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Abstract: A cache holding reusable computations that are carried out during the execution of a genetic algorithm is 
implemented and maintained in order to improve the performance of the genetic algorithm itself. The main 
idea is that the operational genome is actually consisting of small computational blocks that tend to be 
interchanged and reused several times before they complete (or not) their lifecycle. By computing these 
blocks once and keeping them in memory for future possible reuse, the algorithm is allowed to run up to 
fifty times faster according experimental results maintaining a general case execution time reduction of four 
times. The consistency of the cache is maintained through simple rules that validate entries in a very straight 
forward manner during the genetic operations of cross over and mutation. 

1 INTRODUCTION 

Evolutionary algorithms comprise a powerful class 
of optimization techniques but do not scale very well 
to large problems. This fact limits their usability and 
consequently makes them inappropriate for difficult 
online problems and really large datasets. Any 
techniques that reduce the execution time of 
evolutionary algorithms can be very useful and 
greatly contribute to the popularity of the specific 
algorithms in solving problems that demand huge 
amounts of processing resources. This paper 
discusses the implementation of a cache to a generic 
genetic programming algorithm but there is no 
reason why a similar technique could not be 
implemented in other sub categories of the 
evolutionary algorithms arsenal provided that the 
right modifications are undertaken. Evolutionary 
algorithms usually spend most if their execution 
time on evaluating a candidate solution (an 
individual of the undertaken population) and come 
up with a numeric fitness value. For genetic 
programming this translates into performing a great 
deal of computations that can be very time 
consuming depending on the complexity of the 
genetic operations used.  

The most often used operations are the basic 
algebraic computations of addition, subtraction,  
multiplication, division the trigonometric operations 

of sine, cosine, tangent the exponential operations of 
power, natural logarithm the squashing operations of 
the step, logistic and Gaussian functions and the 
logic operators of the greater/less than decisions. 
The genetic operations selection is left to the 
intuition, prior knowledge and creativity of the 
designer and can have a substantial influence on the 
execution time of the search. It is obvious that some 
operations like the exponential or the square root 
function for example, demand much more cpu 
cycles that the computation of a simple addition. 
Having a large dataset comprising many fitting 
examples means that the fitness evaluation function 
must be repeated many times (once for each 
example). Considering the number of calculations 
represented by each individual candidate solution, it 
is evident that getting rid of the burden of 
recalculating the same genetic blocks that have been 
crossed over by the algorithm or the same 
chromosomes that are just slightly altered by 
mutation can significantly reduce the execution time 
of the algorithm. 

The problem of reducing the execution time of 
genetic programming algorithms has been 
investigated by a number of researchers. Poli (2008) 
very briefly discusses several ways in that direction 
with the use of a caching mechanism being one of 
them. Other ways besides caching may be the 
hardwiring of the genetic programming algorithm 
execution on really fast hardware like dedicated 
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circuitry (FPGAs), running the code on fast 
graphical processing units (GPUs) or using 
distributed processing. 

Evidence for the potential benefits of using a 
speeding up cache is provided by Vie Ciesielski and 
Xiang Li (2004) in their analysis of genetic 
programming runs. Many successful and effective 
implementations proposed previously suggest a 
different or modified representation of the 
algorithm's individuals. For example, Handley 
(1994) proposed the representation of the candidate 
solutions through Directed Acyclic Graphs (DAG) 
in a way that identical sub trees are not duplicated 
and their fitness function values are cached in order 
to be reused when possible. Machado and Cardoso 
(1999) on the other hand propose an implementation 
in which the individuals are not represented as 
independent trees but as a merged tree with no sub 
tree repetitions. Other implementations preserve the 
traditional tree representation but maintain a hash 
table to detect a potential cache hit.  

In this paper, the genetic programming cache 
proposed does not modify the classical tree 
representation and does not demand complex control 
processes to maintain the cache validity. On the 
contrary, a set of simple rules invalidate the cache 
after the genetic operations of crossover and 
mutation are applied. We believe that through its 
simplistic and effective nature it provides significant 
advantages in comparison to other implementations 
with the most important being its execution time 
reduction and the fact that it is fully detached from 
the mechanisms of a normal implementation that 
does not use a cache. This quality makes it easy to 
add the caching process to existing software genetic 
programming implementations.  

Along with the advantages of sparing significant 
processing time comes the burden of maintaining a 
sane and valid cache that is synchronized with the 
main genetic operations. Since the cache is 
implemented in software these maintenance steps 
must be coded into the algorithm itself. On top of 
these problems, the extra required memory for 
setting up a cache mechanism must be taken under 
consideration. In the next sections it will be shown 
that maintaining the cache is a really simple task 
with negligible overhead and the extra memory area 
can be restricted to a couple of gigabytes for 
medium sized problems. 

 
 
 

2 CACHE IMPLEMENTATION 

After initializing the genetic programming algorithm 
a great part of the genome building blocks 
manipulated by the genetic operators of crossover 
and mutation is used in its original form, it is 
modified partially or it is slightly altered. This 
property is exploited to avoid recalculating the 
values of a great number of such blocks during each 
generation. To be able to implement a genetic 
programming cache, two fundamental operations 
must be developed: the cache hit and the cache 
invalidation mechanisms. Cache replacement is not 
of great concern because in contrast to the classical 
cache concept, the genetic programming cache does 
not maintain the locality of reference property. On 
the contrary, the cache hits of a specific gene 
operation depend solely on the relative fitness of the 
chromosome they belong to and much less on the 
fitness of the neighbouring gene representations. 

As in the classic cache implementation, a cache 
hit event takes place when a previously stored block 
of data (or instructions) is requested for processing. 
In the case of the genetic programming algorithm 
which uses a software cache, in order to detect a 
cache hit event, it is necessary to build and maintain 
a set of auxiliary tables besides the cache table itself.  
These auxiliary tables will be holding the necessary 
information to provide the desired functionality. 
This information is comprised of the cache index 
(pointer) for a specific stored calculation already 
performed and available for fast access, the next 
operation following the cached calculation from 
where the evaluation of a candidate solution must 
continue and a validity flag for each cache entry. For 
every candidate solution in the undertaken 
population corresponds a row in the cache index 
table which in turn has as many columns as the 
maximum allowed length of the chromosomes. Each 
slot in such a row represents a possible cache entry 
index for each gene (operation) of a specific 
individual of the population. This index leads to the 
location of the numerical result of the operation 
currently being executed in the actual cache table. In 
this way the calculation procedure is spared and the 
result is retrieved in a single memory access instead 
of going through intensive cpu computations. 
Maintaining the next operation to execute (returning 
gene) is important because the evaluation function 
must resume its normal operation from that node 
after a cache hit. The returning-gene table entry is 
also important in order to invalidate a cache entry 
after it gets invalidated by having a genetic 
operation like crossover and mutation acted upon it. 
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The cache tables may be allocated dynamically, on 
demand, or statically for convenience and ease of 
management. Since dynamic allocation in this 
implementation does not provide significant 
advantages, static allocation is preferred and used. 
The auxiliary cache tables have a capacity equal to 
the product of the population times the max 
allowable size of the chromosomes. In this way, 
each gene of a candidate solution may have its own 
pointer to a cache entry accompanied with a 
returning-gene offset inside the chromosome itself 
and a validity flag which signals the usability of the 
stored result. For example if a population consists of 
N individuals and the maximum size of each 
individual is M genes then the following auxiliary 
tables could be used 
 Cashed Gene Offset table having a size of  N x 

M  single precision floating numbers 
 Cached Gene returning-gene offset table having 

a size of  N x M short integers 
 Cached gene validility flag table having a size 

of  N x 1 Booleans   
 

In practice genetic programming algorithms use 
genes that represent constant values or input 
variables that act as operands of the mathematical 
operations. There is no meaning in caching these 
genes since they are constant values and do not 
represent an underlying processing task. As a matter 
of fact in a sane execution of the algorithm a 
constant value should never trigger a cache hit and 
this fact can be embedded in the coding in order to 
constantly check for execution sanity. 

The actual cache table is a large table that holds 
the numerical results of already performed 
calculations in order to have them available for reuse 
during the execution of the genetic programming 
algorithm. Every candidate solution is applied and 
evaluated for its performance (fitness) for a number 
of cases (training examples). This implies that every 
entry in the cache represents a calculation that will 
be repeated for all training cases and will of course 
have a different result for each case. For 
convenience and faster recalls each offset of the 
cache forms a frame that holds the results of the 
evaluation for each training example. For obvious 
reasons each frame of the cache has a size which is 
equal to the number of the training cases. For 
example if the cache of a problem that deals with K 
training cases consists of L frame entries the cache 
table has a size of  L x K floating numbers. The most 
important elements of the proposed caching 
implementation have been already referenced and so 
everything is put together in Figure 1 which shows 

the cache mechanism for an example equation and 
its tree representation. 

 

Figure 1: The cache auxiliary tables and the genes’ tree 
shown for an example program of an evolutionary 
algorithm. 

The genetic program evaluates the fitness 
function of an individual by applying the gene-
expressed mathematical equation on all training 
examples one after the other. This procedure implies 
that a cache frame should be in an ascending order 
which in turn means that a cache hit is detected only 
when all fitness cases regarding a computation block 
have been run exactly once for each of the training 
cases. It could be possible to maintain a table 
pointing to which fitness case the cache entries are 
valid for a specific block but it is not necessary since 
it’s impossible to have a cache hit before the fitness 
function is run for all cases. The latter observation 
reflects the nature of the fitness function in genetic 
programming algorithms where all cases are 
considered before deciding for the fitness value of 
an individual. This concept influences the way the 
cache entries are marked as valid by having the 
Boolean flag set only when all training cases have 
been considered in the fitness evaluation function. If 
the Boolean flag of a cache frame is set before the 
completion of all training cases then a false cache hit 
will fire in the next case consideration since the 
cache offset stores the computational values of a 
gene for all training cases as described before. In 
implementation terms, the cache gene validity flag is 
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set when the last training example has been 
considered in the fitness function of the algorithm 
and not anytime before. 

Before moving on to the invalidation mechanism 
of the cache some more details regarding the 
implementation of the cache hit mechanics are 
necessary from the software coding point of view. 
When the genetic programming algorithm starts 
computing the fitness of a solution, it processes each 
gene one after the other. Before executing the 
corresponding computation it checks for a valid 
cache entry by evaluating the cache gene validity 
flag. If the flag is set then the computation is spared 
and the values for all training cases regarding the 
specific gene are retrieved from the cache. The 
location of the cache frame is found in the cache 
index table in the location that corresponds to the 
index of the solution being examined. Along with 
the values of the training cases the algorithm 
retrieves the next gene location in the solution that 
needs to be examined next. From figure 1 assuming 
that node (3) fires a cache hit, the returning-gene 
information will point to node (5). The evaluation 
function resumes its operation from node (5) whose 
result may or may not be in the cache. If cache hit 
does not occur then the evaluating function performs 
its computations as normally. The cache offsets 
stored in the gene-index table are just accenting 
integers that keep incrementing until the allocated 
cache memory space is exhausted. At that point 
there are three replacement strategies that can be 
used: the least recently used replacement (LRU), the 
FIFO replacement and the genome simplification 
process. The LRU requires to keep an aging variable 
in memory that is reset every time a hit occurs while 
the FIFO strategy just resets the cache allocation 
index to its zero relative address and start storing 
cache calculations from the beginning. The third and 
more appealing strategy is more appropriate for 
genetic programming cache implementations since it 
flushes the cache and builds up an updated one 
through the application of a computational 
simplification process. Complex nested genetic 
programs are replaced with shorter blocks that are 
mathematically equivalent. This reduces the average 
length of the population and thus accelerates the 
search even more. The invalidation of the cache is 
discussed in more details in the following 
discussion. The pseudo code that should be added to 
the original fitness function of a genetic 
programming algorithm is trivial and is shown in 
Figure 2. 

function FitnessFunction_CACHED() 
 for all Individuals in the population 
   for all TrainingCases  
       Offset=0; 
       while Offset < length(Individual) 
          index= AUX_CACHE_INDEXES[Individual,Offset] 
          if(AUX_CACHE_VALID[index]==true)    // HIT 
              result = CACHE[index,TrainingCase] 
              Offset=AUX_CACHE_RETURN[Individual,Offset] 
          else        // No Cache hit 
              result =  . . . . .       // Normal computations  

       Offset =  . . . . . .                                                       
AUX_CACHE_INDEXES[Individual,Offset] =    
           CurrentIndex 

        CACHE[CurrentIndex,TrainingCase]=result  
        AUX_CACHE_RETURN[Individual,Offset]= Offset 
        if TrainingCase == TRAINING_CASES_SIZE 
              AUX_CACHE_VALID[CurrentIndex++] = true  

Figure 2: The pseudo code of the modified fitness function 
that incorporates the genetic programming cache. 

Besides the cache hit detection and data retrieval, 
in order to have a functional and sane cache 
mechanism, data invalidation must be enforced in a 
way that guarantees genes' value entries 
synchronization. Cached gene values are valid as 
long as the genes do not undergo any modification 
since their initial computation. In a genetic 
algorithm the genes are altered through genetic 
operations like crossover and mutation. This means 
that when two parents produce an offspring or an 
individual gets mutated then the cached values 
corresponding to the involved individuals must be 
checked for validity. Some cached values must be 
invalidated while others are not influenced by the 
way a specific genetic operation is performed. To 
detect which cache entries are invalid after a genetic 
operation and which are valid, the auxiliary cache 
table holding the returning nodes must be used. The 
cache invalidation is explained based on a two point 
crossover scheme which is slightly more complex 
than one point crossover. The concept can be easily 
transferred to multi point crossover operations and is 
very similar to the checks performed for invalidating 
the mutation operation. As mentioned before, the 
invalidation rule is very simple: when a cached gene 
is altered, its cached value is invalidated. The gene 
alteration is detected by comparing the gene's 
returning node to the crossover point and if it is 
smaller, then the entry is still valid. On the contrary, 
if the gene's returning node is higher than the 
crossover point then the cached value must be 
invalidated since there is definitely gene alteration in 
the cached gene. Figure 3 shows the procedure in 
more detail. Cached genes and their range (starting 
and ending gene offset) are shown in the parents' 
chromosomes. The crossover points define the way 
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the genes of the two individuals are to be mixed up 
to form an offspring. For the case of the two point 
crossover, the first part of parent 1 from its start to 
point cx1 is used in the offspring intact - part (a) - 
and the part between cx1 and cx2 is replaced with 
the genes that are placed between points cx3 and cx4 
of parent 2, namely part (b). Offspring's genes after 
part (b) are a copy of the last part of parent 1, 
namely part (c). 

 
Figure 3: A two point crossover implementation of cache 
invalidation. 

After a crossover is finished and an offspring is 
generated, the cache invalidation mechanism 
performs the following steps 

1. Resets (clears) the cache indexing entries of the 
offspring in the auxiliary cache table. 

2. Copies all auxiliary cache index table entries 
and their returning nodes of the first parent 
that correspond to genes that reside between 
the first gene of the individual and the 
crossover point cx1 provided that the cache 
returning-gene node is before the crossover 
point. 

3. Copies all auxiliary cache index table entries 
and their returning nodes of the second parent 
that correspond to genes that reside between 
crossover point cx3 of the individual and the 
crossover point cx4 provided that the cache 
returning-gene node is before cx4. 

4. Copies all auxiliary cache index table entries 
of the first parent and their returning nodes 
that correspond to genes that reside between 
crossover point cx2 and the last gene of the 
individual. 

When copying any auxiliary cache indexing 
entries the values are copied exactly as they are 
while when copying auxiliary cache returning nodes 
the values are translated to the relative indexing 
scheme of the new offspring. This is required 
because the number of the genes between cx1 and 
cx2 is not necessarily equal to the length of the 
region between points cx3 and cx4. Nevertheless, 
performing the indexing translation is trivial. The 
pseudo code of crossover invalidation is shown in 
Figure 4 below. 

 

Figure 4: The crossover invalidation process 
corresponding to steps 1, 2, 3 and 4 as defined before. 

Invalidating the individual after a mutation 
operation is a very similar procedure. However, the 
mutation process constructs a table holding the 
indexes of the genes of an individual that have been 
mutated. All cached genes' values residing between 
two consecutive mutation points are copied to the 
resulting individual's auxiliary cache data as long as 
their returning gene value is located before the 
second mutation point (last gene of the examined 
range). This rational is again based on the fact that 
gene alteration desynchronizes the cache entry that 
is associated with this gene.  

3 EXPERIMENTAL RESULTS 

In order to examine the execution time savings of 
the genetic algorithm implementation the three most 
influential factors are considered: population size, 
population's average solution length and genetic 
operators' complexity. While the first two are self 
explanatory, the third factor has to do with the 
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atomic execution complexity of each computation. 
For example since an additive operator is much 
faster than a square root operator, it is expected that 
greater savings are to be experienced when the 
genome consists of more complex operators 
(exponentials, square roots, entropy computations 
etc) than primitive ones (addition, subtraction, 
multiplication, division). An admittedly loose metric 
of this observation is used indicating the content 
ratio of the initial population genome's complex 
operators over primitive ones. Two such cases are 
examined corresponding to 25% and 50% of 
complex operators over simpler ones in the initial 
population's solutions. The problem selected for 
evaluation is the symbolic regression of the 8-
dimensional Griewank function. The generalized 
Griewank equation is given by  
 

 
 
The two dimensional plot of the Griewank function 
is shown in Figure 5. 

  

Figure 5: The 2-d Griewank function plot. 

The algorithm is written in C# and executed 
using both the non-cache and the cache flavour for 
populations of 100, 200 and 500 individuals for one 
thousand generations each time. During the 
executions of the algorithm the total fitness function 
running time of both flavours is calculated and their 
ratio is estimated at the end of the 1000 generations. 
The experimental results of solving a problem of 
500 fitness cases with different configuration 
parameters are shown in table 1. The results grouped 
in the two categories defined by the operators' 
complexity are presented in the graphs shown in 

Figure 6 and Figure 7. Each graph corresponds to 
the population size used during execution. It is 
obvious that the larger the population size or the 
more complex the operators set used during 
execution, the bigger the savings in execution time 
accomplished by the cache mechanism. It must be 
noted that the cache size used for the execution of 
the algorithm was 2 Giga Bytes and the results were 
averaged over 5 runs of different regression 
problems.  

Table 1: The experimental results regarding the execution 
savings for various configurations of the genetic 
algorithm. 

 Exec Time Ratio (Cache / No cache) 

Complex. 
Ratio 

Avg 
Length 

Population100 Population  
200 

Population 
500 

0.5 

25 0.69 0.53 0.41 

40 0.51 0.41 0.35

55 0.39 0.36 0.31

75 0.35 0.29 0.26

100 0.33 0.25 0.21

163 0.29 0.22 0.17

200 0.27 0.18 0.14

270 0.26 0.15 0.11

350 0.19 0.11 0.07

500 0.14 0.08 0.04

1 

25 0.45 0.4 0.36

40 0.39 0.36 0.32

55 0.34 0.29 0.3

75 0.28 0.27 0.24

100 0.26 0.26 0.22

150 0.22 0.21 0.17

200 0.18 0.16 0.12

250 0.15 0.14 0.1

350 0.13 0.1 0.06

500 0.11 0.07 0.02
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Figure 6: Experimental results for operators' complexity 
ratio of 0.5 and various population sizes. 

 

Figure 7: Experimental results for operators' complexity 
ratio of 1 and various population sizes. 

4 CONCLUSIONS 

Using a cache significantly accelerates the execution 
of a genetic programming algorithm, especially 
when the solving process requires increased 
operators' complexity and/or increased population 
size during the search. It has been proved through 
the experimental results that this improvement in 
execution time can reach x50 times the normal (no 
cache) execution. Furthermore, implementing the 
cache does not require more than 2GBytes of 
memory which is easily affordable. 
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