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Abstract: HiPro-CodeGen is a code generation engine designed for numerical simulation development. Its central 
objective is to produce a parallel software framework with standard structure for an application developed 
on JASMIN, a domain-specific computational framework. The unique parallel part and all interfaces of the 
application are generated and implementation of sequential subroutines is the only part of the code left to be 
written manually for a programmer.  The design and implementation of the code generation engine is 
introduced which combines numerical mathematics with component-based programming to create 
ontological models for parallel simulations. A hybrid programming method is proposed on the work 
mechanism of the engine which combines graphical and textual approaches to hide parallel programming 
and object-oriented programming from developers. A real application is presented to show the effectiveness 
and efficiency of the engine. 

1 INTRODUCTION 

Numerical simulation is an important method to 
explore the evolution of physical systems by 
scientists in current age (Mo, Pei, 2009). With the 
development of high performance computing, 
simulation is leading to high accuracy and high 
confidence in scientific study. Developing a 
scientific simulation covers implementing scientific 
methodology, algorithms, and programming models, 
and virtually always each advance has been 
accompanied by increases in the complexity of the 
underlying software. At the same time, the computer 
industry has continued to create ever larger and 
more complex hardware in an attempt to satisfy the 
increasing demand for simulation capabilities 
(Benjamin, 2006). These architectures tend to 
exacerbate the complexity of software running on 
these systems. Modern programmers may repeatedly 
rewrite applications to expose incrementally more 
parallelism for each next generation of hardware. It 
requests a programmer be knowledgeably aware of 
new software and hardware. Admittedly, this is a 
demanding task for current programmers most of 
which are engaged in researching on physics and 
mathematics, because they have been trained in 
sequential programming. We are facing a fact that 

difficulties on parallel programming embarrass the 
development of high performance numerical 
simulations. 

To ease the coding issues many studies on 
graphical programming and automated code 
generation techniques have been given on 
developing parallel applications. Boris etc. develop 
an integrated development environment for visual 
parallel programming (Boris, 2006). It is not 
effective to develop complicated numerical 
simulations because of limitation on graphical 
operations. MatLab also gives some parallelism 
capabilities with parallel computing toolbox while 
the scalability and the performance of the program 
are limited by its parallel computing mechanism. 

Experience says that programming in graphic 
form completely is embarrassed on solving the 
problems especially developing numerical 
simulations because of the complexities of 
simulations and the limitations of the graphical 
programming technology. Liao etc. propose a hybrid 
programming approach which combines graphical 
and textual programming to solve the problem by 
shielding parallel programming details and object-
oriented programming languages for developing 
scientific applications based on JASMIN.  
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In this paper we present the design and 
implementation of the code generation engine which 
supply the automatic programming capabilities 
given in HiPro (Liao,2013), originally named with 
IDE-JASMIN. The content of this paper is organized 
as follows. Section 2 analysis the features of parallel 
programs developed on JASMIN. In section 3, the 
design of the code generation engine which utilizing 
the features to create topological model is presented 
in detail. In section 4, we show the advantages of 
using HiPro-CodeGen to develop a computational 
fluid dynamic parallel numerical simulation program 
in the system.  Then we present our conclusion and 
point to directions for future work. 

2 FEATURE MODEL OF A 
PARALLEL NUMERICAL 
SIMULATIONS 

JASMIN abstracts a general framework from 
numerical simulation domain and provides large 
granularity software reuse in scientific high-
performance computing (Mo, 2010). The framework 
tends to isolate the increased complexity of the 
software and operating environment from the 
programmers and utilize state of art technologies to 
extract the maximum possible performance. It 
facilitates problem solving with encapsulation of 
parallel computing and communication through 
patch-based data structures and component-based 
mechanism which shield data decomposition and 
communication from the users. Generally numerical 
simulations share many common features. These are 
utilized in JASMIN to provide a more normative 
architecture for developing a parallel program.  We 
define a feature model to illustrate a numerical 
simulation developed based on JASMIN. It is used 
to direct the design of the hybrid graphical 
programming interface. The model includes five 
parts which are described in the following 
subsections. 

Before we introduce the model, to describe the 
construction features of a numerical simulation, we 
give some key concepts: 
 Level strategy class: strategy class which is 

responsible for dealing with the computation on 
global region. Programmers must implement 
some strategy procedures which are implicitly 
called by JASMIN. 

 Patch strategy class: strategy class specially 
serves for an integrator component. It is 
responsible for dealing with the computation on 

a patch domain which is part of the global 
region. Programmers must implement some 
strategy procedures which are implicitly called 
by JASMIN. 

 Integrator component: a parallel computation 
mode defined in JASMIN. It is invoked in a 
level strategy class and implicitly calls 
procedures defined in its registered patch 
strategy class.  

 Numerical kernel: A kind of subroutine to 
implement part of numerical computational 
method. It is a sequential program. 

2.1 Data Structure and Numerical 
Algorithm 

Generally numerical simulation is solving a system 
of PDEs or ODEs with numerical methods on a 
discrete grid. JASMIN supports development of 
structured grid application of two types including 
rectilinear and deforming grid (Mo, 2009). Figure 1 
shows the two-dimensional example grids often-
used in numerical simulations. Data parallelism is 
the main form of parallelization of computing. In the 
kind of parallelism, as is showed in Figure 2, the 
region is decomposed into many domains during the 
process of the computation. Each domain is 
extended with ghost zones to satisfy the need of 
numerical scheme. In JASMIN, three kinds of 
coordinate system are available: Cartesian, 
cylindrical and spherical coordinates. Grid type and 
coordinate system determine the mesh description 
mode in a program. 

A physical variable, which also named with field 
variable, is defined on the special position of the  
 

         

Figure 1: Rectilinear and deforming grid used in structured 
appliations. 

 

Figure 2: Domain decomposition for data parallelism. 
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Figure 3: Discretization types of variables in a numerical 
simulation. 

discretization grid, such as cell, node, side or face 
etc., as illustrated in Figure 3. 

The numerical algorithm usually involves time 
iterations with given initial conditions, i.e. time 
integration algorithm. A complex algorithm is 
broken down into smaller and manageable parts. 
These parts are arranged to be executed adhering to 
some rules. Figure 4 shows the flowchart of a 
general time integration algorithm. Generally the 
algorithm involves four key modules which are 
organized in a loop and the user provides parameters 
to control the stop of it. All modules should be 
implemented according to the concrete computation. 

Start 

Initialization 

Evaluate time step 

Advance 1 step 

Accept solution 

End 

Continue ? 

 

Figure 4: A general flowchart presenting time integration 
algorithm. 

Generally developers are used to programming 
numerical subprograms in Fortran, which is a 
conventional textual, linear programming language 
that is familiar to programmers who engaged in the 
sequential numerical simulation development. 
Component architecture have been used for high 
performance scientific computing for years(Parker, 
2002). Parallel integrator components are proposed 
to encapsulate parallel computing details on patch-
based data structure (Mo, 2009). Parallelism is 
obtained by creating integrator components to 
encapsulate sequential numerical subroutines. 
Components encapsulate much of the complexity of 
parallelism inside a black box such as invoking MPI 
or OpenMP interfaces and utilizing multi or many-
cores CPU in modern machines. We support user to 

implement his computational method in sequential 
numerical subroutines while parallelism is 
accomplished in integrator components. The 
separation makes hybrid programming of combining 
graphical and textual programming feasible.  

2.2 Application Architecture and 
Program Organization 

Domain experts develop parallel numerical 
applications by assembling configured parallel 
integrator components in a flowchart of time 
integrator algorithm. For each component carrying 
on computation task a patch strategy must be 
implemented and the object of it be registered to the 
component. Some virtual interfaces must be 
implemented in C++ language and in which, data of 
field variables is fetched via patch object and passed 
to a numerical kernel invoked. Therefore parallelism 
for a computational module is achieved by 
connecting the component with real numerical 
kernels. These components provide interfaces or 
ports to be invoked in level strategy. As is shown in 
figure 5, the application architecture model includes:  
 Main program 
 A level strategy class which deals with 

assembling components. 
 Patch strategy classes. For each component 

some specific procedures must be implemented 
in a patch strategy class to invoke sequential 
numerical subroutines to accomplish numerical 
computation. The number of the patch strategy 
classes is determined by the number of the 
components created. 

 Sequential numerical subroutines 
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Figure 5: Architecture of an application and invoking 
model. 

3 DESIGN OF HiPro-CodeGen 

To develop a parallel program of numerical 
simulation the user must write program to: 
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 Define variables. 
 Code sequential computation kernels. 
 Create parallel integrator components. 
 Assemble components in the time integration 

algorithm to construct a parallel program. 
 Deal with physical model described in an input 

file. 
 Output physical variables for visual analysis. 
 Create a main procedure to organize issues 

listed above. 
HiPro is designed to offer graphical 

programming capability to develop parallel 
numerical simulations. The system implements a 
graphical domain-specific programming language 
combined with textual editor to support parallel 
programming. The idea of parallel design combined 
with sequential coding is achieved in the visual 
programming environment.  

According to the application model described in 
section 2, the programming task is classified into 
two types: configured on GUI and processed 
automatically. Upon this we shield most of them as 
best as we can in the programming system. 
Therefore to construct a numerical simulation 
program only the first four things of those which are 
mentioned at the beginning of this section left to the 
programmer to deal with. The other issues are 
handled automatically. This mechanism releases the 
user from complex programming. HiPro-CodeGen is 
the core of HiPro system which is responsible for 
generating codes. Next we introduce the working 
mechanism in HiPro-CodeGen according to the four 
tasks separately. 

3.1 Define Variables 

Variables in a scientific numerical simulation are 
classified into three categories according to their 
functionality and source, they are: grid variables, 
physical variables and grid independent ones. The 
classification is used to standardize interface 
definition for a procedure and build type match 
filtering when the procedure is called. Three variable 
databases are created to store the variables. They are 
physical variable DB, general variable DB and input 
parameter DB. 

A grid variable gives the definition of a domain.  
As noticed, no database is created for grid variables. 
In fact, grid ones are created automatically. There 
are two build-in grid variables in the system. One is 
used to describe the patch domain and the other is 
used to give the information of ghost zones. This is 
vitally important for the system design because we 
use them to normalize the interface definition of  

numerical subroutines. 
The type definition of rectilinear grid variable for 

a patch domain in C and C++ is 
 
Typedef struct { 
    int ilo[NDIM]; 

int ihi[NDIM]; 
double xlo[NDIM]; 
double dx[NDIM]; 

} geom_t 
 
The definition of that for deforming grid is 

similar with it which only needs the first two 
parameters. Comparative definition of them in 
Fortran shares the same form using derived types.  
We leave it out here for simplicity. The type 
definition for ghosts is 

 
 Typedef struct { 

int ilo[NDIM]; 
int ihi[NDIM]; 
int btype; 
int location; 
int condition; 

} ghost_t 
 
For physical variables, we give a set of domain-

specific data types listed in Table 1.  
 Domain-specific data type: a kind of data type 

used for describing the discretization form of a 
physical variable specially defined in a 
numerical simulation. 

Table 1: Domain-specific data types. 

Type Properties 

Cell Element type, Depth, Ghost width 

Node Element type, Depth, Ghost width  

Side-X Element type, Depth, Ghost width  

Side-Y Element type, Depth, Ghost width 

Group
Cell 

Element type, Depth, Ghost width, Number of 
groups 

Group
Node 

Element type, Depth, Ghost width, Number of 
groups 

Table 2: Supplementary data type. 

Type Properties 

Generic Element type, Depth 

To describe the general variables we supplement 
the type list with a special one, as is shown in the 
Table 2. Upon this we extend data types to cover all 
variables in JASMIN. These extensions are 
necessary to support full application development in 
scientific and engineering computing. 
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Programmer defines a variable through graphical 
user interfaces interactively while the system will 
invisibly generates the corresponding source code of 
it. For instance, the code of a physical variable of 
Cell type for a two dimensional application is given 
as below:  

 
integer :: gw_varName(0:1) 
ElementType [,IntentType]:: varName 
(geom%ilo(0)-gw_varName(0) :   
geom%ihi(0)+gw_varName(0), 
geom%ilo(1)-gw_varName(1)  : 
geom%ihi(1)+gw_varName(1)) 

3.2 Program Sequential Numerical 
Subroutines 

In the system numerical subroutines are classified 
into three categories: 
 (Sub I)   Execute computation on a domain. 
 (Sub II)  Fill physical boundary. 
 (Sub III) Process grid independent variables 

 

Figure 6: Generated code for a numerical kernel interface 
in Fortran 90.  

Requirements of dummy parameters are different 
according to the classification. For example, no 
dummy parameter of physical variable type is 
permitted in the third category. A parameter of 
geom_t is absolutely necessary in the first and 
second category and ghost_t is mandatory in the 
second one. There must be one and only one 
parameter of such type. The classification is used to 
build interface requirement match for integrator 
component definition. 

We use Fortran 2003 as the programming 
language for coding numerical subroutines. The 

code of interface definition is generated and inserted 
into the beginning of the program file automatically. 
This approach frees users from error-prone and 
tedious type definitions and variable declarations. 

Figure 6 shows an example code generated for a 
subroutine. The code will be updated and replace the 
older one when the user modify the definition 
through GUI. 

3.3 Create Parallel Integrator 
Components 

A type library of component is provided in the 
system. Each type of components performs some 
kind of well defined task and has specially designed 
GUI. Available types of integrator components and 
their functional properties are listed in Table 3. The 
property specifies acceptable categories of 
subroutines and whether this kind of component 
needs to register patch data to accomplish memory 
management  or data communication.  

Table 3: Integrator component types and functional 
properties. 

Type Properties 

Initialize Sub I, RegisterPDI 

Numerical Sub I+II, RegisterPDI 

Dt Sub I, RegisterPDI 

Reduce Sub I, RegisterPDI 

Memory RegisterPDI 

Copy RegisterPDI 

ParticleComm RegisterPDI 
 
In fact, creating and using a parallel integrator 

component in HiPro needs only three simple steps: 
 Create a component from an appropriate 

component model; 
 Configure necessary properties of it; 
 If necessary, select a proper numerical 

subroutine and pass actual arguments to it. 

3.4 Assembling Components in 
Computational Flow Charts 

Main concern of writing a program is how to 
compose these components together to form 
applications. A flow chart is the graphical 
representation of control flow of an algorithm (Tia, 
2004).   
 Predefined  flowchart: expressing the general 

numerical computation execution process of a 
time integration algorithm. 

A predefined flowchart, as is shown in figure 7 
representing the time integrator algorithm is used to 
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fit the need of rapid numerical integration algorithm 
implementation. The main flowchart is composed of 
some semi-predefined flowcharts which includes 
initalizeLevelData, getLevelDt, advanceLevel and 
acceptTimeDependentSolution. They are actually the 
member procedures of the level strategy class. A 
flowchart is semi-predefined means that the 
interface of it is built-in defined and the body of it 
need to be implemented by the user. In HiPro, 
components are inserted into the flowchart to define 
the implementation of the procedure. Loops, 
conditional branches and other control structures can 
be used to configure the execution logic of the 
components. On the right of the Figure 7, part of 
advanceLevel is illustrated, where some integrator 
components are created and used to organize the 
actual computation. 

 

 

Figure 7: Assembling integrator components to implement 
a procedure for the level strategy class. 

Flowcharts and kernels as well as other data from 
graphical input are stored into a database, which are 
then feed into code generation engine to accomplish 
automatic code generation using predefined code 
templates.  

4 APPLICATION 

We give a test on developing a simulation program 
for solving linear advection equation: 

0)( 



ua
t

u  

The initial value is given by )()0,( 0 xuxu  and 

the boundary condition is set as )(),( tutxu  . 

The computation is decoupled into six numerical 
subroutines. Six components are created to 
implement parallel computing and communication. 
The subroutines with category specification and 
components are listed in Table 4. Generally there is 

a one-to-one relationship between the subroutines 
and the components. One exception is that a 
subroutine of category Sub II must be assigned to a 
component together with a subroutine of category 
Sub I. The other exception is that a component of 
Memory type must be created to allocate or 
deallocate memory for physical variables. 

Table 4: Subroutines and integrator components created 
for the simulation. 

Sequential Subroutines(Category) Component(Type) 

initset(Sub I) initComp(Initialize) 

getdt(Sub I) dtComp(Dt) 

setphy(Sub II) 
fluxComp(Numerical) 

getflux(Sub I) 

updateconser(Sub I) connComp(Numerical) 

acceptsolution(Sub I) updateComp(Copy) 

 allocComp(Memory) 

 

Figure 8: Screenshot of physical variables created in HiPro 
for solving the linear advection equation. 

    

 

Figure 9: The four implemented semi-predefined 
flowcharts. 

Figure 8 shows the screenshot of physical 
variables created in HiPro for the simulation.  Four 
semi-predefined flowcharts with components 
inserted are shown in figure 9. As is presented in 
Table 5, in this application it consists of 17 C++ 
program files, 2 files coded in C language, 7 Fortran 
files and 1 CMake file. Among 1947 lines of source 
code about 6 percent of them are coded by hand. 
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Table 5: Program files and ratio of auto-generated for the 
simulation of solving linear advection equation. 

Program files Language Lines 
Ratio of 

auto-
generated 

Main.C C++ 237 100% 

VariableManager.h C++ 59 100% 

VariableManager.C C++ 152 100% 

LinAdvLevelStrategy.h C++ 92 100% 

LinAdvLevelStrategy.C C++ 99 100% 

ICPInitComp.h C++ 33 100% 

ICPInitComp.C C++ 58 100% 

ICPDtComp.h C++ 42 100% 

ICPDtComp.C C++ 90 100% 

ICPFluxComp.h C++ 40 100% 

ICPFluxComp.C C++ 106 100% 

ICPConnComp.h C++ 40 100% 

ICPConnComp.C C++ 90 100% 

ICPUpdateComp.h C++ 40 100% 

ICPUpdateComp.C C++ 86 100% 

ICPAllocComp.h C++ 26 100% 

ICPAllocComp.C C++ 35 100% 

LinAdvFort.h C 33 100% 

TypeDefs.h C 26 100% 

typedef.f90 Fortran 29 100% 

initset.f90 Fortran 42 50% 

getdt.f90 Fortran 23 70% 

setphy.f90 Fortran 59 50% 

getflux.f90 Fortran 64 50% 

updateconser.f90 Fortran 60 60% 

acceptsolution.f90 Fortran 40 70% 

CMakeLists.txt CMake 246 100% 

5 CONCLUSIONS 

Parallel programming usually involves tedious 
amount of coding and often error-prone for domain 
experts. HiPro-CodeGen, a powerful automatic code 
generation engine, is developed to generate major 
and tedious part of a JASMIN application. Plenty of 
knowledge and technologies are shielded from the 
programmers, including:  
 Object-oriented programming 
 C++ language 
 Hybrid programming with C++ and Fortran 
 Component-based programming 

It frees users from unnecessary exposure to 
complex features of programming issues of 
languages and JASMIN interfaces together with the 
application code organization. Users only need to 
write body code for numerical kernels with well-
defined interface through GUI in Fortran which has 
been used for scientific computing program 

development for tens of years and is quite familiar to 
them.  

Practice demonstrates that non-programmers can 
create fairly complex programs with little training. It 
greatly reduces programming complexities and make 
numerical application development easy and fast. 
Real world applications show that HiPro-CodeGen 
ensures high-performance and high-quality for 
scientific numerical simulation. 
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