of such an export need to
be investigated.

Optimization was not considered at all at this stage
of our work. There are a number of good candidates
for such.

Some freezes and even crashes on big applications
exist and are caused by two issues. First, the time
it takes for the patching process on a large piece of
code will often exceed various kernel timeouts (espe-
cially from the scheduling system). Secondly, we did
not patch all the versions of the call and ret opcodes
(as detailed above); the mix of patched and unpatched
opcodes could thus lead to incorrect behaviour. This
shortcoming is however the easiest to fix.

Our work is only focused on “easy” buffer over-
flow. In the real world however viruses and other ma-
licious programs are now most of the time packed or
embed a cryptographic module to hide their signature
(Delikon, 2004; Intel, 2013). Packers can be avoided
easily, but matters become more complicated for en-
crypted code. Considering this is not in the scope of

our work; we believe that this is more pertinent in
a discussion on kernel policy on user space program
memory access. That is, countermeasures on this mat-
ter should probably be implemented deeper into the
Linux kernel.

Note that none of the above problems are show-
stoppers. Fixing most of them is no longer a mat-
ter of “how” but more a matter of spending time to
code their solutions. We therefore regard out system
in its present proof-of-concept form as a substantial
step forward toward more secure computing systems.

6 CONCLUSIONS

Developers have at their disposal several methods to
counter buffer overflows, including code checking,
static analysis, debugging, etc. However the end-
user often does not understand the problem and may
not even be aware that a problem exists in the first
place. The existing end-user protection either requires
the intervention of third-party software (or even hard-
ware) or is bypassable (NX-bit, ASLR). Our solution
works on the user side, without compilation and with-
out third party components. It can be implemented in
the standard kernel of the operating system.

Our focus has been the simple buffer overflows
(on the stack), which are pretty easy to discover and
exploit. Most of the time they are not dangerous for
the system, but in a non-negligible amount of cases
they are really dangerous. They are the most popular
buffer overflow and therefore a considerable problem.

Throughout our work we had in mind the follow-
ing two goals:

• Just a few operations added:The biggest poten-
tial problem for this kind of patch is that adding
operations for each call and return of a func-
tion can easily escalate into a severe performance
penalty. It is therefore really important to create
a light patch, with just a few operation added. In-
deed, the function is one of the basic entity in the
C language and it is therefore used all the time.
Adding too much code to the patch will result in
severely degraded performance, which could be
particularly unwelcome in embedded systems.

• Backward compatible:The idea of the patch is
to be effective for all the software, without the
need of any compile-time protection measures or
source modifications. The patch should be effec-
tive in particular for legacy software. The only
problem the patch will not be able to address is its
absence from a particular kernel on a particular
machine.

Toward�Preventing�Stack�Overflow�Using�Kernel�Properties

375

We believe that we have been fully successful at a the-
oretical level and that we have also provided a good
starting point for a practical application. We have vi-
olated to some degree our first goal (minimal over-
head), but it should be noted that the bulk of the over-
head introduced by our system happens at the begin-
ning of the execution of the program; the overhead is
minimal once the actual execution has started.

We believe that our work has the potential of sim-
plifying the area of computer security considerably.
We did not produce a production-level system but we
explored a significant IT security issue and we have
effectively shown that guarding against buffer over-
flows at run time is not only possible but also feasible.
Section 5 provides a roadmap for future work on the
matter, toward an actual production system.

Some old worms and other viruses could still run
unaffected by our patch. However, it is unlikely that
programs are not patched against them. Some new
threats may use a completely different approach, that
side-steps our system altogether. Today the kernel
defense against malware is based on several separate
technologies, including ASLR, NX-bit, and stack ca-
naries. We believe that trying to merge all the de-
fenses into one big subsystem would be a mistake.
Indeed, some protections might seem redundant, but
in certain situations they have their own usefulness.
Our patch is not here to replace the old protection
mechanisms, but rather to fill the gap opened by their
weaknesses and add a new degree of protection.

REFERENCES

Anderson, J. P. (1972). Computer security technology
planning study. csrc.nist.gov/publications/history/
ande72.pdf, p. 61.

ASLR (2003). Address space layout randomization.
pax.grsecurity.net/docs/aslr.txt (retrieved Nov. 2012).

Bulba and Kil3r (2000). Bypassing stackguard and stack-
shield. Phrack, 10(56). phrack.org/issues.html?issue
=56&id=5.

c0ntex (2012). Bypassing non-executable-stack during
exploitation using return-to-libc. www.infosecwriters.
com/textresources/pdf/return-to-libc.pdf (retrieved
Nov. 2012).

CERT/CC (2002). Advisory CA-2001-19 “Code Red”
worm exploiting buffer overflow in IIS indexing ser-
vice DLL. www.cert.org/advisories/CA-2001-19.html
(retrieved Sep. 2013).

Delikon (2004). Changing the per-file entry-point
to avoid anti-virus detection. repo.zenk-
security.com/Reversing%20.%20cracking/EN-
Changing%20the%20entry-point.pdf.

Etoh, H. (2001). GCC stack-smashing protector (for
gcc-2.95.3). “gcc-patches” mailing list. gcc.

gnu.org/ml/gcc-patches/2001-06/msg01753.html (re-
trieved Nov. 2012).

Goodin, D. (2013). Puzzle box: The quest to crack
the world’s most mysterious malware warhead.
Arstechnica. arstechnica.com/security/2013/03/the-
worlds-most-mysterious-potentially-destructive-
malware-is-not-stuxnet.

Intel (2013). Intel 64 and IA-32 architectures soft-
ware developer’s manual combined volumes 2A,
2B, and 2C: Instruction set reference, A-Z. down-
load.intel.com/products/processor/manual/325383.pdf.

Kerouanton, B. (2012). Reinventing old school vulnerabili-
ties. www.youtube.com/watch?v=5KK-FT8JLFw (re-
trieved Nov. 2012).

Knowles, D. (2007). W32.SQLExp.Worm. www.symantec.
com/securityresponse/writeup.jsp?docid=2003-
012502-3306-99 (retrieved Sep. 2013).

Levy, E. (1996). Smashing the stack for fun and profit.
Phrack, 7(49). www.phrack.com/issues.html?issue
=49&id=14.

Noexec (2003). Non-executable pages design and im-
plementation. pax.grsecurity.net/docs/noexec.txt (re-
trieved Nov. 2012).

Padmanabhuni, B. M. and Tan, H. B. K. (2011). Defend-
ing against buffer overflow vulnerabilities.Computer,
44(11):53–60.

Panchamukhi, P. (2004). Kernel debugging with
kprobes. IBM DevelopersWorks. www.ibm.com/
developerworks/library/l-kprobes/index.html.

Rascagneres, P. (2012). Voyage au centre du SSP–Linux.
www.r00ted.com/doku.php?id=voyageau centre
du ssplinux (retrieved Nov. 2012).

Seeley, D. (2007). A tour of the worm. web.archive.org/
web/20070520233435/http://world.std.com/˜franl/
worm.html (retrieved Nov. 2012).

Shacham, H., Page, M., B. Pfaff, E.-J., Goh, Modadugu,
N., and Boneh, D. (2004). On the effectiveness of
address-space randomization. InProceedings of the
11th ACM Conference on Computer and Communica-
tions Security, pages 298–307.

Shao, Z., Cao, J., Chan, K. C. C., Xue, C., and H.-M.Sha, E.
(2006). Hardware/software optimization for array &
pointer boundary checking against buffer overflow at-
tacks.Journal of Parallel and Distributed Computing,
66(9):1129–1136.

Shao, Z., Xue, C., Zhuge, Q., and Sha, E. H.-M. (2004).
Security protection and checking in embedded sys-
tem integration against buffer overflow attacks. In
Proceedings of the International Conference on In-
formation Technology: Coding and Computing (ITCC
2004), volume I, pages 409–413.

Teissier, B. and Bruda, S. D. (2014). An approach to
stack overflow counter-measures using kernel proper-
ties. Technical Report 2014-001, Department of Com-
puter Science, Bishop’s University. cs.ubishops.ca/
media/papers/bucstr-2014-001.pdf.

Vandecappelle, A. (2008). Kernel memory allocation.
Linux Kernel Newbies. kernelnewbies.org/Kernel
MemoryAllocation.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

376

