
MS-ONTO
Model and System for Supporting Ontology Evolution

Emile Tawamba1, Roger Nkambou2, Bernabé Batchakui1 and Claude Tangha1

1ALOCO-LIRIMA, University of Yaoundé 1, Yaoundé, Cameroon
2GDAC, UQAM Montréal, Canada

Keywords: Ontology Engineering, Ontology Evolution, Integrity Constraints, Semantic Web.

Abstract: Ontology is becoming the key knowledge capture structure in many domains. It plays a very important role
in the area of semantic web and is widely used in multiple fields including Intelligent Tutoring Systems
(ITS) and e-Learning. Ontologies are intensively used in domain knowledge modeling in specific areas
which can evolve. However, current tools used to implement ontologies fail to provide functions to ade-
quately ensure their evolution. To deal with this issue, we have developed an ontology evolution manage-
ment system named «MS-ONTO», founded on a formal description of evolution operators. MS-ONTO al-
lows the preservation of both the internal and external integrity constraints during the ontology evolution:
the external integrity meaning the preservation of its usage while internal integrity means its conformity to
the constraints (implicit or explicit) related to the ontology model itself. MS-ONTO should be integrated as
a plug-in in existing ontology editors such as NeOn Toolkit and Protégé.

1 INTRODUCTION

Nowadays, the use of ontologies in several research
areas cannot be over emphasized (Brewster, 2007).
The advent of semantic web and new approaches for
data web ease the access to or the sharing of web
resources. The main questions that come up remain
that of interoperability of the different systems of
information exchange between them. Even if some
languages such as XML and RDF play an important
role in the creation/description of resources, there is
yet no totally satisfactory solution for the terminolo-
gies and classification systems which should be used
in their indexing and scouting for necessary exploi-
tation and sharing (Psyché, 2007). Today, ontologies
greatly contribute in solving this issue by providing
a formal framework of conceptual modeling of dif-
ferent domains (Burcu, 2006).

Ontologies are proven effective in many areas
such as e-Learning, e-Commerce and many others.
Ontologies are mostly used in dynamic, distributed
and evolutive environments/systems. It is therefore
important to update ontologies in order for them to
reflect the changes (changes on the state, data, and
needs related to new functionalities) that affect the
systems life cycle.

Many other reasons can also cause a change in on-
tology. For instance, changes can occur when using
it in different contexts or when correcting errors in
conceptualization as well as changes in initial do-
main specification.

In order to enable ontologies to maintain their in-
terest as regards the applications for which they have
been constructed, evolution should be considered as
an integral part of the life cycle of ontologies design.
However, most of the tools used in ontology engi-
neering do not include an effective ontology evolu-
tion service. In fact, most of these systems do not
provide a clear framework for automatically manag-
ing the ontology evolution. The evolution process
mainly relies upon the human user. A good ontology
evolution process should prevent all abnormalities
that can be introduced regarding both the ontology
model itself (internal abnormalities) and the applica-
tion contexts in which the ontology is used (external
abnormalities). It is therefore important to provide a
system in which ontology evolution preserves both
internal and external integrity related to the initial
ontology. This paper presents an ontology evolution
management method based on a formal approach
using description logics and which enables the
preservation of internal as well as external integrity
(Noy, 2004) (Zablith, 2009).

319Tawamba E., Nkambou R., Batchakui B. and Tangha C..
MS-ONTO - Model and System for Supporting Ontology Evolution.
DOI: 10.5220/0005085203190326
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2014), pages 319-326
ISBN: 978-989-758-049-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

The paper is organized as follows: the second sec-
tion presents some related works on the management
of ontology evolution. Our solution is then intro-
duced in the third section where a formal description
of the operators of changes is given with a general
presentation of our global approach towards ontolo-
gy evolution management. The fourth section is the
implementation and evaluation of this solution. The
paper ends with some concluding remarks.

2 RELATED WORK

This section defines some ontology related concepts
followed by existing ontology evolution manage-
ment techniques in order to bring out their limita-
tions.

2.1 Definitions

(Gruber, 1993) defined ontology as “an explicit
specification of a conceptualization”. Ontology is
also considered as the result of a complete formula-
tion and a rigorous conceptualization (hierarchical
organization of pertinent concepts, relationships
between these concepts, rules and axioms binding
them) (Amal, 2008).

Ontology evolution is the adaptation to changes
that are brought during its life-cycle and the propa-
gation of these changes at the level of the dependent
artifact, i.e. objects referred by the ontology as well
as ontologies and their related applications (Sure,
2004). There are various types of changes: changes
in the modelling domain (Wohlgenannt, 2013), con-
ceptualization and specification changes (Djedidi,
2007), etc. Given that the domain is a part of the real
world, it is thus dynamic and evolves with time.
Conceptualization can also change due to a new
observation or a restructuring of knowledge. Ontol-
ogy could be adapted to be reused in different tasks.
The conceptualization of ontology could be refined
through an interactive and incremental construction
process. Ontology enrichment tools are another way
by which an existing ontology can evolve as new
concepts as well as new relationships that are ex-
tracted and added (Booshehri, 2013). It is therefore
glaring that ontology must undergo changes and
therefore evolve (Cuenca, 2012).

Ensuring the evolution of ontology is a costly
operation which requires the services of a competent
expert in this domain (Scott, 2013). However, the
significant role of ontologies makes it essential that
they should be kept up to date so as to reflect the

changes which affect the life cycle of the systems
and the applications for which they were conceived.

Many research teams and projects have worked
on ontology evolution and brought out interesting
findings. According to their methods, two broad
categories stand out: ontology versioning and man-
agement of changes (Kondylakis, 2011).

2.2 Ontology Evolution Based on the
Management of Versions

In this first group, the evolution is managed through
the creation and maintenance of different versions of
the same ontology. KAON, CONCORDIA and
SHOE are classic examples of tools and methods
that implement the view.

KAON (Gabel, 2004) offers a range of tools for
ontologies and the semantic web. Presently, it is one
of the rare ontology management systems which has
a function dedicated to the recording of changes.
During the evolution, KAON saves all the changes
carried out to move from one ontology version to
another in a folder as an ordered sequence of
RDF/XML declarations. The main drawback in
KAON approach is that, it deals only with elemen-
tary changes.

CONCORDIA (Shaban, 2010) defines a concep-
tual model for the management of changes of a med-
ical terminology. This model adds to each class a
unique identifier and these classes could only be
subsequently and logically withdrawn but not physi-
cally erased. As such for each class, the Concordia
model is capable of tracing all the parent-classes or
withdrawing children through its identifiers.

HEFLIN proposes SHOE (Heflin, 1999) as a
language for representing knowledge on the web. It
is a language based on FOL (First order logic).
SHOE is based on HTML, which offers primary
terms for the management of multiple versions while
allowing the association to each version of ontology,
a unique identifier and a code stating the compatibil-
ity with former versions. It brings out the relevance
of each revision/operation on data and requests.

As a whole, ontology evolution solutions of this
group do not really treat ontology evolution. They
rather provide a model for analyzing links between
ontology versions, but do not pay attention either to
the management of the dependent artifacts (referred
resources, related ontologies, programs in which the
evolved ontology is used) or to the impact of chang-
es on the ontology internal structure and/or seman-
tic. Moreover, the authors do not provide any func-
tional framework to integrate the totality of method-
ological elements that they propose.

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

320

2.3 Evolution Based on Management of
Changes

The proponents of this approach think that it is nec-
essary to have a follow-up of changes: the request
for change has to be interpreted, analyzed and exe-
cuted under control. In fact, the system should be
able to notify a change that might lead to an incon-
sistent ontology, better still, it should at least help
the engineer in evolution operations if it cannot
completely automate them.

The ontology must remain consistent while
evolving. Ontology is consistent in relation to a
model if and only if it respects all the constraints of
the model. These constraints are either invariables or
user-defined.

The invariables constraints are those related to
the ontology structure; for instance, removing a root
concept should not be allowed without a correct
reorganization of the ontology. User-defined con-
straints are those defined by the user such as the
maximum number of instance related to a given
concept. A change maintains consistency only when
the resulting ontology is consistent. Hence, change is
defined as a function ch(args, prec, postc) with args
representing the arguments, prec representing all the
preconditions and postc representing all the post-
conditions. Some operations could lead to several
options of possible ontologies; it is therefore neces-
sary to choose the most consistent one that responds
to user’s needs. However, several iterations should
be needed before obtaining an acceptable resultant
ontology (Stojanovic, 2004).

This approach has many disadvantages; it con-
sists of a solution which has a high algorithm com-
plexity due to multiple possible iterations without
any specific switch-off conditions. The reason being
that at each stage, choices have to be made using
relevant heuristics. Another approach in this catego-
ry is that of Delia (Delia, 2008). It consists of a semi
automatic system where the user is involved in the
ontology evolution process. It proposes versioning
of changes which then serve to resolve eventual
semantic referencing (based on the ontology) fail-
ures. The system records the changes during the
evolution phase of the ontology and provides the
user with a list of possible semantic references that
are impacted. The management of changes is hereby
concentrated on the control of the consistency of
semantic referencing (meaning the usage of the
target ontology – external integrity).

On the whole, the fore-mentioned approaches do
not solve the problem of evolution on all its dimen-
sions. Some are concentrates on structural aspects

(internal integrity) while others focus on the external
implications (external integrity). In addition, they
lack a formal framework which entirely integrates
the ontology evolution engineering.

3 THE PROPOSED APPROACH
FOR MANAGING THE
EVOLUTION OF ONTOLOGY

Despite the fact that several works have been carried
out on the evolution of ontologies, the tools which
should make it possible to ensure a guided evolution
which guarantees the consistency of final ontology
are still to come. The solution that we propose com-
prises four points: we start by taking into account
the semantics behind the various operations of
changes which can affect ontology during its life
cycle. Secondly, we set up some integrity constraints
which must be respected during any execution of an
operation or of a set of operations of change. Third-
ly, we control the execution of operations according
to some used case we proposed, and we end by giv-
ing a detailed report of the execution of the changes
with the new version of ontology.

3.1 Formal Description of Operators of
Change

These operators of change are formally defined
using Description Logic (DL). Evolution operations
are usually done on ontology elements including T-
Box axioms (concepts, roles, restrictions, attributes
etc.) as well as A-Box axioms (instances).

There are two groups of operators: Basic DL op-
erators such as negation, generalization, spe-
cialization, etc., and the other operators which we
defined using DL primitives (Stojanovic, 2004)
(Baader, 2007) (Gagnon, 2007). These operators
include adding, removing, merging or grouping
ontology elements (concept, role, restriction, etc.)
Each operator is semantically defined as illustrated
in the following for 3 instances of operators. Our
contribution here is that, actions related to each
operator are explicitly represented in the semantic.

The following examples illustrate some of these
operators and their formal semantic descriptions. Let
us consider (O, C, I, intscon, ࣮ܪ) where O is an
ontology, C is a set of concepts, I is a set of instanc-
es, instcon is a function that relates a concept to the
set of its instances and ࣮ܪ is a relation called con-
cept hierarchy, we have:
 AddInstance (i,C):

MS-ONTO�-�Model�and�System�for�Supporting�Ontology�Evolution

321

Add an instance to a concept ܥ
Pré-conditions: ݆ ∈ ሻܥሺܿ݊ܿݐݏ݊݅ 	∧
	൫∃݅ ∈ ܫ ∖ ሼ݆ሽ, ݅ ∉ ሻ൯ܥሺܿ݊ܿݐݏ݊݅
Post-conditions: ݅ ∈ ሻܥሺܿ݊ܿݐݏ݊݅
Actions :
1. ࣛ (ABox containing a statement Cሺݔሻ)
ݕ .2 ് (ݔ an instance different from ݕ)		ݔ
 (ݕ Add an instance) ሻݕሺܥ .3

 AddConcept C: Add a concept C
Pré-conditions: ሺC, rootሻ ∉ H࣮

∗ ∧ ∃D ∈ ࣮
Post-conditions: ሺC, rootሻ ∈ H࣮ ∨	ሺC, rootሻ ∈
H࣮
∗

Actions:
1. ࣮ (TBox)	
ܥ .2 ⊑ (ܦ	is subsume by ܥሺ ܦ
ܥ .3 ⊑	⊺	

 RemovConcept C: Remove a concept
Pré-conditionܥ :ݏ ∈ ࣮ ∖ ሼݐݎሽ ∧ ∃Dଵ, Dଶ ∈
࣮൫ሺܥ, ଵሻܦ ∈ ࣮ܪ ∧	ሺܦଶ, ଵሻܦ ∈ ൯࣮ܪ
Post-condition: ሺܥ, ଵሻܦ ∉ ࣮ܪ
Actions:
1. ࣮ (TBox containing concepts Cଵ,… , C୬,

C and D)
2. (∃1 i n) C୧ ⊑ C → C୧ ⊑ D
3. C ⊑ D (C is subsume by D)
4. C ⊑٣ (Remove C)

3.2 Constraints of Semantic Integrity

We also defined a set of constraints of semantic
integrity (CSI) which must be taken into account
throughout the evolution process. Each single opera-
tion of change should lead to the checking of the
CSI before the system can approve or reject the
change. In all cases, a report must be drawn up.

An example of CSI could consist in setting a
maximal DL expressivity that should be preserved
after the evolution process. In this way, it should be
possible to preserve the logic of the initial ontology
if needed. In this case, taking into account the ex-
pressivity includes three main steps:
 Identifying the structures allowed for each sub-

language in a «database of structures of sub-
languages». Several level of language could be
obtained: For example OWL-LITE, OWL-DL,
OWL-FULL (Zghal, 2007) if we refer to OWL1.

 Creating an inspector of structure, a program that
is able to verify the ontology structures and to
categorize them, in order to determine the ontol-
ogy expressivity.

 Ensuring that the degree of expressivity of the
ontology is maintained.

The expressiveness management model de-
scribed above is presented in figure1. The initial
ontology undergoes an audit which determines its
expressiveness. Each operation of change which is
applied to the ontology must absolutely respect the
expressiveness. After the ontology expressiveness is
verified, a report is produced (Figure 1).

Figure 1: Model of management of the expressivity.

3.3 Execution of the Operations of
Change

The execution of an operation of change or a range
of change goes beyond the control of the expressivi-
ty of ontology. In fact, in addition to the CSI, each
operation has a set of pre-conditions and of post-
conditions to be verified before and after execution.

Our overall model of ontology evolution is pre-
sented in Figure 2.

The list of changes is a set of operations recorded
after evolution of the ontology or a set of operations
which one must apply to make the ontology evolve.
CSI is a set of constraints of semantic integrity
which must be verified to guarantee the consistency
of the ontology along its evolution. The list of the
operation of changes is drawn up by the operators of
DL on the one hand, and the operations which we
defined on the other hand as mentioned in the previ-
ous sections. The processor is a parser which carries
out the operations of change while respecting con-
straints. A report is produced at the end of the execu-
tion.

Initial Ontology

Process

Expressiveness
Ontology

Change
operators

Report

Check

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

322

4 CURRENT IMPLEMENTATION
AND RESULTS

4.1 Implementation

MS-ONTO is implemented and current use-case
helps to control the ontology evolution giving as
inputs, a list of changes and the initial ontology on
which these changes are applied. The constraints of
semantics integrity (CSI) guaranteeing the consist-
ence of integrity all along the evolution and their
procedure of verification are also known to the sys-
tem.

A parser executes each change operation while
respecting predefined constraints. A report is pro-
duced at the end of the execution.

The operation class modelizes all the operations
which can be applied to the ontology. The diary of
changes contains the operations of change which the
ontology will undergo. The list of changes (changes
log) can be provided directly to the system or edited
by an Expert-user using an interface (Figure 4). The
initial ontology which may eventually evolve is
contained in an OWL file.

The operations contained in the log are then applied
to the ontology. The integrity constraints are verified
and a detailed report is produced (Figure 5).

The overall processes and information sharing in
our system are depicted in Figure 3. Processing_01
helps the expert to edit or choose the change opera-
tors that will be applied to the ontology. Pro-
cessing_02 checks if each operator preserves the
expressiveness of the ontology. Processing_03 exe-
cutes the operations under the specified CSI. At the
end of all these processes, a report is produced con-
taining explanations about operation execution fail-
ures if any.

4.2 Validation

A very initial test of our system has been done using
a simple ontology on which we applied 6 change
operations including 2 that had to produce erroneous
results, which were successfully detected by the
system. However, a thorough validation is still to
come using more complex ontologies and meaning-
ful records of change operations.

Figure 3: Sequence diagram.

MS-ONTO�-�Model�and�System�for�Supporting�Ontology�Evolution

323

Figure 4: The interface that allows the user to build up its journal of change.

Figure 5: Viewing the log of changes / Initial Ontology / Execution of operations of change.

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

324

Figure 2: Overall model of MS-ONTO.

5 CONCLUSION AND FUTURE
WORKS

We have described a new system which makes it
possible to follow and control the evolution of on-
tologies. Our solution is founded on the formal
description of the semantic associated to each opera-
tion of change based on the Description Logics.
Each operation of change contains a set of pre-
conditions and a set of post-conditions to fulfill in
order to guarantee the consistency of the ontology
during the evolution. Furthermore, a set of con-
straints of semantic integrity was defined to better
ensure the consistency and the integrity of the final
ontology.

We intend to add to these constraints, a set of
metric of quality in order to measure the quality of
the final ontology. Also, many works remain to cope
with the external validation of the evolution which is
usage-context dependant. The key issue here is to
look for a possible generic core that can ease the
specification of context-dependant CSI related to the
ontology use in a specific domain. A first step could
consist in reconsidering Delia’s work on semantic
reference of learning resources using our own sys-
tem.

This work is still in its initial stage but we have
provided a framework where both internal and ex-
ternal validation of the evolution process can be
managed. This is a contribution as such integrated
solution does not exist. We intend to implement SM-
ONTO as a plug-in in order to ease its integration
with classic ontology engineering tools such as Pro-
tégé. We should also validate the system and collect
some data for its improvement. Finally, the current
implementation is used as a validation tool to ana-
lyze a list of changes operated on a given ontology
and provide feedbacks on that. Our next step here
will be to use the system in other use-cases where it
could act as an active coach during a live ontology
evolution (even building) process.

REFERENCES

Amal, Z., Nkambou R., 2008. Building Domain Ontolo-
gies from Text for Educational Purposes. IEEE Trans-
lations on Learning Technologies, vol. 1, N° 1, p.49-
62.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P., 2007. The Description Logic
Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 622 pages.

Brewster, C., and O’Hara, K. 2007. Knowledge represen-
tation with ontologies: Present challenges-Future pos-
sibilities. ScienceDirect Int. J. Human-Computer Stud-
ies 65, p.563–568.

Booshehri, M., Malekpour, A., Luksch, P., Zamanifar, K.,
and Shariatmadari, S. 2013. Ontology Enrichment by
Extracting Hidden Assertional Knowledge from Text.
International Journal of Computer Science and Infor-
mation Security, vol. 11, No.5, p. 64-72.

Burcu, Y., 2006. Ontology Evolution and Versioning: The
state of art. Vienna University of Technologies, As-
gaard-TR-2006-3, 28 pages.

Cuenca, G., Jimenez-Ruiz, B., Kharlamov, E., Zheleznya-
kov, E., and Dmitry, 2012. Ontology Evolution under
Semantic Constraints. Proceedings of the 30th Inter-
national Conference on Principles of Knowledge Rep-
resentation and Reasoning, p.137-147.

Delia, R., 2008. Gestion de l’évolution d’une ontologie :
méthodes et outils pour un référencement sémantique
évolutif fondé sur une analyse des changements entre
versions de l’ontologie. Thèse de Doctorat, Université
du Québec à Montréal, p.68-180.

Djedidi, R., Aufaure, M., and Abboute, H., 2007. Evolu-
tion d’ontologie: Validation des changements basée
sur l’évaluation. Journées Francophones sur les Onto-
logies (JFO), p. 55-73.

Gabel, T., Sure, Y., and Voelker, J., 2004. KAON-
ontology management infrastructure. SEKT informal
deliverable, 58 pages.

Gagnon, M., 2007. Logique descriptive et OWL. Ecole
Polytechnique de Montréal, 55 pages.

Initial Ontology CSIChanges
records

Semantic
Parser

All

change

DL

Report

Final Ontology

MS-ONTO�-�Model�and�System�for�Supporting�Ontology�Evolution

325

Gruber, T., 1993. Toward Principles for the Design of
Ontologies Used for Knowledge Sharing. In Interna-
tional Journal Human-Computer Studies 43, p.907-
928.

Heflin, J., Hendler, J., and Luke, S., 1999. A knowledge
Representation Language for Internet Applications.
Technical Report, University of Maryland at College
Park, 30 pages.

Kondylakis, H., Plexousakis, D., 2011. Exelixis: Evolv-
ing ontology-based data integration system. Proceed-
ing of the international conference on Management of
data, p. 1283-1286, ACM.

Noy, N., Klein, M., 2004. Ontology Evolution: Not the
same as Schéma Evolution. In Knowledge and Infor-
mations Systems, vol.6 Issue 4, p.428-440.

Psyché, V., 2007. Rôle des ontologies en ingénierie des
EIAD: Cas d’un système d’assistance au design péda-
gogique. Thèse de Doctorat, Université du Québec à
Montréal, p.13.

Scott, B., Pete, B., Mark, B., David, K., and Debra, S.
2013. PRONTOE - A Case Study for Developing On-
tologies for Operations. In: 5th International Confer-
ence on Knowledge Engineering and Ontology Devel-
opment (KEOD). SciTePress, Vilamoura, Portugal, 9
pages.

Shaban-Nejad, A., 2010. A frame work for analyzing
changes in health care lexicons and nomenclatures.
PHD Thesis, Concordia University, Montreal, Que-
bec, Canada, p.86.

Stojanovic, L., 2004. Methods and Tools for Ontology
Evolution. Thèse de Doctorat, Karlsruhe, 249 pages

Sure, Y., Tempich, C., 2004. State of art in ontology engi-
neering methodologies. SEKT informal deliverable
7.1.2, Institut AIFB, University of Karlsruhe.

Wohlgenannt, G., Belk, S., and Schett, M., 2013. A Proto-
type for Automating Ontology Learning and Ontology
Evolution. In: 5th International Conference on
Knowledge Engineering and Ontology Development
(KEOD). SciTePress, Vilamoura, Portugal. p. 407-
412.

Zablith, F., 2009. Evolva : A Comprehensive Approach to
Ontology Evolution. Proceedings of the 6th European
Semantic Web Conference, LNCS 5554, eds. L. Aroyo
et al., Springer-Verlag, Berlin, Heidelberg, p. 944-
948.

Zghal, S., Yahia, B., Nguifo E., and Slimani. Y., 2007.
SODA : une approche structurelle pour l’alignement
d’ontologies OWL-DL. Actes 1ères journées franco-
phones sur les ontologies (JFO), p.1-20.

KEOD�2014�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

326

