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Abstract: The Weighted Set Covering problem is a formal model for many industrial optimization problems. In the
Weighted Set Covering Problem the goal is to choose a subset of columns of minimal cost in order to cover
every row. Here, we present its resolution with two novel metaheuristics: Firefly Algorithm and Artificial
Bee Colony Algorithm. The Firefly Algorithm is inspired by the flashing behaviour of fireflies. The main
purpose of flashing is to act as a signal to attract other fireflies. The flashing light can be formulated in such
a way that it is associated with the objective function to be optimized. The Artificial Bee Colony Algorithm
mimics the food foraging behaviour of honey bee colonies. In its basic version the algorithm performs a kind
of neighbourhood search combined with random search. Experimental results show that both are competitive
in terms of solution quality with other recent metaheuristic approaches.

1 INTRODUCTION

The Set Covering Problem (SCP) is a class of re-
presentative combinatorial optimization problem that
has been applied to many real world problems, such
as crew scheduling in airlines (Housos and Elmroth,
1997), facility location problem (Vasko and Wilson,
1984), and production planning in industry (Vasko
et al., 1987).

The SCP is a well-known NP-hard in the strong
sense (Garey and Johnson, 1990). Many algorithms
have been developed to solve it and has been reported
to literature. Exact algorithms are mostly based
on branch-and-bound and branch-and-cut (Balas and
Carrera, 1996; Fisher and Kedia, 1990). However,
these algorithms are rather time consuming and can
only solve instances of very limited size. For this
reason, many research efforts have been focused on
the development of heuristics to find good or near-
optimal solutions within a reasonable period of time.

Classical greedy algorithms are very simple, fast,
and easy to code in practice, but they rarely produce
high quality solutions for their myopic and determi-

nistic nature (Chvatal, 1979). Compared with classi-
cal greedy algorithms, heuristics based on Lagrangian
relaxation with subgradient optimization are much
more effective. The most efficient ones are those pro-
posed in (Ceria et al., 1998; Caprara et al., 1999).
As top-level general search strategies, metaheuris-
tics such as genetic algorithms (Beasley and Chu,
1996), simulated annealing (Brusco et al., 1999a),
tabu search (Caserta, 2007), evolutionary algorithms
(Crawford et al., 2007), ant colony optimization
(ACO) (Ren et al., 2010; Crawford et al., 2013b),
electromagnetism (unicost SCP) (Naji-Azimi et al.,
2010), gravitational emulation search (Balachandar
and Kannan, 2010) and cultural algorithms (Crawford
et al., 2013a) have been also successfully applied to
solve the SCP.

In this paper, we propose to solve the SCP with
two recent metaheuristics: Firefly Algorithm and Ar-
tificial Bee Colony Algorithm. The Firefly Algorithm
(FA) is a recently developed, population-based meta-
heuristic (Yang, 2010; Yang, 2009) where the objec-
tive function of a given optimization problem is based
on differences of light intensity. Thus, fireflies are
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characterized by their light intensity which helps fire-
flies to change their position iteratively towards more
attractive locations in order to obtain optimal solu-
tions. The canonical FA algorithm is developed to
tackle continuous optimization problems (Fister et al.,
2013; Yang and He, 2013). However, the effective-
ness of the FA algorithm to solve discrete NP-hard
problems such as image compression and processing
(Horng, 2012), shape and size optimization (Miguel
and Fadel Miguel, 2012) and manufacturing cell pro-
blems (Sayadi et al., 2013) encourage researchers to
design novel FAs for discrete optimization problems.
The approach developed in this paper focus on trans-
fer functions which force fireflies to move in binary
space. To the best of our knowledge, this is the first
work proposing a binary coded FA to solve the SCP.
Artificial Bee Colony Algorithm (ABC) is one of the
most recent algorithms in the domain of the collective
intelligence. Created by Dervis Karaboga in 2005,
who was motivated by the intelligent behavior ob-
served in the domestic bees to take the process of for-
aging (Karaboga and Basturk, 2007). ABC mimics
the foraging strategy of honey bees to look for the best
solution to an optimization problem. Each candidate
solution is thought of as a food source and a colony
of bees is used to search in the solution space.

The rest of this paper is organized as follows. In
Section 2, we give a formal definition of the SCP. The
Section 3 describes FA and the Section 4 describes
ABC. In Section 5, we present experimental results
obtained when applying the algorithm for solving the
65 instances of SCP contained in the OR-Library. Fi-
nally, in Section 6 we conclude and highlight future
directions of research.

2 PROBLEM DESCRIPTION

The Set Covering Problem (SCP) can be formally
defined as follows. Let A = (ai j) be an m-row, n-
column, zero-one matrix. We say that a column j
covers a row i if ai j = 1. Each column j is associa-
ted with a nonnegative real cost c j. Let I = f1; :::;mg
and J = f1; :::;ng be the row set and column set, res-
pectively. The SCP calls for a minimum cost subset
S � J, such that each row i 2 I is covered by at least
one column j 2 S. A mathematical model for the SCP
is

Minimize f (x) =
n

å
j=1

c jx j (1)

subject to
n

å
j=1

ai jx j � 1; 8i 2 I (2)

x j 2 f0;1g; 8 j 2 J (3)

The goal is to minimize the sum of the costs of the
selected columns, where x j = 1 if the column j is in
the solution, 0 otherwise. The restrictions ensure that
each row i is covered by at least one column.

3 THE FIREFLY ALGORITHM

Nature-inspired methodologies are among the most
powerful algorithms for optimization problems. The
Firefly Algorithm is a novel nature-inspired algorithm
inspired by the social behavior of fireflies. By ideali-
zing some of the flashing characteristics of fireflies,
a firefly-inspired algorithm was presented in (Yang,
2010; Yang, 2009).

The canonical FA was developed using the follo-
wing three idealized rules:

� All fireflies are unisex and are attracted to other
fireflies regardless of their sex.

� The degree of the attractiveness of a firefly is pro-
portional to its brightness, and thus for any two
flashing fireflies, the one that is less bright will
move towards to the brighter one. More bright-
ness means less distance between two fireflies.
However, if any two flashing fireflies have the
same brightness, then they move randomly.

� The brightness of a firefly is determined by the
value of the objective function. For a maximiza-
tion problem, the brightness of each firefly is
proportional to the value of the objective function.

As the attractiveness of a firefly is proportional to
the light intensity seen by adjacent fireflies, the attrac-
tiveness b of a firefly is defined as follows:

b(r) = b0e�grm
; m� 1 (4)

where r is the distance between two fireflies, b0 is the
attractiveness at r = 0 and g is a fixed light absorption
coefficient. The distance ri j between two fireflies i
and j at positions xi and x j is determined by

ri j = jjxi� x jjj=

vuut d

å
k=1

(xk
i � xk

j)
2 (5)

where xk
i is the current value of the kth dimension of

the ith firefly and d is the number of dimensions. The
movement of a firefly i is attracted to another more
attractive (brighter) firefly j is determined by

xk
i (t +1) = xk

i (t)+b0e�gr2
i j (xk

j(t)� xk
i (t))+a(rand� 1

2
) (6)
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where the first term xk
i (t) is the current value (cu-

rrent position) of the kth dimension of the firefly i
at iteration t. The second term denotes the firefly
attractiveness where g characterizes the variation of
the attractiveness typically varying from 0.1 to 10
(Yang, 2010), and the last term introduces randomiza-
tion, with a 2 [0;1] being the randomization parame-
ter and rand is a random number generator uniformly
distributed between 0 and 1.

3.1 Description of the Firefly Approach

In this section, a discrete FA is proposed to solve the
SCP.

Step 1. Initialization of firefly parameters (g, b0, size
for the firefly population and the maximum num-
ber of generations for the termination process).

Step 2. Initialization of firefly position. Initialize
randomly M = [X1; :::;Xm] of m solutions or firefly
positions in the multi-dimensional search space,
where m represents the size of the firefly popula-
tion. Each solution of X is represented by a d-
dimensional binary vector.

Step 3. Evaluation of fitness of the population. For
this case the function of fitness is equal to the ob-
jective function of the SCP model (Eq. 1).

Step 4. Modification of firefly position. A firefly
produces a modification in its position based on
the brightness w.r.t other fireflies. Using Eq. 6
the new position is determined by modifying the
value of each dimension of a firefly. To move from
a continuous search space to a discrete one we
work with the following update rule:

xk
i (t+1) =

�
xk
� if rand < T (xk

i (t +1))
0 otherwise (7)

where rand is a uniform random number between
0 and 1, xk

� is the best firefly so far, and T (x) is
the binary transfer function (Mirjalili and Lewis,
2013). The transfer function forces the values of
the dimensions of fireflies to move in a binary
space. In this work we use:

T (x) =
����2p arctan(

p

2
x)
���� (8)

Step 5. Evaluation. The new solution is evaluated
and if it is not a feasible solution then it is re-
paired. In order to make feasible solutions we de-
termine which rows have not yet been covered and
choose the columns needed for coverage. The cri-
teria used to choose these columns is based in the

cost of a column/number of rows not covered that
cover the column j. Once the solution has become
feasible we apply an optimization step in order to
eliminate those redundant columns. A column is
redundant when it is removed and the solution re-
mains feasible.

Step 6. Memorization of the best solution achieved
so far and increment the counter of generations.

Step 7. Stop the process and display the result if the
termination criteria is satisfied. Termination crite-
ria used in this work is the maximum number of
generations. Otherwise, go to step 3.
The following algorithm shows the pseudo code

of the steps proposed.

Algorithm: FA pseudo-code.
1 Begin
2 Initialize parameters
3 Evaluate the light intensities
4 while t < MaxGeneration do
5 for i = 1 : m (m fireflies) do
6 for j = 1 : m (m fireflies) do
7 if (I j < Ii) then
8 movement = calculates value according

to Eq. 6
9 if (rand() < T(movement)) then
10 f ire f lies[i][ j] = bestFire f ly[ j]
11 else
12 f ire f lies[i][ j] = 0
13 end if
14 end if
15 Repair solutions
16 Update attractiveness
17 Update light intensity
18 end for j
19 end for i
20 t = t + 1
21 end while
22 Output the results
23 End

4 THE ARTIFICIAL BEE
COLONY ALGORITHM

ABC is one of the most recent algorithms in the do-
main of the collective intelligence. Created by Dervis
Karaboga in 2005, who was motivated by the in-
telligent behavior observed in the domestic bees to
take the process of foraging (Karaboga and Basturk,
2007).

ABC is an algorithm of combinatorial optimiza-
tion based on populations, in which the solutions of
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the problem of optimization, the sources of food, are
modified by the artificial bees, that fungen as opera-
tors of variation. The aim of these bees is to discover
the food sources with major nectar.

In the ABC algorithm, an artificial bee moves in
a multidimensional search space choosing sources of
nectar depending on its past experience and its com-
panions of beehive or fitting his position. Some bees
(exploratory) fly and choose food sources randomly
without using experience. When they find a source of
major nectar, they memorize their positions and for-
get the previous ones. Thus, ABC combines methods
of local search and global search, trying to balance
the process of the exploration and exploitation of the
search space.

Although, the performance of different optimiza-
tion algorithm is dependent on applications some re-
cent works demonstrate that the Artificial Bee Colony
is faster than either Genetic Algorithm or Particle
Swarm Optimization solving certain problems (Zhang
and Wu, 2012; Zhang and Wu, 2011; Zhang et al.,
2011b; Zhang et al., 2011a; Zhang et al., 2011c). Ad-
ditionally, ABC has demonstrated an ability to attack
problems with a lot of variables (high-dimensional
problems) (Akay and Karaboga, 2009).

The pseudocode of Artificial Bee Colony is as
follows.

Algorithm: ABC pseudo-code.
1 Begin
2 InitPopulation()
3 while remain interations do
4 Select sites for the local search
5 Recruit bees for the selected sites and to

evaluate fitness
6 Select the bee with the best fitness
7 Assign the remaining bees to looking

for randomly
8 Evaluate the fitnes of remaining bees
9 UpdateOptimum()
10 end while
11 return BestSolution
12 End

The procedure for determining a food source in
the neighborhood of a particular food source which
depends on the nature of the problem. Karaboga
(Karaboga, 2005) developed the first ABC algorithm
for continuous optimization. The method for deter-
mining a food source in the neighborhood of a par-
ticular food source is based on changing the value of
one randomly chosen solution variable while keeping
other variables unchanged. This is done by adding to
the current value of the chosen variable the product of

a uniform variable in [-1, 1] and the difference in va-
lues of this variable -current food source - and some
other randomly chosen food source. This approach
can not be used for discrete optimization problems for
which it generates at best a random effect.

Singh (Singh, 2009) subsequently proposed a
method, which is appropriate for subset selection pro-
blems. In his model, to generate a neighboring solu-
tion, an object is randomly dropped from the solution
and in its place another object, which is not already
present in the solution, it is added. The object to be
added is selected from another randomly chosen solu-
tion. If there are more than one candidate objects for
addition then ties are broken arbitrarily.

This approach is based on the idea that if an ob-
ject is present in one good solution then it is highly
likely that this object is present in many good solu-
tions. This method provides another advantage, con-
sisting in that if the method fails to find an object di-
fferent from the others objects in the original solution
it means that the two solutions are equal. Then, the
employed bee associated with the original solution is
converted in a scout bee eliminating duplication.

4.1 Description of the Bee Approach

In this section, an ABC is proposed to solve the SCP.

Step 1. Initialization.
To initialize the parameters of ABC as size of the
colony, number of workers and curious (onlookers
or “in wait”) bees, limit of attempts and maximum
number of cycles.

Step 2. Generation of initial population.
To generate the initial population by every row
(or SCP constraint) a column (or SCP variable) is
selected at random from the set of columns with
covering possibilities. After we run a duplicates
drop process, we check that there are no columns
duplicated. A solution is represented by means
of an entire vector like appears in Figure 1 stay-
ing the columns considered in the solution (a “-1”
means that the column was removed due to dupli-
cation). Then, we use an integer encoding as the
encoding rule.

333 10 5 300 �1 ::: 657 99

Figure 1: Representation of a solution.

Step 3. Evaluation of the fitness of the population.
The fitness function is equal to the objective func-
tion of the SCP.

Step 4. Modification of position and selection of
sites for worker bees.
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A hard-working bee modifies its position by
means of the creation of a new solution based on a
different food source selected randomly. It sees if
at least it has a different column, in case of having
not even a different column, the hard-working bee
is transformed in an explorer in order to eliminate
duplicated solutions. In opposite case, it proceeds
to add a certain random number of columns bet-
ween 0 and the maximum numbers columns to
add.
After this, it proceeds to eliminate a certain ran-
dom number of columns between 0 and the max-
imum numbers columns to eliminate. In case that
new solution does not meet constraints, it is re-
paired. The fitness of the solution is evaluated,
if the fitness (cost) is minor that the solution had
in a beginning, the solution is replaced. In op-
posite case, it increases the number of attempts
for improving this solution (parameter limit of
attempts).

Step 5. Recruitment of curious bees for the selected
sites.
A curious bee evaluates the information of the
nectar through the workers and it chooses a source
of food with the fitness proportionate selection
method or roulette-wheel selection.

Step 6. Modification of position for the curious bees.
They work alike to hard-working bees in Step 4.

Step 7. To leave a source exploited by the bees.
If the solution representing a source of food
does not improve for a predetermined number of
attempts (limit), then the source of food is left and
is replaced by a new source of food generated as
in Step 1.

Step 8. Memorization of the best solution and to in-
crease the counter of the cycle.

Step 9. The process stops if the criteria of satisfac-
tion expires, in opposite case to return to Step 3.

5 EXPERIMENTAL RESULTS

In order to test the effectiveness of FA and ABC they
were tested using the 65 SCP test instances from OR-
Library (Beasley, 1990). These instances are divided
into 11 groups and each group contains 5 or 10 instan-
ces. Table 3 shows their detailed information where
“Density” is the percentage of non-zero entries in the
SCP matrix. The algorithms were implemented using
C language and conducted on a 1.8 GHz Intel Core 2
Duo T5670 CPU with 3GB RAM running Windows
8.

In all experiments, the algorithms were executed
30 times over each SCP instance. Parameter va-
lues have a profound influence on the performance
of ABC. The parameters were empirically adjusted,
we determined their values in an experimental way,
for each parameter, a set of candidate values were
considered. We modified the value of one parame-
ter while keeping the others fixed. According to the
best results, as parameter values in our experiments,
we used:

In FA the maximum number of generations was
set to 50. We used a population of 25 fireflies and the
values of g, b0 are initialized to 1. ABC runs 1000 ite-
rations with a population of 200 bees, where 100 co-
rresponds to hard-working and 100 to curious. Limit
= 50, maximum number of columns to add = 0;5%
of columns in the SCP instance, maximum number
of columns to eliminate = 1;2% of the SCP instance.
These parameters showed good results but they can-
not be the ideal ones for all the instances.

Tables 1 and 4 show the results obtained over the
65 instances. The quality of a solution is evaluated
using the relative percentage deviation (RPD). The
RPD value quantifies the deviation of the objective
value Z from Zopt which in our case is the best known
cost value for each instance (see the second column).
We report the minimum cost reached, maximum, and
average of the obtained solutions. To compute RPD
we use Z = Min. This measure is computed as fo-
llows:

RPD = (Z�Zopt)=Zopt �100 (9)

The results expressed in terms of the RPD show
the effectiveness of our approach. It provides high
quality near optimal solutions and it has the ability to
generate them for a variety of instances.

5.1 Comparison with Other Works

In comparison with very recent works solving SCP -
- with Cultural algorithms (Crawford et al., 2013a)
and Ant Colony + Constraint Programming tech-
niques (Crawford et al., 2013c) - our ABC proposal
performs better with SCP instances reported in those
works.

In order to bring out the efficiency of our proposal
the solutions of the complete set of instances have
been compared with other metaheuristics. We com-
pared our algorithm solving the complete set of 65
standard non-unicost SCP instances from OR Library
with the newest ACO-based algorithm for SCP in the
literature: Ant-Cover + Local Search (ANT+LS) (Ren
et al., 2010), Genetic Algorithm (GA) proposed by
Beasley and Chu (1996) (Beasley and Chu, 1996) and
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Simulated Annealing (SA) proposed by Brusco et al.
(1999) (Brusco et al., 1999b).

Tables 1 and 4 show the detailed results obtained
by the algorithms. Column 2 reports the optimal or
the best known solution value of each instance. The
third and fourth columns show the best value and the
average obtained by our ABC algorithm in the 30
runs (trials). The fifth and sixth columns show the
best value and the average obtained by our FA in the
30 runs (trials). The next columns show the average
values obtained by GA, SA and ANT+LS respecti-
vely. The last columns show the Relative Percentage
Deviation (RPD) value over the instances tested with
ABC and FA.

In relation with ABC, we can observe in Tables 1
and 4 that:

� ABC is able to find the optimal solution consis-
tently - i.e. in every trial- for 43 of 65 problems.

� ABC is able to find the best known value in all
instances of Table 4.

� ABC is able to find the best known value in all
trials of Table 4.

� ABC has higher success rate compared to genetic
algorithm, simulated annealing and ants in sets
NRE, NRF, NRG and NRH. The RPD of BEE is
0,00%, the RPD of GA is 1,04%, the RPD of SA
is 0,72% and the RPD of ANT+LS is 0,86%.

� ABC can obtain optimal solutions in some instan-
ces where the others metaheuristics failed.

In relation with FA, we can observe in Tables 1
and 4 that:

� A direct implementation of Binary FA shows good
results considering its simplicity. FA is capable of
solving problems which have continuous search
space. However, there are many optimization pro-
blems as SCP, which have discrete binary search
spaces. They need binary algorithms to be solved.
In the original FA, fireflies can move around the
search space because of having position vectors
with continuous real domain. Consequently, the
concept of position updating can be easily imple-
mented for fireflies based on the brightness w.r.t.
other fireflies using 6. However, the meaning of
position updating is different in a discrete binary
space. In binary space, due to dealing with only
two numbers: “0” and “1”, the position updating
process cannot be done using 6. Therefore, we
have to find a way to use the movement equation
to change the positions from “0” and “1” or vice
versa. This switching should be done based on
the attractiveness between the fireflies. The idea

is to change position of a firefly with the proba-
bility of its movement to another more attractive
(brighter). In order to do this, a transfer function
is needed to map the movement values to proba-
bility values for updating the positions.

� A novel v-shape transfer function with a new rule
(7) was used in our Binary FA. Traditionally, it
is used a s-shape transfer function as S2 in Ta-
ble 2. Transfer functions force fireflies to move
in a binary space. The transfer function should be
able to provide a high probability of changing the
position for a large absolute value of the move-
ment. It should also present a small probability of
changing the position for a small absolute value of
the movement. Moreover, the range of a transfer
function should be bounded in the interval [0,1]
and increased with the increasing of movement.
The binary version of FA proposed here uses the
transfer function V4 in Table 2. For us, this func-
tion had presented better experimental results than
others transfer functions showed.

5.2 Computational Cost and
Convergence to the Best Solution

Our Binary FA shows an excellent tradeoff between
the quality of the solutions obtained and the computa-
tional effort required. In all cases, FA converged very
quickly (mainly from the 3th iteration) and its compu-
tation time in the runs was less than 1 second (except
for NRG and NRH instances where the computation
time was less than 3 secs).

Due to a more sophisticated implementation, our
ABC algorithm requires a major computational effort.
In our ABC approach we considered specific opera-
tors and parameters to try with SCP. Anyway, we be-
lieve it is worth given the high quality of the solu-
tions obtained. In all cases, ABC converged quickly
(mainly from the 10th iteration) and its computation
time in the runs was less than 2 seconds (except for
NRG and NRH instances where the computation time
was less than 30 secs).

6 CONCLUSION

In this paper we have presented two recent swarm
based metaheuristics for optimizing the Weighted Set
Covering Problem. We have performed experiments
throught several ORLIB instances. Our approach
has demostrated to be very effective, providing unat-
tended solving methods, for quickly producing solu-
tions of a good quality. Experiments shown interest-
ing results in terms of robustness, where using the
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same parameters for different instances giving good
results.

The promising results of the experiments open up
opportunities for further research. We visualize diffe-
rent directions for future work:

� The fact that the presented algorithm is easy to
implement, clearly implies that ABC could also
be effectively applied to other combinatorial opti-
mization problems.

� An interesting proposal by Teodor Crainic et al. at
(Glover and Kochenberger, 2003) involves para-
llelizing strategies for metaheuristics. The author
sets a basis on the idea that the central goal of pa-
rallel computing is to speed up computation by di-
viding the work load among several threads of si-
multaneous execution, then a type of metaheuris-
tic parallelism could come from the decomposi-
tion of the decision variables into disjoint subsets.
The particular heuristic is applied to each subset
and the variables outside the subset are conside-
red fixed.

� An interesting extension of this work would be
related to hybridization with other metaheuristics
or to apply a hyperheuristic approach (Valenzuela
et al., 2012).

� The use of Autonomous Search (AS), AS repre-
sents a new research field, and it provides practi-
tioners with systems that are able to autonomously
selftune their performance while effectively sol-
ving problems. Its major strength and origina-
lity consist in the fact that problem solvers can
now perform self-improvement operations based
on analysis of the performances of the solving
process (Crawford et al., 2013d; Monfroy et al.,
2013; Crawford et al., 2012).

� Furthermore, we are considering to use different
preprocessing steps from the OR literature, which
allow to reduce the problem size (Krieken et al.,
2003).
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APPENDIX

Table 1: Experimental results. - Instances with optimal.
Prob. Opt. ABC Min ABC Avg FA Min FA Avg GA Avg SA Avg ANT-LS Avg ABC RPD FA RPD
4.1 429 430 430.5 481 481.03 429.7 - 429 0.35 12.12
4.2 512 512 512 580 580 512 - 512 0 13.28
4.3 516 516 516 619 619.03 516 - 516 0 19.96
4.4 494 494 494 537 537 494.8 - 494 0 8.7
4.5 512 512 512 609 609 512 - 512 0 18.94
4.6 560 561 561.7 653 653 560 - 560 0.30 16.6
4.7 430 430 430 491 491.07 430.2 - 430 0 14.18
4.8 492 493 494 565 565 492.1 - 492 0.41 14.83
4.9 641 643 645.5 749 749.03 643.1 - 641 0.70 14.84
4.10 514 514 514 550 550 514 - 514 0 7
5.1 253 254 255 296 296.03 253 - 253 0.79 16.99
5.2 302 309 310.2 372 372 303.5 - 302 2.72 23.17
5.3 226 228 228.5 250 250 228 - 226 1.11 10.61
5.4 242 242 242 277 277.07 242.1 - 242 0 14.46
5.5 211 211 211 253 253 211 - 211 0 19.9
5.6 213 213 213 264 264.03 213 - 213 0 23.94
5.7 293 296 296 337 337 293 - 293 1.02 15.01
5.8 288 288 288 326 326 288.8 - 288 0 13.19
5.9 279 280 280 350 350 279 - 279 0.36 25.44
5.10 265 266 267 321 321 265 - 265 0.75 21.13
6.1 138 140 140.5 173 173.03 138 - 138 1.81 25.36
6.2 146 146 146 180 180.07 146.2 - 146 0 23.28
6.3 145 145 145 160 160 145 - 145 0 10.34
6.4 131 131 131 161 161 131 - 131 0 22.9
6.5 161 161 161 186 186 161.3 - 161 0 15.52
A.1 253 254 254 285 285 253.2 - 253 0.40 12.64
A.2 252 254 254 285 285.07 253 - 252 0.79 13.09
A.3 232 234 234 272 272 232.5 - 232.8 0.86 17.24
A.4 234 234 234 297 297 234 - 234 1.10 26.92
A.5 236 237 238.6 262 262 236 - 236 0 11.01
B.1 69 69 69 80 80.03 69 - 69 0 15.94
B.2 76 76 76 92 92 76 - 76 0 21.05
B.3 80 80 80 93 93 80 - 80 0 16.25
B.4 79 79 79 98 98.03 79 - 79 0 24.05
B.5 72 72 72 87 87 72 - 72 0 20.83
C.1 227 230 231 279 279 227.2 - 227 1.76 22.9
C.2 219 219 219 272 272 220 - 219 0 24.2
C.3 243 244 244.5 288 288 246.4 - 243 0.62 18.51
C.4 219 220 224 262 262 219.1 - 219 2.28 19.63
C.5 215 215 215 262 262.07 215.1 - 215 0 21.86
D.1 60 60 60 71 71 60 - 60 0 18.33
D.2 66 67 67 75 75 66 - 66 1.52 13.63
D.3 72 73 73 88 88 72.2 - 72 1.39 22.22
D.4 62 63 63 71 71 62 - 62 1.61 14.51
D.5 61 62 62 71 71 61 - 61 1.64 16.39

NRE.1 29 29 29 32 32.03 29 29 29 0 10.34
NRE.2 30 30 30 36 36 30.6 30 30 0 20
NRE.3 27 27 27 35 35 27.7 27 27 0 29.62
NRE.4 28 28 28 34 34 28 28 28 0 21.42
NRE.5 28 28 28 34 34 28 28 28 0 21.42
NRF.1 14 14 14 17 17.03 14 14 14 0 21.42
NRF.2 15 15 15 17 17 15 15 15 0 13.33
NRF.3 14 14 14 21 21 14 14 14 0 50
NRF.4 14 14 14 19 19 14 14 14 0 35.71
NRF.5 13 13 13 16 16 13.7 13.7 13.5 0 23.07
NRG.1 176 176 176 230 230.03 177.7 176.6 176 0 30.68
NRG.2 154 154 154 191 191 156.3 155.3 155.1 0 24.02
NRG.3 166 166 166 198 198 167.9 167.6 167.3 0 19.27
NRG.4 168 168 168 214 214 170.3 170.7 168.9 0 27.38
NRG.5 168 168 168 223 223 169.4 168.4 168.1 0 32.73
NRH.1 63 63 63 85 85.07 64 64 64 0 34.92
NRH.2 63 63 63 81 81.03 64 63.7 67.9 0 28.57
NRH.3 59 59 59 76 76 59.1 59.4 59.4 0 28.81
NRH.4 58 58 58 75 75 58.9 58.9 58.7 0 29.31
NRH.5 55 55 55 68 68 55.1 55 55 0 23.63
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Table 2: S-shaped and v-shaped transfer functions.

S-shaped family V-shaped family
Name Transfer function Name Transfer function

S1 T (x) = 1
1+e�2x V1 T (x) =

���erf
�p

2
p

x
����= ����p2

p

R p2
p

x
o e�t2

dt
����

S2 T (x) = 1
1+e�x V2 T (x) = jtanh(x)j

S3 T (x) = 1
1+e�x=2 V3 T (x) =

���� xp
1+x2

����
S4 T (x) = 1

1+e�x=3 V4 T (x) = j 2
p

arctan(p

2 x)j

Table 3: Details of the test instances.

Instance set No. of instances m n Cost range Density (%) Optimal solution
4 10 200 1000 [1, 100] 2 Known
5 10 200 2000 [1, 100] 2 Known
6 5 200 1000 [1, 100] 5 Known
A 5 300 3000 [1, 100] 2 Known
B 5 300 3000 [1, 100] 5 Known
C 5 400 4000 [1, 100] 2 Known
D 5 400 4000 [1, 100] 5 Known

NRE 5 500 5000 [1, 100] 10 Unknown
NRF 5 500 5000 [1, 100] 20 Unknown
NRG 5 1000 10000 [1, 100] 2 Unknown
NRH 5 1000 10000 [1, 100] 5 Unknown

Table 4: Experimental results - Instances with Best Known Solution.
Prob. Opt. ABC Min ABC Avg FA Min FA Avg GA Avg SA Avg ANT-LS Avg ABC RPD FA RPD

NRE.1 29 29 29 32 32.03 29 29 29 0 10.34
NRE.2 30 30 30 36 36 30.6 30 30 0 20
NRE.3 27 27 27 35 35 27.7 27 27 0 29.62
NRE.4 28 28 28 34 34 28 28 28 0 21.42
NRE.5 28 28 28 34 34 28 28 28 0 21.42
NRF.1 14 14 14 17 17.03 14 14 14 0 21.42
NRF.2 15 15 15 17 17 15 15 15 0 13.33
NRF.3 14 14 14 21 21 14 14 14 0 50
NRF.4 14 14 14 19 19 14 14 14 0 35.71
NRF.5 13 13 13 16 16 13.7 13.7 13.5 0 23.07
NRG.1 176 176 176 230 230.03 177.7 176.6 176 0 30.68
NRG.2 154 154 154 191 191 156.3 155.3 155.1 0 24.02
NRG.3 166 166 166 198 198 167.9 167.6 167.3 0 19.27
NRG.4 168 168 168 214 214 170.3 170.7 168.9 0 27.38
NRG.5 168 168 168 223 223 169.4 168.4 168.1 0 32.73
NRH.1 63 63 63 85 85.07 64 64 64 0 34.92
NRH.2 63 63 63 81 81.03 64 63.7 67.9 0 28.57
NRH.3 59 59 59 76 76 59.1 59.4 59.4 0 28.81
NRH.4 58 58 58 75 75 58.9 58.9 58.7 0 29.31
NRH.5 55 55 55 68 68 55.1 55 55 0 23.63
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