
Asynchronous Parallel (1+1)-CMA-ES for Constrained Global
Optimisation

Thomas Philip Runarsson
School of Engineering and Natural Science, University of Iceland, Hjardarhagi 26, Reykjavik, Iceland

Keywords: Constrained global optimization, Evolution strategies, Parallel Computing.

Abstract: The global search performance of an asynchrounous parallel(1+1) evolution strategy using the full covari-
ance matrix adaptation for constrained optimization is presented. Although the(1+1)-CMA-ES may be a
poor global optimizer it will be shown that within this parallel framework the global search performance can
be enhanced significantly. This is achieved even when all individual(1+ 1) strategies use the same initial
search point. The focus will be on constrained global optimization using a recently developed(1+1) evolu-
tion strategy for this purpose.

1 INTRODUCTION

This paper considers the general nonlinear program-
ming problem formulated as

minimize f (x), x= (x1, . . . ,xn) ∈ R n, (1)

where f (x) is the objective function,x∈ S ∩F , S ⊆
R n defines the search space bounded by the box con-
straints

xi ≤ xi ≤ xi , (2)

and the feasible regionF is defined by

F = {x∈ R n | g j(x)≤ 0 ∀ j}, (3)

whereg j(x), j = 1, . . . ,m, are inequality constraints.
The state of the art evolution strategy (ES) is the

(µ/µw,λ)-CMA-ES with full covariance matrix adap-
tation (CMA), whereµ/µw denotes the weighted av-
eraging (recombination) ofµ parents. The most suc-
cessful version of the (µ/µw,λ)-CMA-ES uses mul-
tiple restarts. The (µ/µw,λ)-CMA-ES will double
the population size each time it restarts (Auger and
Hansen, 2005). Handling boundaries and constraints
using the (µ/µw,λ)-CMA-ES is problem dependent
(Hansen, 2011). Typically infeasible solution are
ranked lower than the worst feasible solution, this
is somewhat similar to a death penalty approach to
constraint handling. The infeasible solutions are
then ranked according to a penalty term, which may
be a function of the constraint or the distance to a
known feasible solution. The approaches suggested
by Hansen in his tutorial avoid computing the objec-
tive function when a solutionx is infeasible. This is

for many real world applications crucial since the ob-
jective can in many cases not be computed when in-
feasible. When objective information can be used to
bias the search towards favourable feasible regions, a
very simple ES can be quite effective, as illustrated by
(Runarsson and Yao, 2005).

Recently a simple but effective (1+ 1)-CMA-
ES for constrained optimization was proposed by
(Arnold and Hansen, 2012). The technique is a very
effective local optimizer, but requires a feasible start-
ing point. In some cases an initial solution may be
supplied by the user, otherwise random sampling of
the search space must be performed until a feasible
search point is found. Depending on the number of
constraints, their computational complexity and the
size of the feasible region, this may be a time con-
suming procedure. Nevertheless, this is the basis for
the asynchrounous parallel global optimizer presented
here. In essence it is proposed that one consider mul-
tiple competing(1+1)-CMA-ES to produce a pow-
erful global optimizer, opposed to extending the tech-
nique proposed by (Arnold and Hansen, 2012) to the
multi-parent the (µ/µw,λ)-CMA-ES version, as they
suggest and are currently working towards.

The remainder of the paper is organized as fol-
lows. Section 2 describes the (1+ 1)-CMA-ES ap-
plied, which is based on (Suttorp et al., 2009) but
uses the modification in (Arnold and Hansen, 2012)
for the case when an infeasible individual is gener-
ated. Section 3 introduces then the asynchrounous
parallel search strategy, which is comprised of a set of
(1+ 1)-CMA-ESs. The computational performance

266 Runarsson T..
Asynchronous Parallel (1+1)-CMA-ES for Constrained Global Optimisation.
DOI: 10.5220/0005084502660272
In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (ECTA-2014), pages 266-272
ISBN: 978-989-758-052-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



of the parallel algorithm is illustrated on two differ-
ent hardware configurations in section 4. The strategy
is then illustrated on some unconstrained and con-
strained global optimization problems in section 5.
Finally, section 6 concludes the paper with a brief
summary and some remarks.

2 (1+1)-CMA-ES

The (1+1) covariance matrix adaptation evolutionary
strategy is a singleparent search strategy. A sin-
gle iterations of this search strategy will now be de-
scribed, but the reader is referred to (Suttorp et al.,
2009) for a more complete description. The parent
x is replicated (imperfectly) to produce an offspring
y= x+σN (0,C), whereσ is a global step size andC
the covariance matrix of the zero mean Gaussian dis-
tribution. The replication is implemented as follows:

z = N (0, I) (4)

s = Az (5)

y = x+σs (6)

where the covariance matrix has been decomposed
into Cholesky factorsAA⊺. The normally distributed
random vectorz is sampled from the standard normal
distributionN (0, I). The success probability of this
replication is updated by

p̄succ← (1− cp)p̄succ+ cp1
[

f (y)≤ f (x)
]

(7)

where f (·) if the objective (fitness) function which
will be minimized. Here1[·] is the indicator func-
tion and takes the value one if its argument is true
otherwise zero. The parametercp is the learning rate
(0< cp ≤ 1) and is set to 1/12. The initial value for
p̄succ= 2/11 which is also the target success proba-
bility pt

succ. Following the evaluation of the success
probability the global step size is updated by

σ← σexp

(

p̄succ− pt
succ

d(1− pt
succ)

)

(8)

whered= 1+n/2 andn the number of objective vari-
ables. The initial global step size will be problem de-
pendent but should cover the intended search space.
All of these default parameter setting are discussed in
(Suttorp et al., 2009).

If the replication was successful, that isf (y) ≤
f (x), then y will replace the parent search pointx.
Furthermore, the Cholesky factorsA will be updated.
Initially A andA−1 are set to the identity matrix ands
set to 0. The update is then as follows (Suttorp et al.,
2009):

1. If p̄succ< pt
succ thens← (1− c)s+

√

c(2− c)Az
and setα← (1− ccov)

elses← (1− c)sand setα← 1− c2
covc(2− c).

2. Compute w ← A−1s and set a =
√

1+ ccov‖w‖2/α
3. A←√αA+

√
α(a−1)sw⊺/‖w‖2

4. A−1← 1√
α A−1− 1√

α‖w‖2
(

1−1/a
)

w
[

w⊺A−1
]

.

The default setting for the covariance weight factor
ccov = 2/(n2 + 6) and c = 2/(2+ n). A−1 requires
Θ(n2) time, whereas a factorization of the covariance
matrix requiresΘ(n3) time. The Cholesky version of
the (1+1)-CMA is therefore computationally more ef-
ficient.

Recently Arnold and Hansen provided an ele-
gant solution to constraint handling for the (1+1)-
CMA-ES. The procedure requires a feasible start-
ing point and when the replication produces a feasi-
ble point the algorithm is equivalent to the one de-
scribed above. However, when the replication pro-
duces an infeasible point the mutation strength in the
directions of the normal vectors of constraint bound-
aries is reduced (Arnold and Hansen, 2012). This is
achieved by maintaining a so-called constraint vec-
tor vj for all constraints violated. This includes the
box-constraints (upper and lower bounds onx), i.e.
j = 1, . . . ,m+ 2n. The vectors for the violated con-
straints are updated as follows:

v j ← (1− cv)v j + ccAz (9)

and initialized to zero. The parametercc is set by de-
fault to 1/(n+2) and controls the decay of informa-
tion contained in the constraint vectors. For each con-
straint j violated the Cholesky factors are updated as
follows:

A← A− β
nv

v jw
⊺

j

w⊺

j w⊺

j
(10)

wherew j = A−1v j andnv is the total number of vio-
lated constraints. The parameterβ, set by default to
0.1/(n+2), controls the size of the updates similarly
to parameterccov. The computational cost are now in-
creased since computing the inverse ofA must now be
done directly at a cost ofΘ(n3).

How a population of (1+1)-CMA-ES may be com-
bined to make the search more effective will now be
described.

3 ASYNCHRONOUS PARALLEL
(1+1)-CMA-ES

Consider now a set ofλ (1+1)-CMA-ES as individu-
als in a population. Furthermore, assume that one has
nt dedicated threads replicating and evaluating these

Asynchronous�Parallel�(1+1)-CMA-ES�for�Constrained�Global�Optimisation

267



individuals. The thread’s job is to pick out two avail-
able candidatesi and j, wherei is replicated andj is
potentially overwritten. Here being “available” means
that no other thread is using the candidate. In practice
it is necessary to marki and j as busy, or temporarily
unavailable, hence stopping threads from writing to
the same memory at the same time. The resulting be-
haviour of this new strategy is a competition between
independent(1+1)-CMA evolution strategies.

The implementation presented here has similari-
ties to a scheme described in (Runarsson, 2003). The
idea being to replace the worst individuals in a con-
tinuous selection scheme (Runarsson and Yao, 2002).
There an inferiorj may be overwritten by a mutated
version of parenti. The idea is in essence as follows.
Let any thread capture any two freely available in-
dividuals from the population and lock them. Take
then the better of the two and replicate as described
by eqn. (4)–(6). If the resulting solutiony is infeasi-
ble then release individualj and reduce the mutation
strength of individuali by equations (9)–(10). Then
compute the inverse of the Cholesky factors. If the so-
lution y is feasible then continue with equations (7)–
(8). If this replication produces a fitter feasible indi-
vidual then overwrite the worse individualj with the
better one, update the Cholesky factors and release
them both. It is important to note that an individual
is only overwritten in the case of a successful muta-
tion. When this occurs the individual is overwritten
with one complete (1+1)-CMA iteration of the par-
ent. The parent on the other hand has only its global
step-size updated and its mean success probability. In

Single thread process:
1 while termination criteria not satisfieddo
2 i, j ← any available individuals, f(xi)≤ f (x j)
3 set individuals i, j as busy
4 y← perform one(1+1)-CMA-ESreplication

step for individual i, eqn.(4)–(6)
5 if y infeasible
6 reduce mutation strength for individual i
7 else
5 σi ← update the global step size for

individual i, eqn.(7)–(8)
6 if f (y)≤ f (xi)
7 replace individual j with individual i and

complete the(1+1)CMA-ESiteration on
individual j (the four steps)
(note that xj ← y and xi is unchanged).

8 fi
8 fi
9 release individuals i and j.

od

Figure 1: A single thread procedure. The worse individual
j is only replaced when a better solution is found, and a
complete (1+1)-CMA iteration performed. The global step
size of individuali is updated at all times.

the case when the replication produced an infeasible
solution, then neither the global step-size nor the suc-
cess probability is updated. In this case the mutation
strength is reduced for the individuali as discussed
above. This procedure ofvariation followed byselec-
tion is repeated a number of times (generations) until
some termination criteria is met, commonly a maxi-
mum number of function evaluations. Here number
of generations can be considered a finite number of
replications or function evaluations. The pseudcode
for the search strategy for any given thread is illus-
trated in figure 1. The number of times this procedure
is started would typically be equivalent to the number
of cores available on the hardware.

4 COMPUTATIONAL
PERFORMANCE AND
IMPLEMENTATION

The computational performance, or speed-up, for the
asynchronous and synchronous parallel (1+1)-CMA-
ES algorithms are now compared for two hardware
configurations. Both systems use the Linux operat-
ing system. The default GNU/C++ compiler is used
and the program is implemented using standard Posix
threads. They are:

1. Sun Fire X4600 using eight Quad Core AMD
Opteron processors, a total ofnc = 32 cores, and

2. Intel i7-4930K hexacore withnc = 6 cores and 12
hyper-threads.

According to Amdahl’s law and considering an over-
headH(nt) for thent threads, one expects a speed-up
of

1/[(1−P)+P/nc+H(nt)]

whereP is proportion of the algorithm that is parallel.
The thread overhead will typically come from thread
activity such as synchronization, communication and
memory bandwidth limitations. On a good parallel
machine the overhead is not linear.

The synchronous parallel (1+1)-CMA-ES is ex-
actly the same as for the asynchronous version with
one exception; each thread is dedicated to a subset
of λ/nt individuals and willonly compete with indi-
viduals within that subset. This implies that the only
sync done is when updating the function evaluation
counter, this is done using sync add and fetch
and does not create much overhead. Essentially,
this algorithm is equivalent to evolving a popula-
tion size of λ/nt (1+ 1)-CMA-ES in parallel. In
the case whenλ = nt this would be equivalent to

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

268



0 5 10 15 20 25 30
0

5

10

15

20

25

30

 

 

Optimal
Asynchronous
Synchronous

S
pe

ed
up

number of threads

Figure 2: Computation time, normalized by that of using a
single core, versus cores (threads).

running (1+ 1)-CMA-ES λ times, i.e. a multi-
start. The asynchronous implementation will se-
lect competing individuals from the whole popu-
lation. To check if an individual is available a
sync bool compare and swap is called and this

will create some thread overhead. Indeed the loss
in speed-up is entirely due to this call and its con-
sequences.

The synchronous and asynchronous (1+1)-CMA-
ES performance speed up is compared in figure 2 on
the different hardware setups. The number of indi-
viduals used isλ = 200 and the total maximum num-
ber of functions calls 400.000. The average compu-
tational time is then averaged over 250 independent
runs. The speed up for Intel’s 6 core CPU is lin-
ear for both parallel strategies. Only marginal speed-
ups are observed using the 12 hyper-threads. For the
eight quad core configuration the asynchronous ver-
sion creates greater overhead than the synchronous
version. However, both show a decrease in speed up
as the number of threads increases. The reason for
this may be numerous hardware and software related
issues mentioned above. The speed-up is linear up to
16 core for the synchronous version. Now the global
search performance will be studied.

5 GLOBAL SEARCH
PERFORMANCE

In this section search performance of the parallel (1+
1)-CMA-ES is studies for two unconstrained multi-

modal test functions and a number of multi-modal
constrained test functions. The hardware configura-
tions and implementations are described in the previ-
ous section.

5.1 Unconstrained

In order to give some indication of global search per-
formance two unconstrained multi-modal functions
are studied. The functions chosen are Ackley’s and
Kowalik’s function. The population is initialized uni-
formly and randomly in[−32,32]30 and [−5,5]4 re-
spectively. The experiments use a global step-size of
σ = 64/

√
n andσ = 1/

√
n respectively.

Ackley

In the previous section the asynchronous and syn-
chronous versions of the (1+1)CMA-ES were stud-
ied with respect to speed-up. A population size of
λ = 200 was used and a maximum of 400.000 func-
tion evaluations. The global hit rate, for these dif-
ferent parallel implementations, is examined on Ack-
ley’s function:

min f (x) = −20exp

(

−0.2

√

1
n

n

∑
i=1

x2
i

)

−exp

(

1
n

n

∑
i=1

cos2πxi

)

+20+e

This function has many local minima and so can
be deceptive for a single (1+ 1)-CMA-ES strategy.
Indeed when using 200 restarts of the (1+1)-CMA-
ES on this function the global hit rate is zero! The
global hit rate increases however with the increasing
number of competing parallel (1+1)-CMA-ES. In our
synchronous version the number competing individu-
als isλ/nt and the global hit rate declines to around
98% oncent > 20. This implies that the global search
performance is quite acceptable for a population size
of aroundλ = 10. Indeed the global performance
of the(µ/µw)-CMA-ES is excellent for this function.
The following section studies is a more difficult multi-
modal function.

Kowalik

Here Kowalik’s function:

min f (x) =
11

∑
i=1

[

ai−
x1(b2

i +bix2)

b2
i +bix3+ x4

]2

is examined wherea =(.1957, .1947, .1735, .1600,
.0844,.0627,.0456,.0342,.0323,.0235,.0246) and
b−1 =(.25, .5, 1, 2, 4, 6,. . ., 16). The population

Asynchronous�Parallel�(1+1)-CMA-ES�for�Constrained�Global�Optimisation

269



size and maximum function evaluations is the same as
for Rastrigin’s function. The parallel version studied
is the asynchronous version using 32 cores/threads.
The global hit performance is compared with the
(µ/µw,λ)-CMA-ES. The code used is CMA-ES1 us-
ing the default settings and a maximum of 5-restarts
(Hansen, 2006). The number of global hits for 100
independent runs is given in table 1. On closer in-
spection it is revealed that local minima are found out-
side the object variable range initially specified. The
global hit performance for the asynchronous parallel
(AP-λ) (1+ 1)-CMA-ES is at 84/100 and more suc-
cessful than the (µ/µw,λ)-CMA-ES using restarts.

Table 1: The number of global hits for Kowalik’s function
out of 100 runs.

Algorithm global hits
(4/4w,8)-CMA-ES 40

(µ/µw,λ)-CMA-ES 5-restart 50
AP-200-(1+1)-CMA-ES 84

5.2 Constrained

In (Arnold and Hansen, 2012) unimodal test func-
tions g06, g07, g09, g10 from (Runarsson and
Yao, 2000) were examined with excellent perfor-
mance. The multi-modal problem from this set of
problemsg01, g08 and from the extended set of
benchmarksg19, g24 (Liang et al., 2006) will be
studied here. Furthermore, test function from (Gomez
and Levy, 1982) is included, where a constraint cuts
the feasible search space into several small islands.
Test functions with equivalent constraints will be ig-
nored, as it will be almost impossible to randomly
generate an initial feasible starting point for some of
these problems. In this experimental study the main
concern is with the global hit rate for the optimizer.
Furthermore, test functiong02 was not ignored, how-
ever, finding solutions close to best known and con-
sistently remains a challenge. The convergence speed
of the(1+1)-CMA-ES is fast as reported by (Arnold
and Hansen, 2012), the danger is that is will be too
fast and so trapped in a local minima. In each of the
experiments the initial global step sizeσ is set arbi-
trarily to 0.1 as in (Arnold and Hansen, 2012).

g01

The following test function seems harmless at first,
but is indeed non-convex.

Minimize (Floundas and Pardalos, 1987):

1MATLAB version 3.61.beta https://www.lri.fr/ ˜
hansen/cmaesinmatlab.html

f (x) = 5
4

∑
i=1

xi−5
4

∑
i=1

x2
i −

13

∑
i=5

xi (11)

subject to:

g1(x) = 2x1+2x2+ x10+ x11−10≤ 0

g2(x) = 2x1+2x3+ x10+ x12−10≤ 0

g3(x) = 2x2+2x3+ x11+ x12−10≤ 0

g4(x) =−8x1+ x10≤ 0

g5(x) =−8x2+ x11≤ 0

g6(x) =−8x3+ x12≤ 0

g7(x) =−2x4− x5+ x10≤ 0

g8(x) =−2x6− x7+ x11≤ 0

g9(x) =−2x8− x9+ x12≤ 0

(12)

where the bounds are 0≤ xi ≤ 1 (i = 1, . . . ,9), 0≤
xi ≤ 100 (i = 10,11,12) and 0≤ x13≤ 1. The global
minimum is at x∗ = (1,1,1,1,1,1,1,1,1,3,3,3,1)
where six constraints are active (g1,g2,g3,g7,g8 and
g9) and f (x∗) =−15.

In an asynchronous parallel setting using 12
threads andλ = 24 individuals, all initialized using
exactly the same feasible starting solution, the num-
ber of global hits is approximately 75 out of 100 inde-
pendent. However, when using a single(1+1)CMA-
ES the global hit rate is around 18/100. If one would
now run 12 single(1+1)CMA-ES with the same ini-
tial solution the hit rate becomes on average 67/100.

g08

Maximize (Koziel and Michalewicz, 1999):

f (x) =
sin3(2πx1)sin(2πx2)

x3
1(x1+ x2)

(13)

subject to:

g1(x) = x2
1− x2+1≤ 0

g2(x) = 1− x1+(x2−4)2≤ 0

(14)

where 0≤ x1 ≤ 10 and 0≤ x2 ≤ 10. The op-
timum is located atx∗ = (1.2279713,4.2453733)
where f (x∗) = 0.095825. The solution lies within
the feasible region. For this reason all variations of
the(1+1)CMA-ES found the solution with ease each
time, in less than 600 function evaluation with a pre-
cision of 10−16.

g19

(Himmelblau et al., 1972):
Maximize: f (x) = ∑10

i=1bixi −

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

270



∑5
j=1 ∑5

i=1ci j x(10+i)x(10+ j)−2∑5
j=1d jx3

(10+ j)

subject to:
g j(x) = 2∑5

i=1ci j x(10+i) + 3d jx2
(10+ j) + ej −

∑10
i=1ai j xi ≥ 0 j = 1, . . . ,5

where b = [−40,−2,−.25,−4,−4,−1,−40,−60,
5,1] and the remaining data is given in Table 2. The
bounds are 0≤ xi ≤ 10 (i = 1, . . . ,15). Again the
problem is trivial for the single(1 + 1)CMA-ES
and not only that as it improves on the best known
solution reported in (Liang et al., 2006). The solu-
tion is f (x∗) = −29.84240 x∗ = (0,0,1.659232,0,
5.101101,10,0,0,2.7164250,0.502679,0.422431,
0.493286,0.398111,0). The solution can also be
found easily using MATLAB’s fmincon, which
is interesting, since the winner of the CEC2006
competition (Liang et al., 2006) used this function
to perform local search. Clearlyfmincon has been
improved since then.

g24

Minimize (Floudas and Pardalos, 1990):

f (x) =−x1− x2

subject to:

g1(x) =−2x4
1+8x3

1−8x2
1+ x2≤ 0

g2(x) =−4x4
1+32x3

1−88x2
1+96x1+ x2−36≤ 0

where the bounds are 0≤ x1≤ 3 and 0≤ x2≤ 4. The
feasible global minimum is atx∗ = (2.3295,3.17846)
where f (x∗) =−5.50796.

Experiments with a single(1+1)-CMA-ES strat-
egy reveals that it may in some instances be caught
in the same local minima 12/100 times. Running 12
(1+1)-CMA-ES strategies on the same initial solu-
tions results in being trapped in 2/100 times in a local
minima. The 12 thread asynchronousλ = 24 (1+1)-
CMA-ES finds consistently the global optimum.

Gomez#3

As a final test a function from (Gomez and Levy,
1982) has been included,
Minimize:

f (x) =
(

4−2.1x2
1+

1
3

x4
1

)

x2
1+ x1x2+(4x2

2−4)x2
2

subject to:

g1(x) =−sin(4πx1)+2sin2(2πx2);

where the bounds are 0≤ x1≤ 1 and 0≤ x2≤ 1. The
optimal solution to this function isf (x∗) = −0.9711

Table 2: Data set for test problem g19.

j 1 2 3 4 5
ej −15 −27 −36 −18 −12
c1 j 30 −20 −10 32 10
c2 j −20 39 −6 −31 32
c3 j −10 −6 10 −6 −10
c4 j 32 −31 −6 39 −20
c5 j −10 32 −10 −20 30
d j 4 8 10 6 2
a1 j −16 2 0 1 0
a2 j 0 −2 0 4 2
a3 j −3.5 0 2 0 0
a4 j 0 −2 0 −4 −1
a5 j 0 −9 −2 1 −2.8
a6 j 2 0 −4 0 0
a7 j −1 −1 −1 −1 −1
a8 j −1 −2 −3 −2 −1
a9 j 1 2 3 4 5
a10j 1 1 1 1 1

at x1 = 0.10926 andx2 = −0.623448. Here the vari-
ables are bounded in the range−1 to 1 which contains
20 disjoint feasible regions.

Again all of the runs start from a single randomly
generated feasible start point. In 7/100 runs the 12
thread asynchronousλ = 24 (1+1)-CMA-ES fails to
locate the global minima. This indicates that the mu-
tation strength ofσ = 0.1 is large enough to jump to
different feasible regions, although they are not very
large. The feasible regions are equally spaces, circu-
lar, and with a diameter of around 1/4. The single
(1+ 1)-CMA-ES fails to find the global solution in
55/100 runs. Running 12(1+1)-CMA-ES strategies
on the same initial solutions results in being trapped
in 19/100 times in a local minima.

6 CONCLUSION

The effectiveness of the (1+ 1)-CMA-ES in a com-
petitive asynchronous parallel framework has been
demonstrated. Indeed a multi-start (1+ 1)-CMA-
ES, even starting at the same point, is an effective
global optimizer. Nevertheless, the competitive asyn-
chronous parallel scheme has a slight advantage over
using purely restarts.

An asynchronous algorithm is attractive as the
load on the cores may be unbalanced. In essence none
of the threads should be idle, unless they have trouble
finding available individuals for replications and over-
writing. However, when considering more costly ob-
jective function evaluations the thread overhead will
become less important and the asynchronous proper-
ties of the algorithm more pertinent.

One of the more challenging test cases studied is

Asynchronous�Parallel�(1+1)-CMA-ES�for�Constrained�Global�Optimisation

271



the non-convex quadratic programming problemg01.
This problem is also challenging for the full (µ/µw,λ)-
CMA-ES using the various constraint handling tech-
niques discussed in (Hansen, 2011). Interestingly this
test case is quite successfully solved using a very sim-
ple ES in (Runarsson and Yao, 2000), but this may be
attributed to the use of the objective function in bias-
ing the search in the infeasible regions. How to locate
feasible regions remains one of the main concerns of
the approach presented here. This is especially the
case when considering equality constraints. Travers-
ing infeasible regions is also of immediate concern.

Global search performance would clearly be en-
hanced using multiple different starting points, but it
was decided to ignore this option now and limit the
search to a single starting point for the constrained
problems. The reason for this is that it may be dif-
ficult to find a feasible starting points in practice. It
is also possible to enhance the global search perfor-
mance by letting each thread be dedicated to a subset
of λ/nt individuals. Then with some probability (say
ten percent) the individualj may be chosen arbitrar-
ily from the entire set of individuals. This will slow
down local convergence but enhance global search.
This would serve as a mechanism for balancing ex-
ploration versus exploitation.

REFERENCES

Arnold, D. V. and Hansen, N. (2012). A (1+1)-CMA-ES
for constrained optimisation. InProceedings of the
fourteenth international conference on Genetic and
evolutionary computation conference, pages 297–304.
ACM.

Auger, A. and Hansen, N. (2005). A restart CMA evolution
strategy with increasing population size. InEvolution-
ary Computation, 2005. The 2005 IEEE Congress on,
volume 2, pages 1769–1776. IEEE.

Floudas, C. A. and Pardalos, P. M. (1990).A collection
of test problems for constrained global optimization
algorithms, volume 455. Springer.

Floundas, C. and Pardalos, P. (1987).A Collection of
Test Problems for Constrained Global Optimization,
volume 455 ofLecture Notes in Computar Science.
Springer-Verlag, Berlin, Germany.

Gomez, S. and Levy, A. (1982). The tunnelling method for
solving the constrained global optimization problem
with several non-connected feasible regions. InNu-
merical analysis, pages 34–47. Springer.

Hansen, N. (2006). The CMA evolution strategy: a compar-
ing review. In Lozano, J., Larranaga, P., Inza, I., and
Bengoetxea, E., editors,Towards a new evolutionary
computation. Advances on estimation of distribution
algorithms, pages 75–102. Springer.

Hansen, N. (June 28, 2011). The CMA evolution strategy:
A tutorial.

Himmelblau, D. M., Clark, B., and Eichberg, M.
(1972).Applied nonlinear programming, volume 111.
McGraw-Hill New York.

Koziel, S. and Michalewicz, Z. (1999). Evolutionary al-
gorithms, homomorphous mappings, and constrained
parameter optimization.Evolutionary Computation,
7(1):19–44.

Liang, J. J., Runarsson, T. P., Mezura-Montes, E., Clerc,
M., Suganthan, P. N., Coello-Coello, C. A., and Deb,
K. (2006). Technical report, Nanyang Technol. Univ.,
Singapore.

Runarsson, T. (2003). An asynchronous parallel evolution
strategy. International Journal of Computational In-
telligence and Applications, 3(04):381–394.

Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for
constrained evolutionary optimization.IEEE Trans-
actions on Evolutionary Computation, 4(3):284–294.

Runarsson, T. P. and Yao, X. (2005). Search biases in
constrained evolutionary optimization.Systems, Man,
and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 35(2):233–243.

Runarsson, T. R. and Yao, X. (2002). Continuous selection
and self-adaptive evolution strategies. InIEEE Conf.
on Evolutionary Computation, pages 279–284.

Suttorp, T., Hansen, N., and Igel, C. (2009). Efficient co-
variance matrix update for variable metric evolution
strategies.Machine Learning, 75(2):167–197.

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

272


