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Abstract: Neural networks are nowadays both powerful operational tools (e.g., for pattern recognition, data mining, error
correction codes) and complex theoretical models on the focus of scientific investigation. As for the research
branch, neural networks are handled and studied by psychologists, neurobiologists, engineers, mathematicians
and theoretical physicists. In particular, in theoretical physics, the key instrument for the quantitative anal-
ysis of neural networks is statistical mechanics. From this perspective, here, we review attractor networks:
starting from ferromagnets and spin-glass models, we discuss the underlying philosophy and we recover the
strand paved by Hopfield, Amit-Gutfreund-Sompolinky. As a sideline, in this walk we derive an alternative
(with respect to the original Hebb proposal) way to recover the Hebbian paradigm, stemming from mixing
ferromagnets with spin-glasses. Further, as these notes are thought of for an Engineering audience, we high-
light also the mappings between ferromagnets and operational amplifiers, hoping that such a bridge plays as a
concrete prescription to capture the beauty of robotics from the statistical mechanical perspective.

1 INTRODUCTION

Neural networks are such a fascinating field of sci-
ence that its development is the result of contribu-
tions and efforts from an incredibly large variety of
scientists, ranging fromengineers(mainly involved
in electronics and robotics) (Hagan et al., 1996;
Miller et al., 1995),physicists(mainly involved in
statistical mechanics and stochastic processes) (Amit,
1992; Hertz and Palmer, 1991), andmathematicians
(mainly working in logics and graph theory) (Coolen
et al., 2005; Saad, 2009) to(neuro) biologists(Harris-
Warrick, 1992; Rolls and Treves, 1998) and(cog-
nitive) psychologists(Martindale, 1991; Domhoff,
2003).

Tracing the genesis and evolution of neural net-
works is very difficult, probably due to the broad
meaning they have acquired along the years; scientists
closer to the robotics branch often refer to the W. Mc-
Culloch and W. Pitts model of perceptron (McCulloch
and Pitts, 1943), or the F. Rosenblatt version (Rosen-
blatt, 1958), while researchers closer to the neurobi-
ology branch adopt D. Hebb’s work as a starting point
(Hebb, 1940). On the other hand, scientists involved
in statistical mechanics, that joined the community in

relatively recent times, usually refer to the seminal pa-
per by Hopfield (Hopfield, 1982) or to the celebrated
work by Amit Gutfreund Sompolinky (Amit, 1992),
where the statistical mechanics analysis of the Hop-
field model is effectively carried out.

Whatever the reference framework, at least 30
years elapsed since neural networks entered in the
theoretical physics research and much of the former
results can now be re-obtained or re-framed in mod-
ern approaches and made much closer to the engi-
neering counterpart, as we want to highlight in the
present work. In particular, we show that toy mod-
els for paramagnetic-ferromagnetic transition (Ellis,
2005) are natural prototypes for the autonomous stor-
age/retrieval of information patterns and play as op-
erational amplifiers in electronics. Then, we move
further analyzing the capabilities of glassy systems
(ensembles of ferromagnets and antiferromagnets) in
storing/retrieving extensive numbers of patterns so to
recover the Hebb rule for learning (Hebb, 1940) far
from the original route contained in his milestoneThe
Organization of Behavior. Finally, we will give pre-
scription to map these glassy systems in ensembles of
amplifiers and inverters (thus flip-flops) of the engi-
neering counterpart so to offer a concrete bridge be-
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tween the two communities of theoretical physicists
working with complex systems and engineers work-
ing with robotics and information processing.

As these notes are intended for non-theoretical-
physicists, we believe that they can constitute a novel
perspective on a by-now classical theme and that they
could hopefully excite curiosity toward statistical me-
chanics in nearest neighbors scientists like engineers
whom these proceedings are addressed to.

2 STATISTICAL MECHANICS IN
A NUTSHELL

Hereafter we summarize the fundamental steps that
led theoretical physicists towards artificial intelli-
gence; despite this parenthesis may look rather dis-
tant from neural network scenarios, it actually allows
us to outline and to historically justify the physicists
perspective.

Statistical mechanics aroused in the last decades
of the XIX century thanks to its founding fathers Lud-
wig Boltzmann, James Clarke Maxwell and Josiah
Willard Gibbs (Kittel, 2004). Its “solely” scope (at
that time) was to act as a theoretical ground of the
already existing empirical thermodynamics, so to rec-
oncile its noisy and irreversible behavior with a de-
terministic and time reversal microscopic dynamics.
While trying to get rid of statistical mechanics in just
a few words is almost meaningless, roughly speaking
its functioning may be summarized via toy-examples
as follows. Let us consider a very simple system,
e.g. a perfect gas: its molecules obey a Newton-
like microscopic dynamics (without friction -as we
are at the molecular level- thus time-reversal as dis-
sipative terms in differential equations capturing sys-
tem’s evolution are coupled to odd derivatives) and,
instead of focusing on each particular trajectory for
characterizing the state of the system, we define or-
der parameters (e.g. the density) in terms of micro-
scopic variables (the particles belonging to the gas).
By averaging their evolution over suitably probabil-
ity measures, and imposing on these averages energy
minimization and entropy maximization, it is possible
to infer the macroscopic behavior in agreement with
thermodynamics, hence bringing together the micro-
scopic deterministic and time reversal mechanics with
the macroscopic strong dictates stemmed by the sec-
ond principle (i.e. arrow of time coded in the en-
tropy growth). Despite famous attacks to Boltzmann
theorem (e.g. by Zermelo or Poincaré) (Castiglione
et al., 2012), statistical mechanics was immediately
recognized as a deep and powerful bridge linking mi-
croscopic dynamics of a system’s constituents with

(emergent) macroscopic properties shown by the sys-
tem itself, as exemplified by the equation of state for
perfect gasesobtained by considering an Hamiltonian
for a single particle accounting for the kinetic contri-
bution only (Kittel, 2004).

One step forward beyond the perfect gas, Van
der Waals and Maxwell in their pioneering works fo-
cused onreal gases(Reichl and Prigogine, 1980),
where particle interactions were finally considered by
introducing a non-zero potential in the microscopic
Hamiltonian describing the system. This extension
implied fifty-years of deep changes in the theoretical-
physics perspective in order to be able to face new
classes of questions. The remarkable reward lies in
a theory of phase transitions where the focus is no
longer on details regarding the system constituents,
but rather on the characteristics of their interactions.
Indeed, phase transitions, namely abrupt changes in
the macroscopic state of the whole system, are not due
to the particular system considered, but are primarily
due to the ability of its constituents to perceive inter-
actions over the thermal noise. For instance, when
considering a system made of by a large number of
water molecules, whatever the level of resolution to
describe the single molecule (ranging from classical
to quantum), by properly varying the external tunable
parameters (e.g. the temperature), thissystemeven-
tually changes its state from liquid to vapor (or solid,
depending on parameter values); of course, the same
applies generally to liquids.

The fact that the macroscopic behavior of a system
may spontaneously showcooperative, emergentprop-
erties, actually hidden in its microscopic description
and not directly deducible when looking at its compo-
nents alone, was definitely appealing in neuroscience.
In fact, in the 70s neuronal dynamics along axons,
from dendrites to synapses, was already rather clear
(see e.g. the celebrated book by Tuckwell (Tuckwell,
2005)) and not too much intricate than circuits that
may arise from basic human creativity: remarkably
simpler than expected and certainly trivial with re-
spect to overall cerebral functionalities like learning
or computation, thus the aptness of athermodynamic
formulationof neural interactions -torevealpossible
emergent capabilities- was immediately pointed out,
despite the route was not clear yet.

Interestingly, a big step forward to this goal was
prompted by problems stemmed from condensed mat-
ter. In fact, quickly theoretical physicists realized that
the purely kinetic Hamiltonian, introduced for perfect
gases (or Hamiltonian with mild potentials allowing
for real gases), is no longer suitable for solids, where
atoms do not move freely and the main energy contri-
butions are from potentials. An ensemble of harmonic
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oscillators (mimicking atomic oscillations of the nu-
clei around their rest positions) was the first scenario
for understanding condensed matter: however, as ex-
perimentally revealed by crystallography, nuclei are
arranged according to regular lattices hence motivat-
ing mathematicians in study periodical structures to
help physicists in this modeling, but merging statis-
tical mechanics with lattice theories resulted soon in
practically intractable models.

As a paradigmatic example, let us consider the
one-dimensional Ising model, originally introduced to
investigate magnetic properties of matter: the generic,
out of N, nucleus labeled asi is schematically rep-
resented by a spinσi , which can assume only two
values (σi = −1, spin down andσi = +1, spin up);
nearest neighbor spins interact reciprocally through
positive (i.e. ferromagnetic) interactionsJi,i+1 > 0,
hence the Hamiltonian of this system can be written as
HN(σ) ∝ −∑N

i Ji,i+1σiσi+1 − h∑N
i σi , whereh tunes

the external magnetic field and the minus sign in front
of each term of the Hamiltonian ensures that spins try
to align with the external field and to get parallel each
other in order to fulfill the minimum energy principle.
Clearly this model can trivially be extended to higher
dimensions, however, due to prohibitive difficulties in
facing the topological constraint of considering near-
est neighbor interactions only, soon shortcuts were
properly implemented to turn around this path. It is
just due to an effective shortcut, namely the so called
“mean field approximation”, that statistical mechan-
ics approached complex systems and, in particular,
artificial intelligence.

3 THE ROUTE TO COMPLEXITY

As anticipated, the “mean field approximation” al-
lows overcoming prohibitive technical difficulties ow-
ing to the underlying lattice structure. This consists
in extending the sum on nearest neighbor couples
(which areO(N)) to include all possible couples in
the system (which areO(N2)), properly rescaling the
coupling (J →J/N) in order to keep thermodynami-
cal observables linearly extensive. If we consider a
ferromagnet built of byN Ising spinsσi = ±1 with
i ∈ (1, ...,N), we can then write

HN(σ|J) =− 1
N

N,N

∑
i< j

Ji j σiσ j ∼− 1
2N

N,N

∑
i, j

Ji j σiσ j , (1)

where in the last term we neglected the diagonal term
(i = j) as it is irrelevant for largeN. From a topolog-
ical perspective the mean-field approximation equals
to abandon the lattice structure in favor to a complete
graph (see Fig. 1).When the coupling matrix has only
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Figure 1: Example of regular lattice (left) and complete
graph (right) withN= 20 nodes. In the former only nearest-
neighbors are connected in such a way that the number of
links scales linearly withN, while in the latter each node is
connected with all the remainingN−1 in such a way that
the number of links scales quadratically withN.

positive entries, e.g.P(Ji j ) = δ(Ji j − J), this model
is named Curie-Weiss model and acts as the sim-
plest microscopic Hamiltonian able to describe the
paramagnetic-ferromagnetic transitions experienced
by materials when temperature is properly lowered.
An external (magnetic) fieldh can be accounted for by
adding in the Hamiltonian an extra term∝ −h∑N

i σi .
According to the principle of minimum energy,

the two-body interaction appearing in the Hamilto-
nian in Eq. 1 tends to make spins parallel with each
other and aligned with the external field if present.
However, in the presence of noise (i.e. if tempera-
ture T is strictly positive), maximization of entropy
must also be taken into account. When the noise level
is much higher than the average energy (roughly, if
T ≫ J), noise and entropy-driven disorder prevail and
spins are not able to “feel” reciprocally; as a result,
they flip randomly and the system behaves as apara-
magnet. Conversely, if noise is not too loud, spins
start to interact possibly giving rise to a phase tran-
sition; as a result the system globally rearranges its
structure orientating all the spins in the same direc-
tion, which is the one selected by the external field if
present, thus we have aferromagnet.

In the early ’70 a scission occurred in the statis-
tical mechanics community: on the one side “pure
physicists” saw mean-field approximation as a merely
bound to bypass in order to have satisfactory pictures
of the structure of matter and they succeeded in work-
ing out iterative procedures to embed statistical me-
chanics in (quasi)-three-dimensional reticula, yield-
ing to therenormalization group(Wilson, 1971): this
proliferative branch gave then rise to superconductiv-
ity, superfluidity (Bean, 1962) and many-body prob-
lems in condensed matter (Bardeen et al., 1957).
Conversely, from the other side, the mean-field ap-
proximation acted as a breach in the wall of complex
systems: a thermodynamical investigation of phe-
nomena occurring on general structures lacking Eu-
clidean metrics (whose subject largely covers neural
networks too) was then possible.
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4 TOWARD NEURAL
NETWORKS

Hereafter we discuss how to approach neural net-
works from models mimicking ferromagnetic transi-
tion. In particular, we study the Curie-Weiss model
and we show how it can store one pattern of infor-
mation and then we bridge its input-output relation
(calledself-consistency) with the transfer function of
an operational amplifier. Then, we notice that such
a stored pattern has a very peculiar structure which
is hardly natural, but we will overcome this (fake)
flaw by introducing a gauge variant known as Mattis
model. This scenario can be looked at as a primordial
neural network and we discuss its connection with bi-
ological neurons and operational amplifiers. The suc-
cessive step consists in extending, through elementary
thoughts, this picture in order to include and store
several patterns. In this way, we recover both the
Hebb rule for synaptic plasticity and, as a corollary,
the Hopfield model for neural networks too that will
be further analyzed in terms of flip-flops and informa-
tion storage.
The statistical mechanical analysis of the Curie-Weiss
model (CW) can be summarized as follows: Start-
ing from a microscopic formulation of the system,
i.e. N spins labeled asi, j, ..., their pairwise couplings
Ji j ≡ J, and possibly an external fieldh, we derive an
explicit expression for its (macroscopic) free energy
A(β). The latter is the effective energy, namely the
difference between the internal energyU , divided by
the temperatureT = 1/β, and the entropyS, namely
A(β) = S−βU , in fact,S is the “penalty” to be paid
to the Second Principle for usingU at noise levelβ.
We can therefore link macroscopic free energy with
microscopic dynamics via the fundamental relation

A(β) = lim
N→∞

1
N

ln
2N

∑
{σ}

exp[−βHN(σ|J,h)] , (2)

where the sum is performed over the set{σ} of all
2N possible spin configurations, each weighted by
the Boltzmann factor exp[−βHN(σ|J,h)] that tests the
likelihood of the related configuration. From expres-
sion (2), we can derive the whole thermodynamics
and in particular phase-diagrams, that is, we are able
to discern regions in the space of tunable parameters
(e.g. temperature/noise level) where the system be-
haves as a paramagnet or as a ferromagnet.
Thermodynamical averages, denoted with the symbol
〈.〉, provide for a given observable the expected value,
namely the value to be compared with measures in
an experiment. For instance, for the magnetization

m(σ)≡ ∑N
i=1 σi/N we have

〈m(β)〉= ∑σ m(σ)e−βHN(σ|J)

∑σ e−βHN(σ|J)
. (3)

Whenβ → ∞ the system is noiseless (zero tempera-
ture) hence spins feel reciprocally without errors and
the system behaves ferromagnetically (|〈m〉| → 1),
while whenβ→ 0 the system behaves completely ran-
dom (infinite temperature), thus interactions can not
be felt and the system is a paramagnet (〈m〉 → 0). In
between a phase transition happens.

In the Curie-Weiss model the magnetization
works asorder parameter: its thermodynamical av-
erage is zero when the system is in a paramagnetic
(disordered) state (→ 〈m〉 = 0), while it is different
from zero in a ferromagnetic state (where it can be
either positive or negative, depending on the sign of
the external field). Dealing with order parameters al-
lows us to avoid managing an extensive number of
variablesσi , which is practically impossible and, even
more important, it is not strictly necessary.

Now, an explicit expression for the free energy in
terms of〈m〉 can be obtained carrying out summations
in eq. 2 and taking thethermodynamic limit N→ ∞
as

A(β) = ln2+ lncosh[β(J〈m〉+h)]− βJ
2
〈m〉2. (4)

In order to impose thermodynamical principles, i.e.
energy minimization and entropy maximization, we
need to find the extrema of this expression with re-
spect to〈m〉 requesting∂〈m(β)〉A(β)= 0. The resulting
expression is called theself-consistencyand it reads
as

∂〈m〉A(β) = 0⇒ 〈m〉= tanh[β(J〈m〉+h)]. (5)

This expression returns the average behavior of a spin
in a magnetic field. In order to see that a phase tran-
sition between paramagnetic and ferromagnetic states
actually exists, we can fixh= 0 and expand the r.h.s.
of eq. 5 to get

〈m〉 ∝ ±
√

βJ−1. (6)

Thus, while the noise level is higher than one (β <
βc ≡ J−1 or T > Tc ≡ J) the only solution is〈m〉= 0,
while, as far as the noise is lowered below its critical
thresholdβc, two different-from-zero branches of so-
lutions appear for the magnetization and the system
becomes a ferromagnet (see Fig.2 (left)). The branch
effectively chosen by the system usually depends on
the sign of the external field or boundary fluctuations:
〈m〉> 0 for h> 0 and vice versa forh< 0.

Clearly, the lowest energy minima correspond to
the two configurations with all spins aligned, either
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Figure 2: (left) Average magnetization〈m〉 versus temper-
ature T for a Curie-Weiss model in the absence of field
(h = 0). The critical temperatureTc = 1 separates a mag-
netized region (|〈m〉| > 0, only one branch shown) from a
non-magnetized region (〈m〉= 0). The box zooms over the
critical region (notice the logarithmic scale) and highlights
the power-law behaviorm∼ (T −Tc)

β, whereβ = 1/2 is
also referred to as critical exponent (see also eq. 6). Data
shown here (•) are obtained via Monte Carlo simulations
for a system ofN = 105 spins and compared with the theo-
retical curve (solid line). (right) Average magnetization〈m〉
versus the external fieldh and response of a charging neuron
(solid black line), compared with the transfer function of an
operational amplifier (red bullets) (Tuckwell, 2005; Agliari
et al., 2013). In the inset we show a schematic representa-
tion of an operational amplifier (upper) and of an inverter
(lower).

upwards (σi = +1,∀i) or downwards (σi = −1,∀i),
these configurations being symmetric under spin-flip
σi → −σi . Therefore, the thermodynamics of the
Curie-Weiss model is solved: energy minimization
tends to align the spins (as the lowest energy states are
the two ordered ones), however entropy maximization
tends to randomize the spins (as the higher the en-
tropy, the most disordered the states, with half spins
up and half spins down): the interplay between the
two principles is driven by the level of noise intro-
duced in the system and this is in turn ruled by the
tunable parameterβ ≡ 1/T as coded in the definition
of free energy.

A crucial bridge between condensed matter and
neural network could now be sighted: One could
think at each spin as a basic neuron, retaining only
its ability to spike such thatσi = +1 andσi = −1
represent firing and quiescence, respectively, and as-
sociate to each equilibrium configuration of this spin
system astored patternof information. The reward is
that, in this way, the spontaneous (i.e. thermodynam-
ical) tendency of the network to relax on free-energy
minima can be related to the spontaneous retrieval of
the stored pattern, such that the cognitive capability
emerges as a natural consequence of physical princi-
ples: we well deepen this point along the whole paper.
Let us now tackle the problem by another perspec-
tive and highlight a structural/mathematical similar-
ity in the world of electronics: the plan is to compare
self-consistencies in statistical mechanics and transfer
functions in electronics so to reach a unified descrip-
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Figure 3: Phase diagram for the Hopfield model (Amit,
1992). According to the parameter setting, the system be-
haves as a paramagnet (PM), as a spin-glass (SG), or as an
associative neural network able to perform information re-
trieval (R). The region labeled (SG+R) is a coexistence re-
gion where the system is glassy but still able to retrieve.

tion for these systems: keeping the symbols of Fig. 2
(insets in the right panel), whereRin stands for the
input resistance whileRf represents the feed-back re-
sistance,i+ = i− = 0 and assumingRin = 1Ω -without
loss of generality as only the ratioRf /Rin matters- the
following transfer function is achieved:

Vout = GVin = (1+Rf )Vin, (7)

whereG = 1+Rf is calledgain, therefore as far as
0> Rf > ∞ (thus retro-action is present) the device is
amplifying.
Let us emphasize deep structural analogies with
the Curie-Weiss response to a magnetic fieldh:
once fixedβ = 1 for simplicity, expanding〈m〉 =
tanh(J〈m〉+h) ∼ (1+ J)h, we can compare term by
term the two expression as

Vout = (1+Rf )Vin, (8)

〈m〉 = (1+ J)h. (9)

We see thatRf plays asJ, and, consistently, ifRf is
absent the retroaction is lost in the op-amp and the
gain is no longer possible; analogously ifJ = 0, spins
do not mutually interact and no feed-back is allowed
to drive the phase transition.

Actually, the Hamiltonian (1) would encode for
a rather poor model of neural network as it would
account for only two stored patterns, corresponding
to the two possible minima, moreover, these ordered
patterns, seen as information chains, have the lowest
possible entropy and, for the Shannon-McMillan The-
orem, in the largeN limit, they will never be observed.

This criticism can be easily overcome thanks to
the Mattis-gauge, namely a re-definition of the spins
via σi → ξ1

i σi , whereξ1
i = ±1 are random entries

extracted with equal probability and kept fixed in
the network (in statistical mechanics these are called
quenchedvariables to stress that they do not con-
tribute to thermalization, a terminology reminiscent
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of metallurgy (Mézard et al., 1987)). FixingJ ≡ 1 for
simplicity, the Mattis Hamiltonian reads as

HMattis
N (σ|ξ) =− 1

2N

N,N

∑
i, j

ξ1
i ξ1

j σiσ j −h
N

∑
i

ξ1
i σi . (10)

The Mattis magnetization is defined asm1 = ∑i ξ1
i σi .

To inspect its lowest energy minima, we perform a
comparison with the CW model: in terms of the (stan-
dard) magnetization, the Curie-Weiss model reads as
HCW

N ∼ −(N/2)m2 − hm and, analogously we can
write HMattis

N (σ|ξ) in terms of Mattis magnetization
asHMattis

N ∼−(N/2)m2
1−hm1. It is then evident that,

in the low noise limit (namely where collective prop-
erties may emerge), as the minimum of free energy
is achieved in the Curie-Weiss model for〈m〉 → ±1,
the same holds in the Mattis model for〈m1〉 → ±1.
However, this implies that now spins tend to align
parallel (or antiparallel) to the vectorξ1, hence if
the latter is, say,ξ1 = (+1,−1,−1,−1,+1,+1) in
a model withN = 6, the equilibrium configurations
of the network will beσ = (+1,−1,−1,−1,+1,+1)
andσ = (−1,+1,+1,+1,−1,−1), the latter due to
the gauge symmetryσi →−σi enjoyed by the Hamil-
tonian. Thus, the network relaxes autonomously to
a state where some of its neurons are firing while
others are quiescent, according to thestored pattern
ξ1. Note that, as the entries of the vectorsξ are
chosen randomly±1 with equal probability, the re-
trieval of free energy minimum now corresponds to a
spin configuration which is also the most entropic for
the Shannon-McMillan argument, thus both the most
likely and the most difficult to handle (as its informa-
tion compression is no longer possible).

Two remarks are in order now. On the one side,
according to the self-consistency equation (5) and as
shown in Fig. 2 (right),〈m〉 versush displays the typ-
ical graded/sigmoidal response of a charging neuron
(Tuckwell, 2005), and one would be tempted to call
the spinsσ neurons. On the other side, it is definitely
inconvenient to build a network viaN spins/neurons,
which are further meant to be diverging (i.e.N → ∞)
in order to handle one stored pattern of information
only. Along the theoretical physics route overcoming
this limitation is quite natural (and provides the first
derivation of the Hebbian prescription in this paper):
If we want a network able to cope withP patterns, the
starting Hamiltonian should have simply the sum over
theseP previously stored patterns, namely

HN(σ|ξ) =− 1
2N

N,N

∑
i, j=1

(

P

∑
µ=1

ξµ
i ξµ

j

)

σiσ j , (11)

where we neglect the external field (h = 0) for sim-
plicity. As we will see in the next section, this Hamil-
tonian constitutes indeed the Hopfield model, namely

the harmonic oscillator of neural networks, whose
coupling matrix is calledHebb matrix as encodes
the Hebb prescription for neural organization (Amit,
1992).

Despite the extension to the caseP> 1 is formally
straightforward, the investigation of the system asP
grows becomes by far more tricky. Indeed, neural
networks belong to the so-called “complex systems”
realm. We propose that complex behaviors can be dis-
tinguished by simple behaviors as for the latter the
number of free-energy minima of the systemdoes not
scalewith the volumeN, while for complex systems
the number of free-energy minimadoes scalewith the
volume according to a proper function ofN. For in-
stance, the Curie-Weiss/Mattis model has two minima
only, whateverN (even ifN → ∞), and it constitutes
the paradigmatic example for a simple system. As
a counterpart, the prototype of complex system is the
Sherrington-Kirkpatrick model (SK), originally intro-
duced in condensed matter to describe the peculiar
behaviors exhibited by real glasses (Hertz and Palmer,
1991; Mézard et al., 1987). This model has an amount
of minima that scales∝ exp(cN) with c 6= f (N), and
its Hamiltonian reads as

HSK
N (σ|J) = 1√

N

N,N

∑
i< j

Ji j σiσ j , (12)

where, crucially, coupling are Gaussian distributed as
P(Ji j )≡ N [0,1]. This implies that links can be either
positive (hence favoring parallel spin configuration)
as well as negative (hence favoring anti-parallel spin
configuration), thus, in the largeN limit, with large
probability, spins will receive conflicting signals and
we speak about “frustrated networks”. Indeedfrus-
tration, the hallmark of complexity, is fundamental in
order to split the phase space in several disconnected
zones, i.e. in order to have several minima, or sev-
eral stored patterns in neural network language. This
mirrors a clear request also in electronics, namely the
need for inverting amplifiers too.

The mean-field statistical mechanics for the low-
noise behavior of spin-glasses has been first described
by Parisi and it predicts a hierarchical organization of
states and a relaxational dynamics spread over many
timescales (for which we refer to specific textbooks
(Mézard et al., 1987)). Here we just need to know that
their natural order parameter is no longer the mag-
netization (as these systems do not magnetize), but
the overlap qab, as we are explaining. Spin glasses
are balanced ensembles of ferromagnets and antifer-
romagnets (this can also be seen mathematically as
P(J) is symmetric around zero) and, as a result,〈m〉 is
always equal to zero, on the other hand, a comparison
between two realizations of the system (pertaining to
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the same coupling set) is meaningful because at large
temperatures it is expected to be zero, as everything is
uncorrelated, but at low temperature their overlap is
strictly non-zero as spins freeze in disordered but cor-
related states. More precisely, given two “replicas” of
the system, labeled asa andb, their overlapqab can
be defined as the scalar product between the related
spin configurations, namely asqab = (1/N)∑N

i σa
i σb

i ,
thus the mean-field spin glass has a completely ran-
dom paramagnetic phase, with〈q〉 ≡ 0 and a ”glassy
phase” with 〈q〉 > 0 split by a phase transition at
βc = Tc = 1.

The Sherrington-Kirkpatrick model displays a
large number of minima as expected for a cognitive
system, yet it is not suitable to act as a cognitive
system because its states are too ”disordered”. We
look for an Hamiltonian whose minima are not purely
random like those in SK, as they must represent or-
dered stored patterns (hence like the CW ones), but
the amount of these minima must be possibly exten-
sive in the number of spins/neuronsN (as in the SK
and at contrary with CW), hence we need to retain
a “ferromagnetic flavor” within a “glassy panorama”:
we needsomething in between.

Remarkably, the Hopfield model defined by the
Hamiltonian (11) lies exactly in between a Curie-
Weiss model and a Sherrington-Kirkpatrick model.
Let us see why: WhenP = 1 the Hopfield model
recovers the Mattis model, which is nothing but a
gauge-transformed Curie-Weiss model. Conversely,
when P → ∞, (1/

√
N)∑P

µ ξµ
i ξµ

j → N [0,1], by the
standard central limit theorem, and the Hopfield
model recovers the Sherrington-Kirkpatrick one. In
between these two limits the system behaves as an as-
sociative network (Barra et al., 2012).
Such a crossover between CW (or Mattis) and SK
models, requires for its investigation both theP Mat-
tis magnetization〈mµ〉, µ= (1, ...,P) (for quantifying
retrieval of the whole stored patterns, that is thevo-
cabulary), and the two-replica overlaps〈qab〉 (to con-
trol the glassyness growth if the vocabulary gets en-
larged), as well as a tunable parameter measuring the
ratio between the stored patterns and the amount of
available neurons, namelyα = limN→∞ P/N, also re-
ferred to asnetwork capacity.

As far asP scales sub-linearly withN, i.e. in the
low storage regime defined byα = 0, the phase dia-
gram is ruled by the noise levelβ only: for β < βc the
system is a paramagnet, with〈mµ〉= 0 and〈qab〉= 0,
while for β > βc the system performs as an attractor
network, with〈mµ〉 6= 0 for a givenµ (selected by the
external field) and〈qab〉 = 0. In this regime no dan-
gerous glassy phase is lurking, yet the model is able
to store only a tiny amount of patterns as the capacity

is sub-linear with the network volumeN.
Conversely, whenP scales linearly withN, i.e. in the
high-storage regime defined byα > 0, the phase di-
agram lives in theα,β plane (see Fig. 3).Whenα is
small enough the system is expected to behave simi-
larly to α = 0 hence as an associative network (with a
particular Mattis magnetization positive but with also
the two-replica overlap slightly positive as the glassy
nature is intrinsic forα > 0). For α large enough
(α > αc(β),αc(β → ∞) ∼ 0.14) however, the Hop-
field model collapses on the Sherrington-Kirkpatrick
model as expected, hence with the Mattis magneti-
zations brutally reduced to zero and the two-replica
overlap close to one. The transition to the spin-glass
phase is often called “blackout scenario” in neural
network community.

5 CONCLUSIONS

We conclude this survey on the statistical mechani-
cal approach to neural networks with a remark about
possible perspectives: we started this historical tour
highlighting how, thanks to the mean-field paradigm,
engineering (e.g. robotics, automation) and neuro-
biology have been tightly connected from a theoret-
ical physics perspective. However, as statistical me-
chanics is starting to access techniques to tackle com-
plexity hidden even in non-mean-field networks (e.g.
as in the hierarchical graphs, where thermodynamics
for the glassy scenario is almost complete (Castel-
lana et al., 2010)), we will probably witness another
split in this smaller community of theoretical physi-
cists working in spontaneous computational capabil-
ity research: from one side continuing to refine tech-
niques and models meant for artificial systems, well
lying in high-dimensional/mean-field topologies, and
from the other beginning to develop ideas, models and
techniques meant for biological systems only, strictly
defined in finite-dimensional spaces or, even worst,
embedded on fractal supports.

This work was supported by Gruppo Nazionale per la
Fisica Matematica (GNFM), Istituto Nazionale d’Alta
Matematica (INdAM).
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