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Abstract: This paper faces the health risk prediction problem in workplaces through computational intelligence 
techniques applied to a set of data collected from the Italian national system of epidemiological 
surveillance. The goal is to create a tool that can be used by occupational physicians in monitoring visits, as 
it performs a risk assessment for workers of contracting some particular occupational diseases. The 
proposed algorithm, based on a clustering technique is applied to a database containing data on occupational 
diseases collected by the Local Health Authority (ASL) as part of the Surveillance National System. A 
genetic algorithm is in charge to optimize the classification model. First results are encouraging and suggest 
interesting research tasks for further systems’ development. 

1 INTRODUCTION 

Employee health care is gaining attention by both 
private and public companies, as well by OHS 
(Occupational Health and Safety) organizations 
worldwide. In fact, part of the public costs dedicated 
to healthcare can be reduced by monitoring and 
controlling workplaces hazards. In this scenario, a 
potentially useful challenge is to apply data mining 
and knowledge discovery techniques on related 
databases, extracting useful information to perform 
occupational hazard assessment by health risk 
classification methods. To this aim, several studies 
show that the application of computational 
intelligence techniques can lead to reveal the 
existence of structures in the data difficult to detect 
with other approaches. For example, in (Chinmoi et 
al, 2012) have been developed a decision support 
system for employee healthcare, while in (Razan et 
al, 2010) have been applied clustering techniques to 
medical data to predict the likelihood of diseases. In 
(Zhaohui Huang Daoheng Yu Jianye Zhao, 2000) 
artificial neural networks have been applied by 
Zhaohui Huang Daoheng Yu Jianye Zhao in 
occupational diseases incidence forecast. 

This work shows the first results of a study for 
the application of techniques of data analysis and 
computational intelligence to an occupational 

diseases database. The goal is the development of a 
tool for predicting the likelihood of contracting a 
disease as a function of some characteristics of both 
the worker and the working environment. The 
database contains data collected over a decade by 
the Local Health Authority of the Italian Lombardy 
region. The problem of identifying possible causes 
of risk hazards in work places has been formulated 
as a classification one. To this aim, a suited 
classification system has been developed, relying on 
cluster analysis as the core procedure of the machine 
learning engine. In order to automatically determine 
both the parameters of the dissimilarity measure 
between patterns and to identify the best structural 
complexity of the classification model (number of 
clusters), a genetic algorithm has been employed to 
synthetize the best performing classifier. 

2 DATA PROCESSING 

The data set has been extracted from the archive of 
occupational diseases collected by the Local Health 
Authority (ASL) as part of the National System of 
Surveillance "MalProf", managed by the National 
Institute for Insurance against Accidents at Work 
(INAIL). The data set contains records for each 
pathology collected from ASL, storing information 
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on registry of the worker, on his work history and 
his pathology. For each worker more than one record 
may be present in the archive (a single record for 
each pathology). 

In order to develop and test the whole prediction 
system, a first data set with controlled cardinality 
has been defined by considering only the cases of 
the Lombardy Italian region recorded in the period 
1999-2009.  Moreover, in order to simplify pattern’s 
structure, only records related to workers with a 
single pathology and an occupational history 
consisting of a single working activity have been 
considered. This data set has been cleaned removing 
ambiguous situations, inconsistent or missing data. 
This first preprocessing step yielded a data set of 
3427 records as shown in Table 1; as a further 
filtering, the data set records of diseases below the 
5% rate were not considered, yielding the final data 
set of 2722 records, covering about 80% of cases, 
highlighted with colored background in Table 1. 

Table 1: Records distribution for pathology. 

Disease 
N. of 
records 

Cumulative 
N. of records 

Freq. 
Cumulative 
Freq. 

Hearing loss 1493 1493 0.436 0.436 
Spinal diseases 334 1827 0.097 0.533 
musculoskeletal 
disorders 
(excluding 
spinal diseases)  

288 2115 0.084 0.617 

Tumors of the 
pleura and 
peritoneum 

232 2347 0.068 0.685 

Carpal tunnel 
syndrome  

199 2546 0.058 0.743 

Skin diseases  176 2722 0.051 0.794 
Disorders of the 
ear (except 
hearing loss)  

137 2859 0.040 0.834 

Mental illness  98 2957 0.029 0.863 
Diseases of the 
respiratory 
system  

76 3033 0.022 0.885 

Other diseases  394 3427 0.115 1 

The final available data set has been partitioned 
into three subsets by random stratification: the 
training set (50% of the total number of available 
patterns, denoted with STR), the validation set (25%, 
SVAL) and the test set (the remaining 25%, STEST). 
Table 2 shows the distribution of diseases and their 
labels as integer numbers codes. The similarity 
between the subjects was evaluated through a 
distance function based on 6 features (Table 3), both 
numerical and categorical, identified by a 
preliminary analysis of data and knowledge in the 

field. 

Table 2: Pathologies in descending order of frequency. 

Pathologies Training set Validation set

1 - Hearing loss 747 
54.89% 

373
54.85%

2 - Spinal diseases 167 
12.27% 

83
12.21%

3 - Musculoskeletal 
disorders

144 
10.58% 

72
10.59%

4 - Tumors of the pleura 
and peritoneum 

116 
8.52% 

58 
8.53% 

5 - Carpal tunnel 99 
7.27% 

50
7.35%

6 - Skin diseases 88 
6.47% 

44
6.47% 

Total 1361 
100% 

680
100%

Table 3: Features. 

Code Meaning Data Type 

x1 
Age of the worker at the time 
of disease assessment (years) 

numerical 

x2 
Duration of the working 
period (months) 

numerical 

x3 
Age at the beginning of the 
working period (years) 

numerical 

x4 Gender categorical 

x5 
Profession carried out by the 
worker 

categorical 

x6 Company's economic activity categorical 

The profession of the worker is coded through a 
pair of characters based on the Italian version of the 
classification system ISCO. The International 
Standard Classification of Occupations (ISCO) is a 
tool for organizing jobs into a clearly defined set of 
groups according to the tasks and duties undertaken 
in the job. The economic activity of the company is 
coded by a pair of characters based on the Italian 
version of the NACE classification system. NACE 
(Nomenclature des Activités Économiques dans la 
Communauté Européenne) is a European industry 
standard classification system similar in function to 
Standard Industry Classification (SIC) and North 
American Industry Classification System (NAICS) 
for classifying business activities.  

3 THE PROPOSED ALGORITHM 

In order to design an algorithm able to evaluate the 
probability of contracting an occupational disease as 
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a function of some characteristic of the worker, his 
work history and his work environment, the risk 
prediction problem has been reformulated as a 
classification problem. The basic classification 
system is a clustering based one, which is trained   in 
a supervised fashion, by discovering clusters of 
labelled patterns in STR. Once the clusters are 
identified, the classification rule is defined by 
considering, within each cluster, the class label with 
higher frequency. A test pattern is classified by 
assigning the class label according to the cluster 
representative label having minimum dissimilarity 
value. The algorithm was coded in C++ language. 

3.1 Basic Algorithm 

The core procedure during the synthesis of a 
classification model consists in clustering STR by the 
well –known k-means algorithm. To this aim, an ad 
hoc dissimilarity measure δ between patterns was 
defined as a convex linear combination of inner 
dissimilarity measures δi between homologues 
features: 

 



N

i
ii vupvu

1

,),(   (1)

where N is the number of the features (6 in our case) 
and  1,0;  ii pp  is the relative weight of the i-

th feature. 
The δi(u,v) distance between patterns u and v 

relative to the i-th feature have been defined 
differently on the basis of the considered feature 
type, which can be continuous or categorical 
(discrete nominal) values: 
 for age (in years) and the duration of the activity 

(in months), δi is the Euclidean distance 
normalized in the unitary interval [0,1]; 

 for gender and economic activity of the 
company, in the case of concordance δi = 0, 
otherwise δi = 1 (simple match); 

 for the job of the individual, in the case of 
concordance of both characters δi = 0, in the case 
of concordance of the first character only δi = ½, 
otherwise δi = 1. 
The overall classification system has been 

designed to automatically determine the weights pi 
of the dissimilarity measure (1) and the optimal 
number of clusters k, in order to maximize the 
classification accuracy: 


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where: 

S is the labelled pattern set on which is computed the 
accuracy; 
Ω = {hearing loss, spinal diseases, musculoskeletal 
disorders, tumors of the pleura and peritoneum, 
carpal tunnel syndrome, skin diseases} is the 
considered label set; 

x  is the pathology of worker Sx (ground 

true class label);  
Kx  is the label assigned by the classification 

model to x; 
h(ωx , ωKx ) = 1 if  ωx = ωKx ; 
h(ωx , ωKx ) = 0 if  ωx ≠ ωKx ; 

In order to perform this optimization task, we 
have developed a suited implementation of a genetic 
algorithm. The generic individual of the population 
subject to evolution by genetic operators is formed 
of two data structures (sections) for a total of 7 
parameters to be optimized:  

1. a vector of 6 real numbers between 0 and 1, 
corresponding to the weights associated with 
the features in the distance function δ;  

2. an integer between 2 and a maximum value 
fixed in the system parameters, corresponding 
to the number of clusters to be used for the 
clustering of the training set. 

From one generation to the next, each individual 
in the GA is evaluated by a fitness function defined 
as the accuracy (2), computed on SVAL. The selection 
is simulated using a roulette wheel operator. The 
crossover and mutation affect the entire individual, 
formed by six weights and the number of clusters. 

The individuals of the initial population of the 
GA are created as random samples. For each 
individual, a clustering procedure with k-means is  
performed on the training set with weights fixed in 
the first section of the individual’s genetic code and 
setting the number of clusters as the integer number 
stored in the second section. Once obtained a 
partition of the STR, each cluster is assigned with a 
unique label, defined as the most frequent pathology 
in the cluster. Successively the fitness is computed 
as the classification accuracy on the validation set, 
according to (2). 

Reproduction, crossover and mutation are 
applied to the individuals of the GA to evolve the 
population, until a stop criterion based on a 
maximum number of generations is met. The 
algorithm is summarized in Table 4. 

The distribution of pathologies in the data set 
shows that class labels (diseases) are not well 
balanced, and this could distort the values of fitness 
by giving excessive importance to the most frequent 
pathology. Therefore, it is introduced a variant of 
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fitness function aiming to equally weight all 
misclassifications, regardless of their number. The 
new fitness (equation (3)) is given by the weighted 
accuracy, i.e. the mean value of the percentages of 
correct answers for each pathology. Tests were 
performed with both fitness and the results have 
been compared.  

 
 


 


Sx

Kxxweighted h
S

accuracyf ),(
11

2
 

(3)

where: 
Sω is the subset of S of all elements associated with 
pathology   ( SS  ). 

Table 4: Summary of the basic algorithm. 

Input parameters:  
- Maximum number of clusters: Kmax  
- Number of population’s individuals in the GA: Pop  
- Number of generations of GA: nGeneration.  
 
1. Reading data from STR and SVAL.  
2. Initialization (Generation =  0).  

For j = 1 to Pop  
o Random assignment of weights pi of the 6 
features and of the value K ≤ Kmax.  
o Clustering of the elements of STR into K 
clusters using the distance function (equation 3) 
with the parameters encoded in the individual j 
o Evaluation of the fitness of individual j with 
the function in equation 1 

3. For q = 1 to nGeneration  
o Application of elitism.  
o  Repeat  
 Selection of individuals of the old population 

by roulette wheel operator.  
 Crossover between pairs of the selected 

individuals.  
 Mutation with a low probability on each 

element. 
 Clustering of STR in K clusters using the 

distance function (1) with the parameters 
encoded in the individual. 

 Evaluation of the fitness function (2) on SVAL 
Until complete new generation 

3.2 A Second Variant of the Algorithm 

The basic algorithm leads to the formation of 
clusters containing more than one disease. The label 
associated with the cluster coincides with the most 
frequent pathology in it. This procedure cannot 
assure the presence of at least one cluster for each 
class. To make sure that all the pathologies are 
represented in the final classification model, a 
second version of the proposed classification system 
has been designed. 

For this purpose, the training set STR has been 
partitioned into six subsets, one for pathology. The 
new algorithm runs six cluster analyses in parallel, 
one for each of the 6 subsets of STR. As a 
consequence, each cluster will contain patterns 
associated with a unique class label and will 
consequently be directly labeled. The union of the 
six sets of labeled clusters originated will be directly 
employed for the classification model definition.  

The generic individual of the population of the 
GA has been adapted to the new algorithm; in 
particular, the second part of the individual no 
longer contains a single integer, but 6 integers, each 
representing the number of clusters to use in the 6 
cluster analysis performed in parallel on each subset 
of the training set (one for each class label). The 
initialization step of the first generation of the GA is 
similar to the basic algorithm. As for the previous 
version, we considered both the fitness functions f1 
and f2 computed on SVAL (Equations (2) and (3)) for 
individual fitness evaluation. 

4 RESULTS 

All experiments were conducted using the GA by 
evolving a population of 100 individuals for 50 
generations, fixing to 20 the maximum number of 
clusters. All performances reported in the following 
tables are computed on the test set. Table 5 shows 
the classification results as a confusion matrix, in the 
case of the basic algorithm and using equation (2) as 
fitness. All correct guesses are located in the 
diagonal (highlighted in gray) of the table, so it is 
easy to inspect visually the table for errors, as they 
will be represented by any non-zero value outside 
the main diagonal. 

For each of the 6 diseases, further views can be 
extracted from the Confusion matrix in the 
Confusion table’s schema (see Table 6). Given the 
content of the dataset, formed only by workers 
affected by pathologies, for each disease are 
considered as healthy the workers not affected from 
that pathology. The columns “Positive to test” and 
“Negative to test” of Confusion tables contain the 
number of workers that the algorithm predicts 
respectively as sick (i.e. affected by the disease in 
question) or healthy (i.e. affected by other diseases). 
The rows “Actual true” and “Actual false” contain 
the number of those who actually are, respectively, 
sick and healthy. For example, the two confusion 
tables (table 7a and 7b) shown below summarize the 
cases “1-hearing loss” and “4- tumours of the pleura 
and peritoneum”. 
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Table 5: Confusion matrix for basic algorithm with f1. In 
brackets normalized values as percentage. 

  Predicted class 
  1 2 3 4 5 6 

Actual 
class 

1 
351 

(94.1) 
5

(1.3)
0 

(0.0) 
7 

(1.9) 
9

(2.4)
1

(0.3)

2 
45 

(54.2) 
36

(43.4)
0 

(0.0) 
0 

(0.0) 
1

(1.2)
1

(1.2)

3 
32 

(44.4) 
20

(27.8)
0 

(0.0) 
0 

(0.0) 
16

(22.2)
4

(5.6)

4 
18 

(31.0) 
8

(13.8)
0 

(0.0) 
32 

(55.2) 
0

(0.0)
0

(0.0)

5 
9 

(18.0) 
16

(32.0)
0 

(0.0) 
1 

(2.0) 
23

(46.0)
1

(2.0)

6 
20 

(45.5) 
7

(15.9)
0 

(0.0) 
0 

(0.0) 
4

(9.1)
13

(29.5)

Table 6: Confusion table’s schema for the evaluation of 
the predictive ability of a test. 

 Positive to test Negative to test 

Actual true True positives False negatives 
Actual false False positives True negatives 

Table 7a: Confusion table for pathology “1-hearing loss” – 
basic algorithm using f1. 

351 
True positives 

22 
False negatives 

124 
False positives 

183 
True negatives 

Table 7b: Confusion table for pathology “4- tumors of the 
pleura and peritoneum” – basic algorithm using f1. 

32 
True positives 

26 
False negatives 

8 
False positives 

614 
True negatives 

The confusion tables allow more detailed 
analysis than mere proportion of correct guesses 
(accuracy). Accuracy is not a reliable metric for the 
real performance of a classifier, because it will yield 
misleading results if the data set is unbalanced. For 
example, if there were 95 sick and only 5 healthy in 
the data set, the classifier could easily be biased into 
classifying all the samples as sick. The overall 
accuracy would be 95%, but in practice the classifier 
would have a 100% recognition rate for the sick 
class and a 0% recognition rate for the wealthy class. 
For these reasons, we reported the overall confusion 
table (see table 8) containing the average values for 
all classes. 

Table 8: Confusion table with average values - basic 
algorithm with f1. 

75.8 
True positives 

37.5 
False negatives 

37.5 
False positives 

529.2 
True negatives 

The results of the second experiment, based on 
the basic algorithm using the fitness f2, are shown in 
table 9. The number of clusters of the best individual 
of the last generation is 20, of which 13 are labeled 
as "1 - hearing loss, 2 as "2 - spinal diseases", 1 as 
"3 - musculoskeletal disorders", 2 as " 4 - tumors of 
the pleura and peritoneum", 1 as "5 - carpal tunnel" 
and 1 as " 6 - skin diseases." 

Table 9: Confusion matrix for basic algorithm with f2. In 
brackets normalized values as percentage. 

  Predicted class 
  1 2 3 4 5 6 

Actual 
class

1 
338

(90.6)
7

(1.9)
7

(1.9)
15

(4.0)
6

(1.6)
0

(0.0)

2 
36

(43.4)
35

(42.2)
4

(4.8)
0

(0.0)
7

(8.4)
1

(1.2)

3 
32

(44.4)
12

(16.7)
14

(19.4)
0

(0.0)
13

(18.1)
1

(1.4)

4 
18

(31.0)
1

(1.7)
7

(12.1)
32

(55.2)
0

(0.0)
0

(0.0)

5 
8

(16.0)
6

(12.0)
12

(24.0)
2

(4.0)
21

(42.0)
1

(2.0)

6 
21

(47.7)
3

(6.8)
0

(0.0)
0

(0.0)
8

(18.2)
12

(27.3)

Similarly to the previous case, the two confusion 
tables (table 10a and 10b) summarize the cases “1 – 
hearing loss” and “4 – tumours of the pleura and 
peritoneum”. 

Table 10a: Confusion table for pathology “1 – hearing 
loss” – basic algorithm using f2. 

338 
True positives 

35 
False negatives 

115 
False positives 

192 
True negatives 

Table 10b: Confusion table for pathology “4 – tumors of 
the pleura and peritoneum” – basic algorithm using f2. 

32 
True positives 

26 
False negatives 

17 
False positives 

605 
True negatives 

The final confusion table containing the average 
values for all classes concerning the second 
experiment is shown in Table 11. 
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Table 11: Confusion table with average values - basic 
algorithm with f2. 

75.3 
True positives 

38.0 
False negatives 

38.0 
False positives 

528.7 
True negatives 

In the third experiment, based on the proposed 
variant of the algorithm using the fitness f1, the best 
individual of the last generation shows an overall 
classification accuracy equal to 62%. The total 
number of clusters was 36, with the following class 
distribution: 20 are labelled as "1 - hearing loss", 6 
as "2 – spinal diseases," 2 as "3 - musculoskeletal 
disorders", 4 as "4 - tumors of the pleura and 
peritoneum", 2 as "5 - carpal tunnel" and 2 as "6 - 
diseases of the skin". In table 12 are summarized the 
data of the six tables of confusion (one for disease). 
Each column represents the confusion table for the 
indicated disease in the column header. The final 
table of confusion with average values is shown in 
Table 13. 

Table 12: Summarized data of the confusion tables - 
variant of the algorithm with f1. 

 Pathology 

 1 2 3 4 5 6 

True 
positives 

312 42 12 35 1 19 

False 
positives 

127 59 19 15 20 19 

False 
negatives 

61 41 60 23 49 25 

True 
negatives 

180 538 589 607 610 617 

Table 13: Confusion table with average values – variant of 
the algorithm with f1. 

70.2 
True positives 

43.2 
False negatives 

43.2 
False positives 

523.5 
True negatives 

In the fourth experiment, based on the variant of 
the algorithm with the fitness f2, we obtained the 
53% of correct classification in correspondence of 
the best individual of the last generation. The total 
number of clusters was 71, with the following class 
distribution:  18 are labeled as "1 - hearing loss", 10 
as "2 - spinal diseases", 7 as "3 - musculoskeletal 
disorders", 11 as "4 - tumors of the pleura and 
peritoneum", 15 as "5 - carpal tunnel", 10 as "6 - 
skin diseases". The results for this experiment are 
shown in Table 14 and in Table 15 

Table 14: Summarized performances of the confusion 
tables - variant of the algorithm with f2. 

 Pathology 
 1 2 3 4 5 6 

True 
positives 

210 44 17 35 30 25 

False 
positives 

48 61 45 30 89 46 

False 
negatives 

163 39 55 23 20 19 

True 
negatives 

259 536 563 592 541 590 

Table 15: Confusion table with average values – variant of 
the algorithm with f2. 

60.2 
True positives 

53.2 
False negatives 

53.2 
False positives 

513.5 
True negatives 

Table 16: Chromosome of GAs. 

 
Basic 

Algorithm
using f1 

Basic 
Algorithm 

using f2 

Variant of 
Algorithm 

using f1 

Variant of 
Algorithm

using f2 
Feature  x1 1.000 1.000 0.870 0.660 
Feature  x2 0.041 0.134 0.894 0.709 
Feature  x3 0.078 0.346 0.569 1.000 
Feature  x4 0.592 0.519 1.000 0.196 
Feature  x5 0.189 0.220 0.280 0.726 
Feature  x6 0.265 0.076 0.096 0.141 
N. cluster 10 20 – – 
N. cluster 

pathology 1
– – 20 18 

N. cluster 
pathology 2

– – 6 10 

N. cluster 
pathology 3

– – 2 7 

N. cluster 
pathology 4

– – 4 11 

N. cluster 
pathology 5

– – 2 15 

N. cluster 
pathology 6

– – 2 10 

The Table 16 shows the genetic code of the best 
individual produced by the GA for each experiment. 
The first six parameters encode the weight of the 
features (normalized values) and the other 
parameters encode the clusters number. 

Another significant tool for performance 
analysis, commonly used in the evaluation of 
diagnostic tests, consists in the use of sensitivity and 
specificity. Let us consider a study evaluating a new 
test that screens people for a disease. The test 
outcome can be positive (predicting that the person 
is affected by the considered disease) or negative 
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(predicting that the person is healthy). The test 
results for each subject may or may not match the 
subject's actual status. In that setting: 

 True positive: Sick people correctly 
diagnosed as sick 

 False positive: Healthy people incorrectly 
identified as sick 

 True negative: Healthy people correctly 
identified as healthy 

 False negative: Sick people incorrectly 
identified as healthy 

The four outcomes can be expressed in a 2×2 
confusion table, as in Table 17a. In table 17b are 
defined the indicators used in diagnostic tests. 

Table 17a: Confusion table. 

 Condition 
positive 

Condition 
negative 

Test 
positive 

True 
positive 

False 
positive 

Test 
negative 

False 
negative 

True 
negative 

Table 17b: Diagnostic Tests indicators. 

Sensitivity = True positive / Σ Condition positive 
Specificity = True negative / Σ Condition  negative
Positive predictive value = True positive / Σ Test positive
Negative predictive value = True negative / Σ Test neg. 

In Table 18 are briefly described the diagnostic 
test's indicators, using the average values calculated 
on all pathologies. Table 19 summarizes the results 
of 11 runs, with different initial seeds for the random 
number generator, using the variant of algorithm 
with f2. For both negative and positive predictive 
values are reported the average performance, 
standard deviation, minimum and maximum values, 
for each disease and for the totality of the 
pathologies. 

Table 18: Diagnostic test’s indicators – average values. 

 
Basic 

Algorithm 
using f1 

Basic 
Algorithm 

using f2 

Variant of 
Algorithm 

using f1 

Variant of 
Algorithm

using f2 
Sensitivity 0.447 0.461 0.427 0.517 
Specificity 0.905 0.907 0.895 0.901 
Negative 
predictive 

value 
0.929 0.923 0.906 0.892 

Positive 
predictive 

value 
0.503 0.574 0.460 0.442 

 

Table 19: Negative and positive predictive values by 
pathology resulting from a pool of 11 runs (variant of 
Algorithm using f2). 

 Pathology 1 2 3 4 5 6 All

 Patterns 373 83 72 58 50 44 680

Negative 
predictive 

value 

Average 0,58 0,94 0,90 0,97 0,97 0,97 0,90

St. dev. 0,02 0,01 0,01 0,01 0,01 0,00 0,01

Min 0,54 0,92 0,90 0,96 0,96 0,96 0,89

Max 0,61 0,94 0,91 0,98 0,98 0,98 0,91

Positive 
predictive 

value 

Average 0,82 0,38 0,26 0,48 0,28 0,28 0,50

St. dev. 0,01 0,03 0,05 0,09 0,03 0,04 0,03

Min 0,81 0,34 0,21 0,40 0,22 0,23 0,44

Max 0,85 0,43 0,35 0,67 0,34 0,35 0,53

In Tables 20 and 21 are shown the diagnostic 
test’s indicators relative, respectively, to the 
"hearing loss" and to the "tumors of the pleura and 
peritoneum". 

Table 20: Indicators relative to “1 – hearing loss”. 

 
Basic 

Algorithm 
using f1 

Basic 
Algorithm 

using f2 

Variant of 
Algorithm 

using f1 

Variant of 
Algorithm

using f2 
Sensitivity 0.941 0.906 0.836 0.563 
Specificity 0.596 0.625 0.586 0.844 
Negative 
predictive 

value 
0.893 0.846 0.747 0.614 

Positive 
predictive 

value 
0.739 0.746 0.711 0.814 

Table 21: Indicators relative to “4 - tumors of the pleura 
and peritoneum”. 

 
Basic 

Algorithm
using f1 

Basic 
Algorithm 

using f2 

Variant of 
Algorithm 

using f1 

Variant of 
Algorithm

using f2 
Sensitivity 0.552 0.552 0.603 0.603 
Specificity 0.987 0.973 0.976 0.952 
Negative 
predictive 

value 
0.959 0.959 0.963 0.963 

Positive 
predictive 

value 
0.800 0.653 0.700 0.538 
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5 CONCLUSIONS 

The first experiment (basic algorithm using f1) 
shows that the sensitivity has a very high value 
(0.941) for the group “hearing losses” (larger group), 
and an average value equal to 0.447. The pathology 
“3 - musculoskeletal disorders” was never predicted 
by the algorithm. The specificity presents a value 
close to 0.6 for the group “hearing loss” and an 
average value greater than 0.9. These first results 
show that function f1 privileges the most frequent 
pathology. In the second experiment (basic 
algorithm using f2), the sensitivity no longer has null 
values. The average sensitivity is equal to 0.461, 
value slightly better than the previous case. The 
specificity has values similar to the ones in the 
previous experiment. The third experiment (variant 
of the basic algorithm using f1) shows performance 
values in general slightly worse compared to the 
basic algorithm. However, there is an improvement 
for the sensitivity of some pathologies. The fourth 
experiment (variant of the basic algorithm using f2) 
shows that the use of f2 compared to f1 has led to an 
improvement of the average sensitivity of almost a 
decimal point. Regarding the specificity, for all 
pathologies the values are always greater than 0.84, 
with an average value of 0.901.  

The comparison of the average values of the 
indicators (Table 18) shows how the second 
algorithm with f2 present the highest sensitivity. 
Regarding the specificity and the predictive value of 
the negative outcome of the test, we have 
substantially similar behaviours for the four 
experiments. As concerns positive predictive value, 
the basic algorithm with f2 has provided the best 
results. The high values, close to unity, for 
specificity and negative predictive value are 
encouraging. However, the variant of the algorithm, 
while not showing results appreciably better than the 
basic algorithm, has better performance by reducing 
the execution time to a third compared to the basic 
version, because clustering procedures are run on 
smaller sets. Thus, for the final commitment of the 
system, which has to deal with a much larger 
database, the second version should be preferred, 
considering also that its performances are very close 
to the ones obtained with the basic algorithm. In 
particular, as shown by standard deviations in table 
19, performances are stable over multiple runs, 
assuring a good reliability to the results. Moreover, 
the negative predictive value can be considered 
sufficient to be used in a suited automatic screening 
procedure, designed to reduce costs in performing 
clinical trials on all the interested workers, since a 

negative classification for a given worker is 
sufficient to reliably ascertain his health status. Note 
that in general for the groups “hearing loss” (the 
largest group) and “tumors of the pleura and 
peritoneum” (more severe disease) the results are 
better than for other diseases, including the 
sensitivity and the positive predictive value.  

The examination of the weights of the features 
(Table 16) shows different values for the different 
algorithms. In all the experiments, only the 
economic activity of the company seems less 
important than the other features, so it might be 
interesting to define a different set of features, 
replacing the economic activity. 
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