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Abstract: In Description Logics (DLs), an instance checking is regarded as one of the most important reasoning services
involving individuals. Though the usability of the reasoner has been seemingly proven in many real-life
applications, the classified results are merely a binary response, i.e. whether or not a given individual is an
instance of a concept. As being a standard reasoning service, unsatisfying one among all sufficient conditions
would basically lead to a negative conclusion. This work introduces a new method to enhance the capability
of the instance checking in which the degree of membership could be unveiled though sufficient conditions
are not completely satisfied. The proposed algorithm is developed based on the adoption of a homomorphism

mapping.

1 INTRODUCTION isfied; that is, the missing of one of the required con-
cept and/or role assertions consequently turns rea-

Representing knowledge in the form that can be uti- SOning outputs negative without providing any ben-
lized by computer agents, known Kaowledge Rep-  €ficial clues no matter how rich the assertions are.

resentation is one challenge field in artificial intelli- ~ This lack leads to an introduction of a non-standard
gence. One common formalism is by using a fam- instance checking service whose response is the de-
ily of the knowledge representation call@bscrip-  gree of membership. In fact, the computation method

tion Logics (DLs) (Baader et al., 2007). In DLs, IS based on a structural homomorphism and is par-
the knowledge is structurally represented by means ofticularly the extension of our recent work (Suntisri-
concepts and their relationship. On the one hand, rich Varaporn, 2013) on measuring similaréty. concepts.
ontologies can be constituted using expressive DLs, Hence, the idea is extended to ABox and thus the in-
i.e. an employment of the Web Ontology Language Stance checking problem.
(OWL), which recently becomes a standard seman-  Given an ABox that fulfills all sufficient condi-
tic web language recommended by W3C consortium. tions of a concept description, the proposed algorithm
On the other hand, some other ontologies can alter-basically produces the same result as that obtained
natively be fformulated using lightweight ones which from classical reasoners (i.e. both return 1 as the re-
are sufficiently expressive for the domains and offer sult). This reflects that, in common cases where suf-
classification tractability, e.g. the use of extensions of ficient conditions are fulfilled, both standard and the
the tractable DLEL in the renowned medical ontol- proposed non-standard algorithm behave in a similar
ogy (Schulz et al., 2009). manner. However, in a situation where not all con-
Among a variety of knowledge representation for- cept conditions are satisfied. From a classical rea-
malisms, main reasons making DLs distinct from soning point of view, as previously mentioned, such
others is their underlying reasoning services which the ABox is normally classified as irrelevant. In con-
makes implicit knowledge explicit. Apart from the trastto the classical reasoners, the proposed algorithm
most prominensubsumption checkirggrvice, which ~ checks further to an existence of some commonality
allows finding of subclass-superclass relationsinip, ~ and subsequently computes a corresponding degree of
stance checkings one another readily available ser- membership which ranges between 0 and 1.
vice, which checks whether a given individual is an To be more illustrative, consider an application of
instance of a certain concept. Serving as a standardvisual object detection proposed in (Tongphu et al.,
service, a classical instance checking gives a posi-2012). In this work, the object of interest (i.e. car ob-
tive response only when sufficient conditions are sat- jects) is described by means of its composition (i.e.
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Table 1. Syntax and semantics of the Description Logic
ELH.

Name Syntax Semantics
top T AT

concept name A AfcpaT
conjunction cnb cInp?

{xenl |Iyent:

existential restriction 3r.C
xy) erf anyec?t)

primitive concept defAC D AL c DT

full concept def A=C A=
concept assertion  C(x) x%eC”

role assertion rixy) <5,y ert

car parts) using an OWL ontology. During a test-
ing stage, visual features extracted from an image are
converted to ontological assertions. By using a clas-
sical instance checking service, the classification re-
sults would basically turn nagative when required car
parts are not entirely detected. The proposed reason
ing service, on the other hand, returns the degree of
membership based on a shared commonality. This al-
lows a certain cut-off threshold to be set up. The in-
dividual whose degree of membership is greater than
the threshold can then be classified as a car instance.

The rest of this paper is organized in order. The
background on the DEEL?H, the unfoldable TBoxes,
and the£LH description tree are described in the
next section. Section 3 and 4 introduce the notions
of the EL£H description graph of the assertion ter-
minology and membership homomorphism for the
instance checking problem, respectively. Section 5
and 6 describe related works and give conclusions of
this work.

2 BACKGROUND

In the knowledge representation using the family of
DLs, theconcept descriptionsf the £LH regarded
as the lightweight DL can be built from a setmimi-
tive concept nameSN, a set offole nameRN, and a
set of constructors shown in the first part of Table 1. A
finite set ofterminological axiom®f the form shown
in the second part of Table 1 is called &4H termi-
nologyor TBox The TBox is said to beinfoldable
if it contains at most one definition for each concept
name, and it imcyclic(i.e. there is no direct or indi-
rect definition refers to the concept itself). For the rest
of this paper, we denote b an unfoldable TBox.

Let A,B be concept names, af@jD be arbitrary
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concept descriptions. For the sake of simplicity, we
denote byCNYf andCNP", the set oflefined concepts
(i.e. the concept that appears on the left-hand side of a
concept description) and the setmfmitive concepts
(i.e. the concept that only appears on the right-hand
side of a concept description).

CN = CNP" U CNYef

Let x andy be individuals, andind be a set ofn-
dividual namesAn £ LH ABoxA is a finite set ohs-
sertionsshown in the third part of Table 1. A knowl-
edge basé& = (7,.4) comprises off and.A.

Like all other DLs, the semantics &fLH is de-
fined by means of interpretations. An interpretation
T = (A%, -T) consists ofnterpretation domaid? and
interpretation function®.  The interpretation func-
tion maps every concept namfec CN to a subset
AT C AZ, every role name € RN to a binary rela-
tionr? C AT x A?, and every individuak € Ind to an
elementx? € AT. The last column of Table 1 depicts
the semantics fo€ £LH constructors, terminological
axioms, and assertions, respectively. 'An interpreta-

tion Z is called a model of the knowledge baseif

it satisfies every axiom iry” and every assertion in
A, i.e. conditions in the semantics column of Table 1
are fulfilled. Figure 1 depicts a knowledge base about
family constructed by using DELH.

Woman = Femaler1Person
Mother = WomanTi3child.Person
GrandMother =  Woman 1 3child.(Person
M Fchild.Person)
Syster = Woman M dsibling.Person
Aunt = Womann3sibling.(Person
M Jchild.Person)
Man =  MalerPerson
Father = ManT1dchild.Person
GrandFather =  Man M 3child.(Person
M Jchild.Person)
Brother = ManmMdsibling.Person
Uncle = ManM3sibling.(Person
M Jchild.Person)
Father(a), GrandMother(b),sibling(a,b),sibling(b, a)

Figure 1. Knowledge base of familyCe, ). The termi-
nological box (f.mily) and the examples of assertional box
(Afamily) are shown in the upper part and lower part, respec-
tively.

We assume without loss of generality thatatiH
conceptC can be represented using the following
form ((Suntisrivaraporn, 2013)):
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Algorithm 1: £L£H description tree construction.
function build-tree(Pc, &c)

1: Create a new tre®
2: Create a new vertexc V
3 4(V) « Pc
4: for each3r.C’' € & do
5. build-child-node(v,r, Pcr, Ecr)
6: return T
function build-child-node (v, r, Pc, £c)

: Create a new vertew ¢ V

D (W) + Pc

: Add a new edgév,R;,w) to E
4: for each3ds.C’ € & do

5. build-child-node(w, s, Pcr,Ecr)

W N P

PPy 3dr.Com---m3arp.Cy
whereP, € CN™, rj € RN, andC;j are concept de-
scriptions, for I<i <mand 1< j < n. To be more
understandable, consider the concéptt defined in
Tramily, the following shows its equivalent expanded
form.

Female Person 3sibling.(Person M 3child.Person)

For convenience, we denote By the set of top-level
primitive conceptq Py, ...,Pn} and&c the set of top-
level existential restriction§3r1.Cy,...,3rn.Ch}. To
handle a role hierarchy, we denoteRy = {gr C* s}
wherex is a transitive closure, the set of role expan-
sion w.r.t.r.

We define the€ LH description tree of w.r.t. the
unfoldable TBox byZc = (V,E,rt,¢) whereV is a
set of nodesE C V x 28N < V s a set of labeled
edgesrt is a root, and’ : V — 2°N*" is a node label-
ing function. Algorithmically,¥c can be constructed
using Algorithm 1. Figure 2 (left and right) shows an
example of the€ L description tree for the concept
Aunt, written T aynt.

3 REASONING ABOUT
INDIVIDUALS

Given a knowledge bas€é = (7, .A), an individualx
and a concepf, theinstance checkingroblem con-
sists on deciding whether the concept asser@@x)
is satisfied in every model é¢, in symbolsC = C(x),
i.e.x? € C* for every model of K.

Let Ind(A) denote the set of individuals inl.
In order to enable an investigation for a mem-
bership, a representation gf is transformed into an
ELH descriptiongrapli(A) = (V,E, £) whereV de-

Algorithm 2: £ L#H description graph construction.
function build-graph(.A)

: Create a new grapfi = (V,E,?)
: for eachx € Ind(.A) do
Add v, toV
: for eachC(x) € A do
L(vx) < Pc
V VU (Ve \ 1)
for each(v,Ry,u) € Es. do
if v rt then
Add (v,Rr,u) toE
10: else
11: Add (v, Rr,u) to E
12: for eachr(x,y) € A do
13: - Add (v, Ry, W) t0.E
14: return G

ONoGahwhE

©

notes a set of node& C V x 2RN™ <V s a set of
labeled edges, an€l: V — 2°N*" is a node labeling
function. Algorithm 2 shows a process of th&H
description graplg(A) construction. Intuitively, for
each individuak defined inA4, a corresponding node
vy is introduced and added to the graghA). For
eachC(x) € A, vy is augmented by all successors of
the root of¥c. The outgoing edge that linkg to vy
wherer(x,y) € A is then added.

Definition 1 (Homomorphism) Let ¥ and¥’ be two
ELH description trees as defined above. There exists
a homomorphisnh from ¥ to ¥’ writtenh: T — ¥’

iff the following conditions are satisfied:

1. £(v) C 2 (h(v)).

2. For each successoof vin €, h(w) is a successor
of h(v) with (v, R, w) € E, (h(v),Rs,h(w)) € E/,
andR; C Rs.

ConsiderAgmiy W.r.t. Kamiy, the corresponding
ELH description graph forsmiy can be constructed
using Algorithm 2. Figure 2 illustrates an existence
of a homomorphism that maps the root®™f,,: to b
in G(Afmiy) and a failed attempt to find a homomor-
phism that maps the root &fay: to ain G(Asamily)-
Though the failed mapping does not satisfy the homo-
morphism conditions, there still exists some common-
ality shared between the corresponding nodes and
edges (e.g. both are person and have sibling); that
is, though not being considered as the instance of the
concept, inductively it exhibits some degree of mem-
bership.

Proposition 2 shows the characterization of an in-
stance checking problem by means of an existence of
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Up: {Female\, Person} Wo :iPerson}

. S ’
{sibling} \\\ _________ 7 {child}
T T 4
up: {Person} "~ _ -7 a:{Male,Person}
~ ”
{child} S>2” {sibling}

Up: {Person}™ ~
{child}
wy : {Person}
{child}

Wy : {Person}

{sibling}
h ‘b?{Female, Person}

Vo -:A{-Female, Person}
{sibling}
vy : {Person}
{child}

Vo : {Person}

Figure 2: A homomorphism that maps the root®f: (left) to bin G(Afmily) (middle). A failed attempt to map the root

of TAunt (rlght) toain g(Afamin)'

a homomorphism. It shall turn out that this propaosi-
tion can be a generalization for the BILH.

Proposition 2. (Baader, 2003) LeT be an L-TBox,
A an€&L-ABox, C a conceptifi and x an individual
occurring in A. Then, the following are equivalent:

1. (T,A) =EC(x)
2. There is a homomorphism from the root¥f to
XinG(A)

4 MEMBERSHIP
HOMOMORPHISM DEGREE

In addition to the method for computing the member-
ship homomorphism degree originally introduced in
(Suntisrivaraporn, 2013), this work follows the idia
with an extension to handle role hierarchy axioms.
LetC be&LH unfolded concept descriptiorBg,
&c be as defined in the previous secti@a,be the cor-
responding® LH description treeR, andRs be sets
of roles w.r.t. the role expansions nfinds, respec-
tively. For convenience, leddge(v) represents the set
of edges from the vertex i.e. edge(v) = {(Rr,w) |
(v,Rr,w) € E}. Then, the degree of having a mem-
bership homomorphism from € Tc tov € Vg 4) is
defined as follows:

Definition 3 (Membership Homomorphism Degree)
Let T7 be the set of allELH description trees
from TBox 7 and Vg4 be the set of all ver-
tices in the description graph from ABoXA.
The membership homomorphism degree function
mh:TTng(A) —[0,1] is inductively defined as
follows:

70

mh(Tc,V € Vg) i= W p-mh(Pc, {(v))
+(1— W) - e-set-mh(Ec,edge(V)),

1)
where 0< p < 1;
' _ 1 if Pc=0
p-mh(Pc, £(V)) = Pl otherwise
(@)
where| - | represents a set cardinality;
. max{e-mh(g,e):ecE}
e-set-mh(&c,E) = EGZ&;T7
3)

wheree is an existential restrictiorg is an edge, and
E C Eg(4) is a set of outgoing edges; and

e-mh(3r.X, (Rs,w)) :=
Y(V+ (1=v)-mh(Tx,w))
(4)
|RiNRs|

=] and 0<v < 1.

wherey =

The meaning of the parametarsandv are sim-
ilar to those defined in (Suntisrivaraporn, 2013) and

set to‘;fucg‘d and 0.4, respectively. The valuepin
Formula 4 is a proportion of a set of common roles
against all those respect to For the case where

y = 0, this means there is no commonality between
two given roleg ands, i.e. further computations for
the degrees of membership among their successors
should be omitted. If & y < 1, this reveals that there
exists some commonality. However, in the case where
y=1, bothr ands are totally similar and thus consid-
ered logically equivalent.
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Algorithm 3: £LH similarity measure.

a homomorphism defined in Definition 1 are satisfied

function mh(%c,v € Vg(4))

1: i < - p-mh(Pc,L(V)) +
(1— p)e-set-mh(Ec,edge(V))
2: return i
function p-mh(Pc, ¢(v))

1: if Pc + Othen
2. return 1
3: else

4:  return [Pc0dV)l

[Pcl
function e-set-mh(&c, E C Eg ()

1: sum«—0

2: for eache € &¢ do

3 max<«— 0

4; for eachee E do

5 if e-mh(g,e) > maxthen
6 max+— e-mh(g, )

7. sSUM< Sum4 %‘
8:return sum

function e-mh(3r.X, (Rs,w))

1. if y=0then
2. return O
3: else

4;  return y(v+ (1—v)-mh(%x,w))

and by Proposition Z3(x) € A.

The membership homomorphism function unveils
a numerical value measuring the degree membership
of anindividual in an ABox description graph against
a compared concept description tree. Intuitively, this
infers the degree of membership which suggests how
close an individual is an instance of a concept. There-
fore, we define the degree of membership of the indi-
vidual x to the concep€ as the numerical value ob-
tained frommh (T, vx € Vg 4))-

Example 5. To illustrate how the algorithm works,
consider the expanded description tfeg,,; and the
expanded description grag{.Asmiy) shown in Fig-
ure 2, usingu andv as previously described, the de-
grees of membership of the individuafto the con-
ceptAunt can be computed using Algorithm 3. The
following shows computation steps:

mh(EAunt,Va S Vg)
= %p'mh(,PAuntvg(Va))

)
(iPersonﬂﬂch.Person ) Vb) ))
= :23, ( ) + % (1(% + %mh(SPersonﬂﬂch.Person 5 Vb)))

Proposition 4. Providing a description grapl(A)
w.rt. A and an€ LH description treegc of a concept

C in an unfoldable€ LH TBox T, the followings are

equivalent:

1. (T, A) ECX)
2. mh(Te, v € G(A) =1

1 Wheremh({ZPersonﬂﬂch.Person7Vb) yle|d5 1,
I/ see belows

Proof. (1 = 2) By Proposition 2,C(x) € A The computation for the sub-description correspond-
then there exists a homomorphism mapping <c ing tov; andb in Figure 2 is as follows:
to W € Vg(4)- For the induction base case where

the depth offc is zero (i.e.T¢ contains only one
node), by Definition 3, this inductively implies that
£(rt) C £(w), such thapt= 1, andp-mh(Pc, {(vy)) =

1 and as a consequenoé(Tc,Vx € Vg(4)) = 1. For

mh (‘IPersonﬂﬂch.Person Vb € V_C’/ )
= % p-m h (PPersonﬂﬂch.Person ) é(Vb))

+ % e-set-mh (5Personﬂ3ch.Person ) edge (Vb) )

the induction step where the depth®f is nonzero, S S S

for every v € Vg there existsh(v) € Vg4 such = 3(3) + 2e-set-mh(Epersonrizch.person, edge(Vb))
that¢(v) C ¢(h(v)) (i.e. p-mh(-,-) = 1) and for every ~// Wheree-set-mh(Epersonrizcn.person; edge(Vb))
(V,Rr,W) € Ex, there existgh(v), Rs,h(w)) € Eg4) Il yields 1; see belows

wherew andh(w) are successors afandh(v), re- — 1D +31) =1

spectively, such thak, C Rs (i.e.e-set-mh(-,-) = 1). 2 23

Hencemh(Tc,w € Vg(a)) = 1.

The computation for the sub-description correspond-

(2= 1) By Definition 3,mh(Tc, x € Vg(4)) =1 ing with € = 3child.Person ande = ({child}, v, ) is
meansnh(-,-) =1 ande-set-mh(-,-) =1) (incase that  as follows:
the tree has child nodes) such that two conditions of
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e-mh(g,e)
= y(V + (1_ v>mh(TPerson7VW1 € Vg))
= 1(% + gmh(gPersonavwl € Vg))
=£2+31):=1
The computation for the alternative sub-description
corresponding withe = Jchild.Person and e =

({sibling},va) is, however, equal to 0 sincg= 0.
That ismax(e-mh(g,e)) = 1.

Table 2: The degrees of membership of all concepts in
Tramily to the individuala andb.

Concept Names Deg;ees c|)f membbership
Woman 0.5 1.0
Mother 0.667 1.0
GrandMother 0.567 1.0
Sister 0.667 1.0
Aunt 0.667 1.0
Man 1.0 0.5
Father 1.0 0.667
GrandFather 0.9 0.667
Brother 1.0 0.667
Uncle 1.0 0.667

By applying the same computation approach to the
rest of all defined concepts w.ITkmiy, Table 2 shows
the degrees of membership of the individaandb
to all defined concepts.

Providing thata is an instance ofather, anda
is a sibling ofb, the degrees of membership, ob-
tained through the proposed algorithm together with
Proposition 4, reveal tha is also an instance of
Man, Brother, and Uncle. Likewise, b is not only
an instance ofsirandMother but also an instance of
Woman, Mother, Sister, andAunt.

Apart from a crisp response, the proposed ser-
vice is yet capable of inductively unveiling the de-

fiability; whereas those concerning individuals are

instance checking and instance retrieval. Often-
times, instance checking algorithms have obtained
from adaptation of existing algorithms for concept

subsumption and satisfiability (Baader et al., 2003;
Baader and Sattler, 2001). In a sense, studying on
concept similarity measures is a natural approach to
solving instance checking problem.

Measuring degrees of membership as well as simi-
larity in DLs have been intensively studied in the past
few decades with a number of great attempts. The
computation methods can be, however, broadly cat-
egorized into two major approaches. One is simply
focused on a structural distance (Batet et al., 2010;
Schickel-Zuber.and Faltings, 2007; Blanchard et al.,
2005; Passant, 2010) which normally ignores the se-
mantics. The other try to semantically analyze the
relationship among concepts and to inductively com-
pute the degree of membership based on the defined
description itself. Our approach is in the second cate-
gory. The following describes major related papers.

Stuckenschmidt adopts the algorithm (Stucken-
schmidt, 2009) originally introduced by Champin et
al. (Champin and Solnon, 2003). The algorithm
measures a similarity between concept instances by
analyzing the degrees of commonality between the
graphs of two concept instances. The proposed algo-
rithm however ignores a deliberation of a subsump-
tion relation. Hence, instances of different concepts
are always identified as dissimilar.

Amato et al. (d’Amato et al., 2006) propose a
method measuring a semantic similarity between con-
cepts and instances. In this work, the degrees of mem-
bership are based on a counting of concept member-
ship (i.e. a counting for instances of concepts). The
estimation is then inductively computed using e
Nearest Neighbok¢NN) method. One disadvantage
of this method is an undecidable concept membership
could be possibly found, i.e. the individual cannot be

grees of membership though the two stated conditionsdetermined whether it is an instance of a certain con-

of being homomaorphism are not completely satisfied.

For example, consider the degrees of membership

of a to the concepGrandFather and GrandMother.
Thougha is not considered as an instance of either
concepts in view of classical instance checking, intu-
itively, it is reasonable to argue thais more similar

to GrandFather than GrandMother (see e.g. the de-
grees of membership of 0.9 and 0.567, respectively).

5 RELATED WORKS

In DLs, prominent reasoning services conern con-

cept.

Bianchini et al. (Bianchini et al., 2005) propose
a hybrid method that combines a deductive match-
ing method with constraints (Li and Horrocks, 2003)
and a semantic-based matching method. The degree
of similarity is numerical measured with a big range
of similarity coefficient which turns the analysis of a
similarity measure among a number of concepts be-
comes a difficult task.

A probabilistic variant of description logic has
been introduced in (Fagin et al., 1990) and partially
implemented in the Pronto system (Klinov, 2008). In-
stead of merely stating crisp axioms and assertions,

cepts are concept subsumption and concept satisthe probabilistic inference engine Pronto allows an
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