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Abstract: This paper presents laser-based tracking of moving objects conducted by a group of mobile robots located 
near one another. Each robot finds moving objects such as people, cars, and bicycles in its own laser-
scanned images using a binarized occupancy-grid-based method. It then sends laser measurements related to 
the detected moving objects to a central server. The central server estimates the pose and size of the moving 
objects via the Kalman filter based on received measurements; it then feeds that information back to the 
robots. Rule-based and global-nearest-neighbor-based data associations are applied for matching of tracked 
objects and laser measurements in multitarget environments. In this cooperative tracking method, the central 
server collects the laser measurements from all robots; hence, the robots can always track invisible or 
partially invisible objects. The experimental results for two robots in an outdoor environment validate our 
tracking method. 

1 INTRODUCTION 

Tracking (i.e., estimating the motion of) multiple 
moving objects is an important issue for the safe 
navigation of mobile robots and vehicles. The use of 
stereo cameras or laser scanners (LS) in mobile 
robotics and vehicle automation has attracted 
considerable interest (Arra and Mozos, 2010, Mertz 
et al., 2013, Ogawa et al., 2011, Sun et al., 2006). 
We have presented a people-tracking method that 
uses LS mounted on mobile robots and automobiles 
(Hashimoto et al., 2006, Sato et al., 2010). To 
introduce robots (such as service and rehabilitation 
robots) into human environments, higher accuracy 
and reliability of moving-object tracking systems are 
required. 

Most conventional moving-object tracking 
focuses on people under the assumption that a 
moving object is a mass point. However, in the real 
world, many kinds of moving objects, such as 
people, cars, bicycles, and motorcycles, exist. 
Therefore, we should treat a moving object as a rigid 
body and estimate both pose (position and velocity) 
and the object size. Tracking of a rigid body is 
known as extended object tracking, and many 
studies related to extended object tracking have been 
conducted (Fayad and Cherfaoui, 2007, Miyata et 

al., 2009, Zhao et al., 2012).  
Recently, many studies related to multirobot 

coordination and cooperation have also been 
conducted. When multiple robots are located near 
one another, they can share their sensing data 
through intercommunication. Thus, the multirobot 
team can be considered a multisensor system. 
Therefore, even if moving objects are located 
outside the sensing area of a robot, the robot can 
recognize them based on tracking data from the 
other robots in the team. Hence, multiple robots can 
improve the accuracy and reliability of tracking 
moving objects (Chou, 2011, Tsokas and 
Kyriakopoulos, 2012).  

As shown in Fig. 1, in an intelligent transport 
system (ITS), if tracking data are shared with 
neighboring vehicles, each vehicle can efficiently 
recognize moving objects. Therefore, an advanced 
driver assist system can be built that detects people 
suddenly running on roads and vehicles making 
unsafe lane changes in crowded urban environments.  

For this purpose, our previous work (Kakinuma 
et al., 2012, Ozaki et al., 2012) presented a people-
tracking method using multiple mobile robots. In 
this paper, we extend our previous method (people 
tracking) to tracking both people and vehicles; their 
pose and size are estimated using multiple mobile  
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Figure 1: Example of cooperative tracking in ITS. 

 

Figure 2: Overview of the mobile robot system. 

robots. 
For simplicity, in this paper, moving-object 

tracking by multiple mobile robots is referred to as 
cooperative tracking, whereas that by an individual 
robot in a team is referred to as individual tracking. 
The rest of the paper is organized as follows. Section 
2 gives an overview of our experimental system. In 
Section 3, cooperative tracking is presented. In 
Section 4, to validate our method, we describe an 
experiment of moving-object tracking by using two 
mobile robots in an outdoor environment; we then 
present our conclusions. 

2 EXPERIMENTAL SYSTEM 

Figure 2 shows the mobile robot system used in our 
experiments. Each of the two robots has two 
independently driven wheels. A wheel encoder is 
attached to each drive wheel to measure the wheel’s 
velocity. A yaw rate gyro is attached to each robot’s 
chassis to sense the turn velocity. These internal 
sensors calculate the robot’s pose based on dead 
reckoning. 

Each robot is equipped with a forward-looking 

LS (SICK LMS100). It captures laser-scanned 
images that are represented by a sequence of 
distance samples in a horizontal plane of 270 deg. 
Each robot is also equipped with RTK–GPS 
(NovAtel GPS-702-CG). The sampling period of the 
sensors is 10 Hz. The angular resolution of the LS is 
0.5 deg, and each scan image consists of 541 
distance samples. We use broadcast communication 
by wireless LAN to exchange information between 
the central server and the robots.  

3 MOVING-OBJECT TRACKING 

3.1 Overview 

As shown in Fig. 3, each robot independently finds 
moving objects in its own laser image based on a 
binarized occupancy-grid method (Hashimoto et al., 
2006). The robot uploads laser measurements related 
to moving objects to a central server.  

Laser measurements (positions) from the same 
moving object have similar values, whereas those 
from different objects are significantly different. 
Thus, the central server clusters laser measurements 
by checking the gap between two adjacent 
measurements. Subsequently, the server tracks 
moving objects (estimates their size, position, and 
velocity) and transmits the tracking data to the 
robots.  

The grid map is represented on a world 
coordinate frame. To map the laser-scanned images 
onto the coordinate frame, each robot needs to 
identify its own pose with a high degree of accuracy 
on the world coordinate frame. To define the world 
coordinate frame, we consider the GPS base station 
as the origin. Each robot determines its own pose 
based on dead reckoning and GPS information via 
the extended Kalman filter. 

 

Figure 3: System overview of cooperative tracking. 
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3.2 Size and Pose Estimation 

We assume that the shape of the moving object is 
represented by a rectangle with width W and length 
L. As shown in Fig. 4, we define an xvyv-coordinate 
frame on which the yv-axis aligns with the heading 
direction of a tracked object. From clustered laser 
measurements related to a moving object (hereafter, 
moving-object measurements), we extract the width 
Wmeas and length Lmeas. The size of the tracked object 
is then estimated by the following equation (Fayad 
and Cherfaoui, 2007): 
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where W and L are estimates of width and length, 
respectively, k and k1 are time steps. G is the filter 

gain, given by k pG )1(1  , and p is a 

parameter; the larger the value of p, the more 
reliable the current measurements, Wmeas and Lmeas.  
To extract Wmeas and Lmeas from the moving-object 
measurements, we need to obtain the heading 
direction of the tracked object; as shown in Fig. 4, 
we extract two lines based on the split and merge 
method (Nguyen et al., 2009) from the moving-
object measurements and determine the heading 
direction of the tracked object from the orientation 
of the lines. When we cannot extract the two lines, 
we determine the heading direction of the tracked 
object from the velocity estimate of the object, 
which is estimated by the following method. 

We define the centroid position of the rectangle 
estimated by Eq. (1). From the centroid position, the 
pose of the tracked object (position and velocity,  

 

Figure 4: Size estimate. Red circles indicate moving-
object measurements. Green lines indicate extracted lines 
based on these measurements. Orange rectangle indicates 
the estimate rectangle, and orange circle indicates the 
centroid of the rectangle. 

estimated by the Kalman filter under the assumption 
that the object moves at a nearly constant velocity.  

Objects appear in and disappear from the sensing 
area of the LS. They also interact with and are 
occluded by each other and other objects in the 
environment. To maintain the reliable tracking under 
such conditions, we implement a rule-based 
tracking-management system (Hashimoto et al., 
2006). 

3.3 Data Association 

To track objects in multi-object and multi-
measurement environments, we need data 
association (one-to-one matching of tracked objects 
and laser measurements); a validation region is set 
around the predicted position of each tracked object. 
The shape of the validation region is rectangular, 
and its length and width are 0.8 m longer than those 
for the object estimated at the previous time step.  

We refer to the representative of grouped 
moving-object measurements as the representative 
measurement. Representative measurements inside 
the validation region are considered to originate 
from the tracked object and are used to update the 
position of the tracked object using the Kalman filter, 
whereas those outside the validation region are 
identified as false alarms and discarded.  

As shown in Figs. 5 and 6, in the real world, 
multiple representative measurements often exist 
inside a validation region; multiple tracked objects 
also compete for representative measurements. To 
achieve a reliable data association (matching of 
tracked objects and representative measurements), 
we introduce the following rules: 

a) Person: Because person sizes are small, a 
person usually results in one representative 
measurement. Thus, if a tracked object is considered 
a person, matching of a tracked person and a 
representative measurement (one-to-one matching) 
is performed. 
b) Vehicle: Because vehicle sizes are large, as 
shown in Fig. 5, a vehicle often results in multiple 
representative measurements. Thus, if a tracked 
object is considered a vehicle, matching of a tracked 
vehicle and representative measurements (one-to-
many matching) is performed. 

Based on the estimated size of the tracked object, 
we decide whether the object is a person or a 
vehicle; if the estimated size in length or width is 
larger than 0.8 m, the object is determined to be a 
vehicle; otherwise, a person. 

On urban streets, people often move near 
vehicles, whereas vehicles move far away from each 
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Figure 5: Laser measurements obtained using two robots. 

 

Figure 6: Data association. Black and red circles indicate 
tracked objects and moving-object measurements, 
respectively. Light blue triangles indicate representative 
measurements for moving-object measurements. VG stands 
for validation region. 

other. Thus, when representative measurements of 
people exist in the validation region of a tracked 
vehicle, they might be matched to the tracked 
vehicle. To avoid that situation, we begin data 
association with people.  

As shown in Fig. 6, if a tracked object T2 is 
determined to be a person, the representative 
measurement M3 is matched with T2 based on the 
global nearest neighbor (GNN) method 
(Konstantinova et al, 2003). Next, if a tracked object 
T1 is determined to be a vehicle, the two 
representative measurements M1 and M2 are 
matched with T1. The representative measurement 
M4 that is not matched with any tracked objects is 
considered either to originate from a new object or 
to be a false alarm. Therefore, we tentatively initiate 
tracking of the measurement with the Kalman filter. 
If the measurement is always visible, it is considered 
to originate from a new object and tracking is 
continued. If the measurement soon disappears, it is 
considered to be a false alarm and tentative tracking 
is terminated. 

4 EXPERIMENTAL RESULTS 

We evaluated our tracking method by conducting an 
experiment in an outdoor environment, shown in 
Fig. 7(a). Two robots that are moving around track 
two people, a car, and a motorcycle; Fig. 8 shows 
their movement paths. The moving speed of the 
robots, people, car, and motorcycle were about 3 
km/h, 5 km/h, 15 km/h, and 20 km/h, respectively. 
Experimental time was 27 s (270 scans). 

 
(a) Photo of the experimental environment. 

 
(b) Tracking result. 

Figure 7: Moving-object tracking experiment. In (b), black 
rectangles indicate the estimated size of moving objects. 
Green and blue rectangles indicate the validation regions 
of cars and people, respectively. Blue bars indicate the 
estimated the moving direction. Red and blue points 
indicate laser images taken by robots #1 and #2, 
respectively. 

Table 1: Tracking duration. 

  
Cooperative 
tracking 

Individual tracking by 

Robot #1 Robot #2 
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 #1 64–177[scan] 64–177 None 

#2 65–270 65–270 188–243 
#3 89–183 89–183 96–136
#4 127–182 127–181 169–182  
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(a) Estimated track (pose) of moving objects. (b) Estimated size of vehicle #3. 

Figure 9: Pose and size estimated by the cooperative tracking of two robots. In (b), red and black lines indicate the 
estimated length and width, respectively, of vehicle #3; two dashed lines indicate the true length and width of vehicle #3. 

 

(a) Estimated track (pose) of moving objects. (b) Estimated size of vehicle #3. 

Figure 10: Pose and size estimated by the individual tracking of robot #1. 

 

(a) Estimated track (pose) of moving objects. (b) Estimated size of vehicle #3. 

Figure 11: Pose and size estimated by the individual tracking of robot #2. 

 

Figure 8: Movement path of moving objects. 

In this experiment, the filter gain G from Eq. (1) is 
determined as follows: 
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Figure 7(b) shows the tracking results at 16 s 
(160 scans). Figure 9 shows the tracking of people 
and vehicles as well as the size of vehicle #3, as 
estimated by two robots (cooperative tracking). For 
comparison, individual tracking by each robot was 
also conducted. The tracking results for robots #1 
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and #2 are shown in Figs. 10 and 11, respectively. 
Table 1 shows the tracking duration. 

These results show that cooperative tracking 
using two robots can provide better tracking 
accuracy than individual tracking using either robot 
#1 or #2. 

5 CONCLUSIONS 

This paper presented a laser-based method for 
tracking of moving objects (people and vehicles) 
that uses multiple mobile robots located near one 
another. The size and pose (position and velocity) of 
the objects were estimated, and the method was 
validated by an experiment of people and vehicle 
tracking using two robots.  

In our method, robots find moving objects in 
their sensing area and transmit object information to 
a central server, which then estimates the size and 
pose for each moving object. Such a server-client 
system is weak from the view-point of system 
dependability and computational burden. Future 
research will be directed to the design of a 
decentralized architecture in moving-object tracking.  
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