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Abstract: This paper introduces an approach for continuous optimization using an Estimation of Distribution Algorithm
(EDA), based on the Boltzmann distribution. When using the objective function as energy function, the Boltz-
mann function favors the most promising regions, making the probability exponentially proportional to the
objective function. Using the Boltzmann distribution directly for sampling is not possible because it requires

the computation of the objective function values in the complete search space. This work presents an ap-

proximation to the Boltzmann function by a multivariate Normal distribution. Formulae for computing the
mean and covariance matrix are derived by minimizing the Kullback-Leibler divergence. The proposed EDA
is competitive and often superior to similar algorithms as it is shown by statistical results reported here.

1 INTRODUCTION consequence, the search distribution parameters
are estimated as if the regions represented by the
The Estimation of Distribution Algorithms selected set were equally good in fitness values.

o It is a well-known issue that the variance in esti-
mation of distribution algorithms is often less than
required, hence, the MLE variance estimator is

(Miuehlenbeid et al., 1996) are optimization methods
based on estimating and sampling a probability
distribution. The aim is to favor the most promising not the most adequate for searching the ootimum
regions assigning them the highest probability values. habiro. 2006: G(? hletal. 2007 9 P

In fact, the most promising regions are unknown (Shapiro, »Crahietal, )-

and have to be discovered during the optimization ~ The Boltzmann distribution has been largely used
process. The main goa| of the EDA is to pose the in Optimization; in the Estimation of Distribution Al-

probability mass around the optima. The strategy, gorithms (EDAs) context researchers have proposed
without loss of generality for a maximization pro- different approaches such as the BEDA (Mihlenbein,

cess, is to reinforce the sampling in regions with 2012; Mahnig and Muhlenbein, 2001; Muhlenbein

the maximum objective function or fitness function €t al., 1999; Muhlenbein et al., 1999). This is a gen-
values, and disregard the regions with the minimum eral framework for Boltzmann distribution based es-

values. The most common scheme for continuous timation of distribution algorithms, where practical
optimization, using EDAs, is to use a multivari- EDAs have been derived from. For example, the FDA
ate or univariate Normal distribution (Larrafiaga, (Muhlenbein and Mahnig, 1999), the Yun peng et al.
2002; Larrafiaga et al., 2000; Dong and Yao, 2008; Proposal (Yunpeng et al., 2006) and Valdez et al. pro-
Segovia-Dominguez et al., 2013). The parameters of posal. (Valdez et al., 2013) demonstrate this. The
the Normal density are estimated by using maximum unifying characteristic of this approach is that they
likelihood estimators (MLEs) over the selected intend to equip the stochastic search algorithm with
set, which is determined by the truncation method; an engine which favors the most promising regions.
usually half of the population with the worst objective The better the objective function is in a region, the
value is truncated. Nevertheless, these approachegnore intense the sampling must be. The Boltzmann
have shown a competitive performance, some evidentdistribution is used to achieve this purpose.

issues can be noticed in the strategy just mentioned: ~ The Gibbs or Boltzmann distribution of a fitness
e The truncation selection hides the fitness land- function g(x) is defined by:
scape assigning to the selected individuals the exp(Bg(x))
same importance in the parameter estimation. In p(X) 1= /x -z 1)
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As can be noticed in Equation (1) the objective The organization of the paper is as follows: Sec-
function is used as an energy function directly. In tion 2 presents the derivation of the formulae for com-

pra
not

ctical approaches, the Boltzmann distribution can- puting the parameters of the Normal multivariate dis-
be used directly for sampling because it is nec- tribution, Section 3 introduces the Boltzmann Estima-

essary to know the objective function in the whole tion of Multivariate Normal Algorithm (BEMNA), as
domain. That is the reason why the parameters of well as two annealing schedules used in it. Section
a density function are computed by minimizing a 4 is devoted to testing the proposed EDA on well-
measure between the parametric distribution and theknown test functions. Also, a comparison to another
Boltzmann distribution, for instance, the Kullback- algorithm from literature is performed. Finally, Sec-
Leibler divergence (Ochoa, 2010; Yunpeng et al., tion 5 provides some concluding remarks.
2006; Valdez et al., 2013).

There are remarkable challenges to consider for

the

designing of EDAs based on the Boltzmann dis- 2 APPROXIMATING THE

tribution:

To choose an adequafeparameter in Equation BOLTZMANN DISTRIBUTION

(1). Usually B depends on the time or is dy- BY THE NORMAL

namic during the optimization process. The pro- MULTIVARIATE

cess which controls thf updating each gener-
ation is called theannealing schedule The an- DISTRIBUTION

nealing schedule can be used to manage the ex- o :
ploration and convergence of the algorithm. This section introduces the formulae to estimate the

mean vector and covariance matrix, it is to §ayand

>, of a Normal multivariate density which approx-
imate the multivariate BoltzmanRy density, given

a set of sampleg®, x@ ... XN) which are observa-
tions of a random vectof. Let X be a random vector
such thaiX ~ Qx, whereQy = Q(x, i, X) is the multi-
variate Normal density as shown in Equation (2). The
corresponding Boltzmann density is in Equation (3).

To derive robust parameter estimators for the ap-
proximated distribution. Some approaches (Hu
et al.,, 2012; Yunpeng et al., 2006) have derived
formulae for estimating parameters of a distribu-
tion which approximate the Boltzmann density, by
weighting the population or selected set by expo-
nential functions, similar to Equation (1). Even
though competitive results are obtained, the pro-
posals often suffer from premature convergence
because the exponential function drastically leads 1 1 e ~

the probability mass to suboptimal positions. This @x = Nl exp{—z(X— Wz (X “)} (2)
behavior can be avoided by manipulating fhe

value, but it is not simple to determine how to exp(RY(%))

do it, as the second option is to obtain formulae Pk=—"—-2 3)
which do not impact the estimators as drastically. Z

The last two issues are also related with the men- '€ procedure for finding the parameters(@f

tioned variance reduction which is a common is- Which best approximaté consist in minimizing
sue in EDAs (Shapiro, 2006). a measure of dissimilarity between density func-

tions; similar to previous works (Yunpeng et al.,

Our proposal intends to tackle the challenges just 2006) (Valdez et al., 2013). Here, the Kullback-

me

algorithm, based on the approximation of the Boltz-

mal

which introduces the following features:

252

ntioned. Accordingly, this paper presents a novel Leibler Divergence presented in Equation (djp =

Dk (Qx||Px), is used as statistical measure between

nn function by a Normal multivariate distribution, probability distributions.

Two proposals of annealing schedules to update Qx

the value. Kop = /Qxlog P dx (4)
X

Formulae which are robust or at least are not im-

pacted as drastically as the exponential function

used in other approaches.

The novel annealing schedules tackle the variance SRR -

reduction problem; hence, these are mechanisms [, 2] = argmin{Kqp} (5)
to avoid the premature convergence of the algo-

rithm. Notice thatkgp can be rewrite as

The minimization ofKgp for finding the optimal
parameterf{l,, %] can be stated as shown in Eq. (5).



A Boltzmann Multivariate Estimation of Distribution Algorithm for Continuous Optimization

Kor = [ QulogQxax— [ QulogRyaX
~H(Q - [ QulogRia

(6)

1
~log((2re)? |z]) - / QylogPydy,

where the terniH (Qx) means the entropy of the mul-

tivariate Normal density (Cover and Thomas, 2006).

In order to find the parameters which minimize the
Kulback-Leibler Divergence, the partial derivatives
are calculated; Equations (7) and (8).

6§9P =— 6;2)( logPy dx
i @)
/@ )] log Py dx
Bp 18000l - 720,
= 2 o) & o9
:__/QX LX— 1) (R— 1) =1 logPydx
+§/QXZ*1|ongdx— ST
(8)

The optimal estimates for the mean vector and co-
variance matrix are obtained by making the deriva-

oK P
0= 5§
0= [ Qu(X— I (X~ 1 logPxd
(10)
—/QxlongdXZ+Z
_ BgX)X-B(X-P]
Eqla(X)] — 1/p

Finally, for estimating the parameters using the
observationsxV) %2 .. xN) of the random vari-
ableX, a numerical stochastic approximation by the
Monte Carlo method is computed, as shown in Equa-
tions (11) and (12). These two equations are the esti-
mators that approximate the parameters of the search
distribution.

L g0

. 11
H = SN o) )
S =Te 219 -pEV-pt (12
where
< gy N -
fe= _;g(i’ )_E (13)

2.1 A Note About thederived Formulae

tives equal to 0, as in Equations (9) and (10), and In Equations (11) and (12) the estimators use weights

solving forfiand respectively.

6KQP
o
0= n/meg P dX— /meogpxdz

0:

0= iBEq[g(X)] —filogZ — E[g(X)X]B + E[X]logZ
= Eo[g(iji]
Eql9(X)]

9)

The following equivalences were used to obtain
Equations (9) and (10):

e logP = Bg(X) —logZ,

o [QRAX = EgX], [Qx(X— WX - 'dX =
Eo[(X — )(X — [)!], and other similar equations.

e As X ~ Q thenEg[X] = ftandEq[(X — ) (X —
=1

defined by N >-<<l 7 In other words, the weighted es-

timators are computed by using weights proportional
to the objective function value of each individual in
the selected set. In contrast, with similar approaches
(Huetal., 2012; Yunpeng et al., 2006), there are some
advantages of these derivations:

e A proportional weight of the estimators avoids
drastic changes when the individuals considerably
differ in the objective function value. 1t is to
say that if a new individual with a large objec-
tive value is sampled, the exponential weights can
concentrate the probability mass around this sin-
gle individual, leading the algorithm to premature
convergence. This is less desirable when using
proportional weights.

e A second advantage is that the minimum variance,
which is bounded by 8 = », is not 0 for our ap-
proach, which is a significant advantage consid-
ering that naturally EDAs suffer from premature
convergence and variance reduction (Hu et al.,
2012; Yunpeng et al., 2006).
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The energy functiog(X) must be positive or equal
to zero in the domain. However, the objective func-
tion F(X) might be negative, considering that this
is a maximization/minimization problem. In order
to construct a valid energy function for the contin-
uous minimization problem, throughout this paper
the g(X) value is computed ag(X) = —F(X) —
min(—7F (%)) + 1072

2.2 Annealing Schedule 1

As seen in Equations (11), (12) and (13), tfe
value only affects the covariance matrix computa-
tion. The grade of impact of over the covari-
ance is highly related witly N, g(x()). Accordingly,
N/B < 3N, g(x)) must remain in order to maintain
a positive variance in the diagonal of the covariance
matrix, on the other hand Mi/B << yN, g(x)) then

its effect is diminished. As a consequence, the es-
timator reaches the minimum variance whgn»> o
becauseN/B — 0. An interesting remark about this
last setting is that the Normal distribution with such a
minimum variance is not similar to a Diray while

the corresponding Boltzmann distribution actually is.
Considering the arguments stated above, assufhe a
value as shown in Equation (14).

N :
B=N/((1-y) _;g(x<'>>>, (14)
i=
where O< y < 1 in order to fulfill the requirements
discussed above. Hence, Equation (12) is rewritten as
Equation (15).

-

i)'

SR e T RS

YN, g(x0)

For a = 1/y, recalling that O< y < 1, in conse-
guence Ik a < . The first schedule proposed is to
seta according historical improvements as follows:
For the minimizlation case:
. t t—
if (-rfb(e)st< ?b(est )) a=1la
else a=0.9a
if(a>2) a=2
if(a<l) a=1

This schedule increases the covariance matrix val-

the objective value. Hence, this captures the structure
of the population favoring the most promising solu-
tions.

2.3 Annealing Schedule 2

The second annealing schedule uges 1/y, where

y will be modified in a linear way with the improve-
ments. This shows a difference versus the previous
proposal because the first annealing schedule in-
creases/decreases thevalue in an exponential way.
Another difference between the two schedules is that
the first schedule uses the improvements over the
best aobjective value found so far, while this second
schedule verifies the improvements over the selected
set. Notice that updatin@in Equation (13) is equiv-
alent to updatingt in Equation (15) and equivalent
to updatingy considering thatt = 1/y. According

to the arguments in the Subsection above, 9< 1,

y = 1 corresponds to the minimum varian@e= ).

The updating ofy proceeds as follows:

e Let Mg be the number of selected individuals that
are preserved from the current generation to the
next one, throughout this paper known as she
vivor individuals Please note that the maximum
number of survivor individuals is the sample size
S.

Define a number of partitions of the interjal 1]
asnp. For our experiments, = 30.

o If Ms/S& > 0.5 theny=y—1/ny, otherwisey =
y+1/np.
If y<1/nptheny=1/np. If y>1theny=1.

3 THEBOLTZMANN
ESTIMATION OF
MUTIVARIATE NORMAL
ALGORITHM

The Boltzmann Estimation of Normal Multivariate
Algorithm (BEMNA) is presented in Figure 1. The
BEMNA starts with a random population, then it is
evaluated and half of the population with the best indi-

ues if an improvement in the objective function of viduals are selected. The selected set objective func-
the elite individualfpest is detected. Otherwise, the tion is used to compute the weights for the parameter
covariance matrix at least gets its minimum values computationfiand then are computed using the se-
(B = =). On the other hand, we prevent having scal- lected set variable values and the weights. Finally,
ing factors greater than O in order to control the ex- using the computed parameters a set of individuals is
ploration. The reader can notice tlat= 1, which is simulated. From the second generation in advance the
equivalent td3 = o, indeed it is a weighted estimator new selected set is computed by using the current se-
of the covariance matrix using weights proportionalto lected set and the simulated one.
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BEMNA

1. t + 0. Initialize Npop, Nsel, & anda /y according to
the annealing schedule.

3.2 Detailed Stepsfor the Second
Annealing Schedule

2. PO « Uniformly distributed population, where
P(O) = {217“‘72’\‘5&}'
3. Evaluatef (%) andg(X).

. Compute the estimatgs and =, of P, by equa-
tions (11) and (15).

For the second annealing schedule the population size
is Npop= [(d+3)(1+d°7)], while the sample size is

S = [2(1+d%7)]; taken from an empirical test. For
this schedule thg parameter is updated. Remember
that there is a direct relation amofiga andy; one of
them can define the others. The initial gamma value
isy? = 0.5— 1/np. In this schedule the number of se-
lected individuals is the same as the population size
Nsel = Npop. In the first generation, the complete pop-
ulation becomes the selected set, as we do not have
more individuals. In Step 5 a new samﬂ?&> of size

S is simulated. In Step 7 the annealing schedule is
performed as explained in Subsection 2.3 for updat-
ing y. Finally in Step 8, a new selected g2tV of
sizeNsg| is obtained.

N

. Pét) + SamplingS; individuals fromQ(x; fi, Z ).
. Evaluatef (%;) andg(x;) of PY).

. Updaten /y according to the annealing schedule.
P(t+1) . The besNsg individuals fromP®) U Pg).
Lt

10. If stopping criterion is not reached return to step @.

© ® N o O

11. Return the elite individual iR®) as the best approx
imation to the optimum.

Figure 1: Pseudo-code of the BEMNA.

Table 1: Test problems (Larrafiaga, 2002; Valdez et al.,
2013). All of them are minimization problems. For ap-
plying the BEMNA these are converted to maximization
and translated to positive as followgy(X) = —F(X) —
min(—F (X)) + 1 x 1012, Where 7 () is the objective
function andg(X) is the energy function used in Figure 1.
The minimum fitness value of all problems is 0 except for
The recommended population size for this schedule is #, where 7, = —d(d+4)(d — 1) /6.

of Npop = 15d whered is the number of dimensions.

3.1 Detailed Stepsfor the First
Annealing Schedule

Initial o = 1. The number of selected individuals in ¥ Name Domain
Steps 2 and 8 idlse; = Npop/2. The parameter esti- J1 Sphere [-10 5]2
mation for the multivariate Normal in Step 4 is done 2 Tablet [-10.5
. K . . T3 Ellipsoid [-10, 5]
as explained in Section 2. In Step 5 the new sample is % Cigar 10, 5¢
actuaIIyPg) (which is different in the second sched- 5 Cigar Tablet [-10,5]¢
ule) of sizeNpop. To update the value the annealing %6 Different Powers [-10,5
schedule is performed as explained in Subsection 2.2. 7 Parabolic Ridge [-10, 5]2
Please remember that for eacthere is a correspond- s Sham Ridge -10.5F
. . F9  Griewank [—600, 600
ing B and Vice versa. . L Fo  Ackley [-32768 16.384¢
A possible issue well known in Normal multivari- f11 Rosenbrock (10,54
ate EDAs, is that the covariance matrix could present F2 Trid [—d?, d2
negative eigenvalues, due to numerical errors (Dong 3 Brown [-1,4¢
and Yao, 2008). In such a case we apply the follow- J14 LevyMontalvo 1 [~20,10¢
ing repairing scheme: ; 15 tzx g""ma""’ 2 Eigv 132
: . 16 -20,
Let L be the matrix of eigenvectors dof by Fo Pinter 20 10¢

columns, andA a diagonal matrix with the corre-
sponding eigenvalues, in decreasing order, @ide
number of dimensions.

while Agg <0
A= —Adgd 4 EXPERIMENTS
Fori=1..d
Nii=Nii+A This section provides statistical results from well-
3 =LAL known test problems, see Table 1. The BEMNA, de-

Decomposé& in L andA

scribed in Figure 1, is tested in three different ways:

The repairing method is not utilized most of the 1) using the annealing schedule 1, 2) using the anneal-
time, and it is quite rare that it performs more than 1 ing schedule 2, and 3) comparing our proposal against
iteration to fix the covariance matrix.

a previous version with uncorrelated variables, taken
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from literature. The following subsections discuss 4.1 Testing the BEMNA with Both
each of these experiments.

Table 2: Statistical results in 30 dimensions of 11 test prob
lems, from 15 independent executions. First row: objective .
values reached, and second row: number of function evalu-

Annealing Schedules

This subsection presents the results of the BEMNA
in 30 dimensions. This set of problems is taken from

ations. If the obtained fithess value reaches the desired pre the literature: 8 unimodal, 2 multimodal and the gen-

cision, i.e.F — F* < 1x 1075, then this cell is boldfaced.

(a) Schedule 1. (b) Schedule 2.

(a)
F Best Wor st Mean Median SD
h 6.32e-7 9.97e-7 8.73e-7 8.69e-7 1.03e-7
7.77€4 9.92e4 8.5%e4 8.53e4 6.01e3
T 7.23e-7 9.95e-7 8.98e-7 9.55e-7 9.57e-8
7.63e4 1.05e5 9.01e4 9.20e4 7.92e3
I3 5.58e-7 9.95e-7 8.59e-7 9.13e-7 1.25e-7
1.08e5 1.24e5 1.18e5 1.20e5 5.29e3
Fa 3.96e-7 9.71e-7 8.28e-7 8.67e-7 1.61le-7
1.28e5 1.65e5 1.48e5 1.48e5 1.07e4
Is 7.28e-7 9.87e-7 8.82e-7 8.9%e-7 7.29e-8
1.20e5 1.44e5 1.33e5 1.33e5 7.24e3
s 2.84e-7 9.84e-7 7.51e-7 8.28e-7 2.04e-7
3.64e4 5.21e4 4.27e4 4.31e4 4.07e3
F 0.00 0.00 0.00 0.00 2.58e-7
1.06e5 1.30e5 1.17e5 1.14e5 6.74e3
Ts 0.00 0.00 0.00 0.00 0.00
1.81e5 2.20e5 2.00e5 2.01e5 1.03e4
Fo 7.10e-7 9.96e-7 8.46e-7 8.33e-7 9.64e-8
9.56e4 1.23e5 1.11e5 1.12e5 7.63e3
Fio 7.28e-7 9.80e-7 9.13e-7 9.3%-7 6.57e-8
1.40e5 1.81e5 1.58e5 1.58e5 1.00e4
F11 8.97e-4 1.35e-1 2.71e-2 9.13e-3 3.94e-2
3.00e5 3.00e5 3.00e5 3.00e5 0.00
Fiu 4.62e-7 9.95e-7 8.82e-7 9.53e-7 1.47e-7
3.19e5 3.60e5 3.41e5 3.38e5 1.34e4
(b)
F Best Worst Mean Median SD
F 7.44e7 9977 93le7 95le7 7.81e-8
9.97e4 1.02e5 1.01e5 1.01e5 6.21e2
Fa 825e7 9.88e7 90le7 896e7 5.15e-8
7.15e4 7.34e4 7.26e4 7.28e4 6.61e2
T3 814e7 9997 932e7 940e7 5.44e-8
6.09¢e4 6.31e4 6.19e4 6.20e4 6.08e2
Fa 342e7 9897 840e7 873e7  1.80e-7
2.78¢e4 2.95e4 2.88e4 2.87e4 5.30e2
Fs 868e7 9.89%7 9267 9297  3.45e-8
8.20e4 8.41e4 8.28e4 8.27e4 4.79e2
Fs 7.05e7 9.85e7 917e7 935e7  7.49e-8
9.55e4 9.72e4 9.64e4 9.64e4 5.84e2
F7 6.72e7 9957 8877 913e7  1.09e-7
8.48e4 8.77e4 8.62e4 8.62e4 8.43e2
Fs 6.36e7 998e7 8727 9277  1.28e-7
2.20e5 2.59e5 2.43e5 2.43e5 1.06e4
Fo 7.86e7 9977 892e7 9.10e7  7.30e-8
8.58e4 8.74e4 8.64e4 8.63e4 4.63e2
Fo 68%7 994e7 913e7 956e7  9.62e-8
5.66e4 5.85e4 5.77e4 5.77e4 5.45e2
F11 8.43e-7 9.90e-7 9.54e-7 9.71e-7 4.44e-8
1.25e5 1.28e5 1.26e5 1.26e5 9.30e2
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eralized Rosenbrock functions. The population size,
number of samples and similar issues are discussed in
subsections 2.2 and 2.3. In addition, the algorithm is
stopped when either: a maximum number of 30°
evaluations is reached or the precision to the optimum
value is¥ — F* < 1x 1075, except for probleny 1,
where the maximum number is610° evaluations.

The results are presented in Table 2. The value 0
is reported if F — F* < 1x 10716, For each prob-
lem the statistics are presented in two rows. The first
one summarizes the fithess values reached whilst the
second one shows the needed number of evaluations.
If the obtained fitness value reaches the desired preci-
sion, i.e. F — F* < 1x 107, then this cell is bold-
faced. Heref * is the optimum value.

4.1.1 ResultsUsing the Annealing Schedule 1

The Table 2-(a) presents the results of 15 independent
executions for the set of 10 unimodal functions and
the Rosenbrock problemf{1). Most of the prob-
lems, except the Rosenbrock function, are success-
fully solved by the BEMNA with a precision less than
le— 6. Actually, the column of worst values shows a
perfect success rate, except for the Rosenbrock prob-
lem. Therefore for most of the problems the important
result is the number of function evaluations.

Also, note that all the problems, with exception of
the Rosenbrock function, can be successfully solved
with a similar computational cost. Even though they
have different characteristics, for example the Ack-
ley and Griewank functions are multimodal, the al-
gorithm does not significantly increase the number of
function evaluations in contrast with the other prob-
lems. Also, the covariance matrix is adapted accord-
ing to the function; as seen in all the convex problems.

In the case off11 it is worth noting that the algo-
rithm is not trapped in a local minimum, because the
reached fithess values are less thah rhis means
that the algorithm is capable of displacing the search
distribution to the optimum region. An extra experi-
ment in this problem, please s@e;, shows that the
BEMNA (using the first annealing schedule) needs
more computational effort to solve the Rosenbrock
problem.
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Table 3: Percentage of success rate, reached fitness values
and needed number of evaluations (mean and standard de-
. . viation) for each algorithm. The last column shows a non-
Similar to the last subsection, Table 2-(b) shows the 5 ametric bootstrap test. gfis boldface there are statisti-
results of our proposal, but using the second annea_lllngca| evidence of difference between both algorithms. (a) 10
schedule. The extra computational effort of tracking dimensions. (b) 30 dimensions.

4.1.2 ResultsUsing the Annealing Schedule 2

the surviving individuals delivers an excellent payoff (@)
of a 63% reduction in the number of evaluations, for F BEMNA BUMDA o
the Rosenbrock problem; whilst the rest of the test F11 100.00 0.00
problems may or may not be improved. An inspection 729e7+210e-7  8.08e+@:7.13e-2  1.00e4
in the mean values of the function evaluations show ; 1'59913353'020‘*3 3'006"052%00“0 1.00e-4
some dlf_“ferences in comparison with the BEMNA us- 1 81707412067  6.58e+11 560+l 100ed
ing the first annealing schedule. In fact, our proposal 8.04e+341 72642 3.00e+45:0 00640 10064
using the second annealing schedule needed less com- . 4, 100.00 100.00
putational effort to solve 7 out of 10 test problems; 8.17e-7152e-7  7.03e-F1.92e-7  7.63e-2
Fo-Fs, F7, Fo and Fio. 6.04e+31+1.8%+2  1.17e+4:2.99e+2 1.00e-4
These results show that this schedule is more con- e 100.00 100.00
venient than the previous one. Even though the num- :iiiiigg;g lzgzi;:i;:fz 1%522'2
ber of function evaluations are reduced, the BEMNA P 100.80 100.00
is quite effective and can solve problems that simi- 7976-7-1.85e-7  7.14e-71.94e-7  8.45e-1
lar approaches can not (Yunpeng et al., 2006), such 5.90e+3+248e+2  1.28e+4-3.61e+2 1.00e-4
as the Rosenbrock function. Despite the differences F16 100.00 100.00
between both schedules, we can conclude that the (:Be- Ealabil - pumy 0.5 f2<B2.0 J ol § Su002
BENMA does not present any inconvenience to ad- e O A
equately adapt the covariance matrix as demanded by Fr iy 4 1000
7.31le+@1.52e+1 7.95e-¥#1.90e-7 7.39%e-2
the problem. 2.71e+4:3.78e+4  19le+46.98e+2  3.73e-1
(b)
4.2 Comparison Versusthe BUM DA 7 BEMNA BUMDA o
Fir 100.00 0.00
Since the Boltzmann distribution has been widely 92ferirlled  2.80eri7.56e-2 10064
. : . ; 252e+5+9.92e+3  3.00e+5£0.00e+0  1.00e-4
used in evolutionary computation, a comparison i 100.00 0.00
against a related method from literature is desirable. 01267471308  5.000+43-1.08e43  1.0064
In order to make a comparison versus the state of 8.40e+4+7.91e+2  3.00e+5:0.00e+0  1.00e-4
the art in evolutionary computing, a successful al- Fi3 100.00 93.33
gorithm in this branch is selected: Boltzmann Uni- 8.86e-7:9.44e-8  1.08e-68.72e-7  4.67e-1
variate Marginal Distribution Algorithm (BUMDA), 562e+allBe+3  4.25e+47.13e+4  4.42e-1
see (Valdez et al., 2013). Our proposal is capable of Fas 100.00 100.00
) ) i 8.85e-78.55e-8  8.47e-F1.29e-7  3.35e-1
modeling dependency between variables. According 451e+4.6.21047 205eHL220et? 10064
to this property, a suitable set of problems is chosen: Fis 100.00 100.00
F11-F17. Here, we use the BEMNA with the second 0.23e-%6.00e-8  7.99e7+95le8  4.00e-4
annealing schedule. 5.47e+4-6.58e+2 2.33et4+329e+2  1.00e-4
Table 3 contrasts the errgF — F* reached for F16 100.00 100.00
each algorithm. For each problem there are three 9-46e-2-4.87e8 8607107 7.60e3
. . 5.11e+4t6.23e+2 2.21e+44+3.29%e+2  1.00e-4
measures: 1) the first row is the percentage of success . 20,00 0.00
rate, 2) the second row is the mean and standard devi- 4.486+1.5.380+1 15762416662 54003
ation of reached fitness values, 3) the third row is the 2.14e+5+1.10e+5  3.00e+5:0.00e+0  6.20e-3

mean and standard deviation of needed evaluations of

function. In addition, the performance between both sions. Also, notice that the BEMNA solves all the
algorithms is verified by a non-parametric bootstrap problems using fewer evaluations than the BUMDA.
test. Here, the hypothesis is based in the mean valueOn the other hand, for 30 dimensional problems the
W So, if the null hypothesisly : p1 = W2 is rejected BUMDA displays a better performance than our pro-
there is statistical evidence to accept differences be-posal in #14 — Fi6. It is an expected result be-
tween both algorithms; this case is marked in bold.  cause these problems have weakly correlated vari-
The BEMNA shows a better performance than the ables. However, our approach effectively solved the
BUMDA in most of the test problems in 10 dimen- hardest problems in 30 dimension&:1, 12 and F17.
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