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Abstract: Agile software development describes those methods with iterative and incremental development. This 
development method came into view to overcome the drawbacks of traditional development methods. 
Although agile development methods have become very popular since the introduction of the Agile 
Manifesto in 2001, however, there is an ongoing debate about the strengths and weakness of these methods 
in comparison with traditional ones. In this paper, a new dimension for the comparison between the two 
methods is presented. We postulate that, since both methods are based mainly on human activity, the two 
methods can be modeled using Chaos Theory. Source codes that are produced by the two methods in 
subsequent versions are characterized by a set of software metrics. Modeling and analysis of these metrics 
are performed using the Chaos Theory. Initial results show that the metrics sequences of both methods are 
chaotic sequences. Furthermore, agile methods produce more chaotic metrics sequences. However, is being 
chaotic a good or a bad feature? We argue that sometimes being chaotic is not a weakness, on the contrary, 
it is a strength. 

1 INTRODUCTION 

Since the invention of the traditional waterfall 
method by Royce in 1970 (Sommerville, 1996), it 
has been used as a de facto standard for software 
development processes. It is often described as the 
stereotypical traditional method. Using this method, 
the software development lifecycle is divided into 
seven sequential stages: Conception, Initiation, 
Analysis, Design, Construction, Testing, and 
Maintenance. Traditional waterfall software 
development approaches are usually considered 
incapable of handling the development complexity 
(Highsmith, 2013). Since the software industry, 
software technology, and customers’ expectations 
were moving very quickly and the customers were 
becoming increasingly less able to fully state their 
needs up front. As a result, agile methodologies and 
practices emerged as an explicit attempt to more 
formally embrace higher rates of requirements 
change. Thus, in the past few years, agile software 
development has emerged as a promising 
methodology to complexity. Various agile 
approaches have been proposed. Among the 
methods which have gained a lot of popularity, the 

eXtreme Programming (XP) (Beck and Andres, 
2004) and Scrum (Schwaber and Beedle, 2002).  

There is an ongoing debate about agile and 
traditional methods and usually they are considered 
opposition to each other. The waterfall model is 
especially used for large and complex engineering 
projects. However, it has some drawbacks, like 
inflexibility in the face of changing requirements 
(Sommerville and Kotonya, 1998), where the 
requirements design absorbs a large amount of 
project resources. In addition, well documentation is 
necessary in all phases of the project life cycle. On 
the other hand, agile methods deal well with 
unstable and volatile requirements by employing 
short iterations, early testing, and customer 
collaboration (Martin, 2003). These characteristics 
enable agile methods to deliver business value early 
and improve it continuously throughout the life of 
the project (Larman, 2003). In (Huo et al., 2004), the 
authors conducted a study to compare between agile 
and waterfall methods using software quality 
assurance (QA) practices. They mentioned that in 
agile methods, static and dynamic quality assurance 
practices are combined in the short iterative phases 
of the life cycle. Meanwhile in waterfall methods, 
only static QA practices are possible in the analysis 
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phase. On the other hand, dynamic QA are used in 
the Test phase, and they are combined in the Design 
and Implementation phases. However, they 
concluded that it is very difficult to compare the 
software quality resulting from the two approaches 
as they have different initial development 
conditions. 

Chaos refers to systems which are at an 
intermediate point between the completely 
predictable and the totally random ones. Examples 
of chaotic systems in nature include tornadoes, stock 
markets, turbulences, and weather (Casdagli, 1989). 
Chaos theory is the one that deals with such systems. 
At the heart of chaos theory is the notion that 
complex systems can often be characterized by fairly 
simple mathematical equations (Mandel, 1995).  

The Chaos model and Chaos life cycle can be 
used to define a concise framework for exploring, 
interpreting, and assessing software development. In 
this context, only few studies were found. For 
instance, Wang et al. (Wang and Vidgen, 2007) have 
analyzed the roles of structuring and planning in the 
software development process using edge of chaos 
concept from complex adaptive systems theory. 
They have performed empirical studies of two 
software development teams in the same IT 
company where one of them is developed using an 
agile methodology, XP, and the other using the 
waterfall approach. Both software development 
processes are analyzed using the “edge of chaos” 
from the complex adaptive system theory. The 
authors found that structuring and planning are 
essential to agile processes and take different forms 
from the waterfall model. In addition, they 
concluded that the prescribed structures of the 
waterfall method makes it chaotic. Also in (Wang 
and Vidgen, 2007), the authors have proposed a 
framework for the study of agile approaches using 
complex adaptive system theory (CAS). Several 
agile practices have been identified and linked to the 
relevant CAS principles. The CAS framework was 
applied to a case study that used XP. A strong 
correspondence between CAS theory and the 
practice of agile approaches was found. Moreover, 
Raccoon (Raccoon, 1995) has used the principles of 
chaos to study the relationships between a line of 
code and the entire project. The author described the 
development process from a developer’s point of 
view. He used the Chaos model that combines a 
linear problem solving loop with fractals to describe 
the complexity of software development. Using 
chaos theory, a linear problem-solving loop is 
combined with fractals to suggest that a project 
consists of many interrelated levels of problem 

solving. In addition, the chaos model shows how 
users, developers, and technologies interact during a 
project. Although these works have provided a 
framework that maps some agile principles to Chaos 
theory, none of these works show how to apply the 
power of Chaos theory in analysing the final product 
of this chaotic process which is the source code 
itself.  

A software metric is a measure that generates a 
numerical value for a piece or a specification of the 
software (Cem Kaner, 2013). Some common metrics 
include source lines of code (SLOC), cyclomatic 
complexity, Function Point Analysis (FPA), etc. 
Previously, we have used software metrics in re-
engineering and maintenance activities (Shawky, 
2008a, Shawky, 2008b), clone detection (Shawky 
and Ali, 2010b, Shawky and Ali, 2010c) and in 
defining a measure for software agility (Shawky and 
Ali, 2010a). In this paper, the final product of a 
software development process which is the source 
code, is characterized by a set of software metrics. 
The subsequent versions of analyzed systems are 
characterized by a set of software metrics. These 
sequences of values are then analyzed and modelled 
by the Chaos Theory. This analysis allows for 
prediction or forecasting of the system’s behaviour 
in the near future (Tsoukas, 1998). 

In the first step of the proposed approach, we 
statically scan implementation files using the static 
analysis and metrics generation tool Understand 
(www.scitools.com). Although we used only the two 
metrics SLOC and Cyclomatic Complexity which 
both can be used to represent the complexity 
characteristics of the analyzed system, however, the 
analysis can be extended to include other metrics. In 
the second step, we analyzed the two sequences that 
were generated for the two metrics in the subsequent 
versions of the studied systems. Chaos theory is used 
in modelling and analysing these sequences. 
Obtained results show that both sequences are 
chaotic and that the sequence of metrics values for 
the system that was developed using agile methods 
is more “chaotic” than the other sequence.  

The rest of this paper is organized as follows. 
Section 2 presents a background on Chaos Theory. 
In Section 3, the proposed approach is presented in 
detail. Section 4 summarizes the results. Finally 
Section 5 introduces conclusions and future work.  

2 CHAOS THEORY 

Chaos is a property of some deterministic systems. 
A deterministic system is one in which future states 
depend on the current conditions. They can be 
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modelled by dynamical systems. Historically the 
idea has been that all processes occurring in the 
universe are deterministic, and that if we knew 
enough of the rules governing the behaviour of the 
universe and had measurements about its current 
state we could predict what would happen in the 
future.  

Chaotic systems must have some characteristics 
(Mandel, 1995, Wang et al., 2008). These include 
the following. Most complex systems exhibit what is 
called attractors which are the states or patterns the 
system eventually settles into. Some systems tend 
toward traditional fixed points or limit cycles. On 
the other hand, chaotic systems have strange 
attractors which are unrepeated patterns. Also, long-
term prediction is mostly impossible due to 
sensitivity to initial conditions. The lack of long-
term predictability in chaotic systems does not imply 
that short-term prediction is impossible. In 
counterpoint to purely random systems, chaotic 
systems can be predicted for a short interval into the 
future.  

The first step in the analysis of a chaotic time 
series data was introduced in (Packard et al., 1980) 
in which state-space reconstruction of time series 
data was proposed for the first time. The 
mathematical justification of this approach was 
presented in (Takens, 1981) where the reconstructed 
state space is proved to be one-to-one equivalent to 
the original state space of the real-life system. The 
reconstruction of state space can be summarized as 
follows: Given s (t); a scalar function describing the 
system, sampled at time interval τs, and starting at 
some time t0, the nth sample can be represented as:  

sn = s (t0 + (n − 1) τs), n = 1, 2, . . .   (1) 

A delay-coordinate reconstruction can be formed 
by plotting the time series versus one or more time-
delayed version(s) of it. For a 2-dimensional 
reconstruction, we plot the delay vector  y(n) = [sn, 
sn−L ], n =L +1, L +2, . . ., where L is the lag or 
sampling delay, i.e., the difference between the 
adjacent components of the delay vector in number 
of samples. For a d-dimensional reconstruction, the 
delay vector, y(n) can be written as given by (2):  

y(n) = [sn, sn−L , · · · , sn−(d−2)L , sn−(d−1)L]         (2) 

It was proved by Taken’s theory (Takens, 1981) 
that if d is large enough, the vector series y(n) 
reproduces many of the important dynamical 
characteristics of the original series. Thus, one does 
not need the original vector series in order to analyze 
many of the system properties of the data series. 
Specifically, if the dimension of the reconstructed 
space, d, is larger than twice m which is the number 
of active degrees of freedom, the equivalence of the 

spaces is guaranteed. From a mathematical point of 
view, the selection of L has no effect on the 
embedding of a noise-free time series. However, in 
practical applications and for data contaminated with 
noise, a good choice of L has an important impact on 
the analysis (Casdagli et al., 1991). If L is too small 
in comparison with the dynamic variation of the 
system, successive elements of the delay vectors are 
strongly correlated. If L is too large, successive 
elements are almost independent. In delay-
coordinate reconstruction, the selection of time delay 
and dimension are the most important issues (Fraser 
and Swinney, 1986). For the calculation of time lag, 
different approaches are proposed in the literature 
(Fraser and Swinney, 1986, Shinbrot et al., 
1993).Among them, the autocorrelation function and 
mutual information approach are the most general 
and common. In our approach, we will use the 
mutual information method which can account for 
any nonlinear dynamical correlation in contrast to 
the use of the autocorrelation function (Shinbrot et 
al., 1993). 

The mutual information for sampling delay L 
can be defined as: 

I (L) =∑ Pሺs୧, s୧ା୐ሻlog	ሺ
୔ሺୱ౟,ୱ౟శైሻ

୔ሺୱ౟ሻ୔ሺୱ౟శైሻ
ሻ୧         (3) 

where Pሺs୧, s୧ା୐ሻ	is the probability that the signal 
has a value in the histogram representing the mutual 
information function. Informally, this function 
quantifies the information that we have about sn+L 
given that we know sn. Usually, the sampling lag 
related to the first minimum of the mutual 
information function specifies the point where the 
information about sn+L given knowledge of sn or the 
redundancy has a local minimum. 

Another important concept in chaos theory is the 
fractal dimension. Fractal dimensions quantify the 
self-similarity of a geometrical object (Liebert and 
Schuster, 1989). One of the most used dimensions is 
the correlation dimension which is non integer for 
chaotic data indicating the presence of strange 
attractors. It can be calculated using correlation 
integral, which is an estimate of the probability that 
two points on the attractor lay less than a distance R 
from each other. Given the N values of the series 
and for fixed embedding dimension d and time lag L 
, we calculate the percentage of points within a 
certain distance R from one another, for increasing 
values of R, through the correlation integral (C(R)). 
As proposed in (Hilborn, 2000), C(R) can be 
calculated as given by (4) for a fixed time lag L: 

CሺRሻ ൌ
ଵ

୒ሺ୒ିଵሻ
∑ ∑ HሺR െ ‖yሺiሻ െ yሺjሻ‖ሻ୒ିୢ୐ିଵ

୨ୀ଴,୨ஷ୧
୒ିୢ୐ିଵ
୧ୀ଴    (4) 

Where H(x) is the Heaviside step function with 
H(x) =1 for x>0, and H(x) =0 for x≤0.  A log/log 
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plot of the output and an estimate of the slope of the 
linear region of this graph gives the correlation 
dimension dc due to the fact that, by increasing the 
value of R, C(R) should increase as Rdc, or, after 
taking the logarithm of both sides, Log (C(R)) = dc 
Log (R) + constant. We repeat these calculations for 
increasing values of embedding dimensions d while 
keeping the value of the time lag L fixed. The value 
of dc should eventually converge, by increasing d, to 
the true value of the fractal dimension of the 
attractor. Usually, the proper embedding dimension 
must be an integer greater than or equal to twice d 
plus one (Hilborn, 2000). 

A common method for the identification of 
chaos in state-space systems is to calculate the 
largest Lyapunov exponent (LLE) (Shinbrot et al., 
1993, Mandel, 1995). The calculation of this 
exponent from time series data has been extensively 
considered in the literature (Ramasubramanian and 
Sriram, 2000). Lyapunov exponents represent the 
average exponential rates of divergence or 
convergence of nearby orbits in phase space 
(Shinbrot et al., 1993). Any system containing at 
least one positive Lyapunov exponent is defined to 
be chaotic, with the magnitude of the exponent 
reflecting the time scale on which system dynamics 
become unpredictable (Wolf et al., 1985).  To 
calculate Lyapunov exponent, a step by step 
evolution of a pair of points, a reference one and a 
candidate one is done. Each time the distance 
between these two points becomes too long, a 
replacement procedure of the candidate is applied in 
such a way that the orientation between the new pair 
of points is as close as possible to that of the original 
pair. The details of the used algorithm for 
calculating Lyapunov exponent can be found in 
(Wolf et al., 1985). Another method for detecting the 
presence of chaos is the calculation of correlation 
dimension as given in (4). The non-integer value 
indicates the existence of chaos (Packard et al., 
1980). 

3 AN EXPERIMENTAL STUDY 

3.1 Subject Systems 

To evaluate our approach we used as case studies 
two open source systems.  The first one is FileZilla 
(http://filezilla-project.org/) which is an open source, 
cross-platform, and FTP client. This system was 
developed using traditional methods. The second 
system is Suneido (http://sourceforge.net/ 
projects/suneido/) which is an open source system 
for developing and deploying applications across 

networks using an object-oriented programming 
language IDE. Both systems are written in C++. We 
used 20 subsequent versions of each system. The 
used versions of FileZilla have the time span from 3-
11-2004 to 30-11-2007.  Meanwhile, the used 
versions of Suneido cover the time span from 29-9-
2001 to 28-10-2007. 

3.2 Experimental Analysis 

Figures 1 and 2 show the SLOC and Complexity 
values in the two sequences for FileZilla and 
Suneido respectively. Before starting the modelling 
process, we interpolated the sequences of metrics 
values for the two systems. This step is necessary for 
sampling more data points to make the next analysis 
steps feasible. For instance, Figure 3 shows the 
interpolated time series for FileZilla. The time step 
is calculated as the difference between the release 
date of the last and the first version studied divided 
by the number of points. Thus it was set to 1.4 day 
(4x12x30/1000) approximately 

.  

Figure 1: SLOC Sequences for the two systems. 

 

Figure 2: Complexity Sequences for the two systems. 

Mutual information is calculated for each set of 
data points using (3). The first minimum of mutual 
information is used to determine the optimal time 
delays.  Table 1 indicates the calculated optimum 
time delays for each data set. 

We then calculate the correlation dimension for 
each of the used datasets. Then using (4), we 
calculated logC(R) and log(R) for different 
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embedding dimensions d ranging from 1 to 10 for 
the four sequences. The slope of the linear part 
approximates dc. Figure 4 and Figure 5 show the 
correlation dimension (dc) vs. the embedding 
dimension (d) for the used sequences. It should be 
mentioned that as d increases dc saturates at a non-
integer value (ds) which indicates chaos. Correlation 
dimensions for the used sequences are presented in 
Table 2. As shown in the table, correlation 
dimensions are non-integers which also indicates 
chaos. 

 

Figure 3: Interpolated time series for FileZilla. 

Table 1: Time delays for the used systems. 

System SLOC Complexity 

FileZilla 29 21
Suneido 33 28

 
Another indication of chaos is the positive LLE. 
Figure 6 and Figure 7 show that LLE’s for SLOC 
and Complexity sequences of the two systems are 
positive. Meanwhile, Table 3 represents the final 
value of LLE’s for the four sequences which are the 
saturated LLE’s in Figure 6 and 7. As shown in the 
table, Suneido’s sequences have larger LLE’s 
values. This indicates that the source code and 
complexity of Suneido are less predictable than 
FileZilla and that it has a larger rate of information 
change than that of FileZilla. 

 

Figure 4: Correlation dimension (dc) vs. embedding 
dimension (d) for SLOC sequences. 

 
 

 

Figure 5: Correlation dimension (dc) vs. embedding 
dimension (d) for Complexity sequences. 

Table 2: Correlation dimensions for the used systems. 

System SLOC Complexity 

FileZilla 1.62 1.19 
Suneido 1.86 1.41 

 

Figure 6: Largest Lyaponuv exponent (LLE) for SLOC 
sequences. 

 

Figure 7: Largest Lyaponuv exponent (LLE) for 
Complexity sequences. 

Table 3: Largest Lyapunov Exponents for the used 
systems. 

System SLOC Complexity 

FileZilla 0.455 0.10
Suneido 0.457 0.13

4 CONCLUSIONS 

This paper presents a comparison between agile and 
waterfall development methods using the Chaos 
Theory. Two open source systems that were 
developed using the two development methods are 
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used as case studies. The analyses of subsequent 
versions of the two systems show that both systems 
have chaos. Furthermore, the system developed 
using agile methods is more chaotic than the one that 
was developed using traditional methods. Although 
being chaotic has several drawbacks, for instance, 
complex undetermined behaviour and high 
sensitivity to changes in initial conditions, however, 
a chaotic system has many advantages e.g., 
flexibility, creativity and stability. In addition, for 
chaotic systems with large LLE, a quick settlement 
to the steady state is expected. Thus, agile 
development results in a more chaotic system with 
varying and constantly changing elements that settle 
down more quickly than those developed using 
waterfall methods.  

As a future work, more systems need to be 
analyzed to be able to generalize the findings. 
Another set of interesting questions include the 
following. What quality attributes of the software 
are more chaotic when agile methods are used? 
What agile approaches produce more chaotic 
systems, and why? 
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