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Abstract: It is difficult to use the deterministic mathematical tools such as a gradient method to solve global 
optimization problems. Flower pollination algorithm (FPA) is a new nature-inspired algorithm of the swarm 
intelligence field to global optimization applications, based on the characteristics of flowering plants. To 
enhance the performance of the standard FPA, an enhanced FPA (EFPA) approach based on beta 
probability distribution was proposed in this paper. In order to verify the performance of the proposed 
EFPA, five benchmark functions are chosen from the literature as the test suit. Furthermore, tests using 
Loney’s solenoid benchmark, a classical problem in the electromagnetics area, are realized to evaluate the 
effectiveness of the FPA and the proposed EFPA. Simulation results and comparisons with the FPA 
demonstrated that the performance of the EFPA approach is promising in electromagnetics optimization. 

1 INTRODUCTION 

Swarm intelligence is the collective behaviour of a 
decentralized, self-organized system, and it is able to 
distribute the functionality of an overall big system 
among smaller, less-expensive and cooperative 
agents (Weng et al., 2014). Swarm behavior is one 
of the main features of many species in the nature. In 
this context, swarm intelligence originated from the 
study of colonies or swarms of social organisms 
(Engelbrecht, 2007).  

Nature-inspired algorithms of the swarm 
intelligence field perform powerfully and efficiently 
in solving global optimization problems. Recent 
research studies in optimization field have led to the 
development of new approaches that exhibit certain 
advantages over more traditional techniques in 
various aspects. Inspired by nature, these 
metaheuristic algorithms have obtained promising 
performance over continuous domains of 
optimization problems, such as ant colony (Dorigo 
and Stützle, 2004), artificial bee colony (Karaboga, 
2005), krill heard (Gandomi and Alavi, 2012), bat 
algorithm (Gandomi and Yang, 2014), cuckoo 
search algorithm (Coelho et al., 2013), bat algorithm 
(Yang, 2010), and firefly algorithm (Yang, 2009). 

In the nature, many floral traits are related to the 
pollination and fertilization processes, i.e. floral 
traits can be adjusted by selection to ensure pollen 
transfer, the subsequent growth of pollen tubes 
through the pistil, and finally ovule fertilization 
(Fernández et al., 2009). Pollination is a process of 
transfer of pollen from male parts of flower called 
anther to the female part called stigma of a flower. 
Pollination of flowers can be inspiration to generate 
new optimization algorithms. Examples of 
algorithms based on pollination are presented in 
Kasinger and Bauer (2006) and Kaur and Singh 
(2012).  

Recently, the flower pollination algorithm 
(FPA), developed by Xin-She Yang (Yang, 2012), 
was proposed. FPA is a swarm intelligence method 
based on the features of flowering plants. Being a 
stochastic search process, FPA is not free from false 
and/or premature convergence, especially over 
multimodal fitness landscapes.  

The aim of this paper is to improve the FPA to 
achieve a better exploration/exploitation trade-off 
when applied to continuous optimization problems. 
The proposed enhanced FPA (EFPA) is based on 
beta probability distribution. To demonstrate the 
effectiveness of the proposed EFPA framework, a 
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set of two benchmark functions and a numerically 
ill-conditioned inverse problem in the 
electromagnetic field called Loney’s solenoid 
benchmark problem (Di Barba and Savini, 1995; 
Ciuprina et al., 2002) are solved. Loney’s solenoid 
benchmark problem is a significant testbed of the 
rough objective function surface typical of many 
electromagnetic problems. Such problem are ideally 
suited for stochastic techniques which escape from 
local minima. Optimization results and convergence 
performance are compared with the classical FPA. 

The remainder of this paper is organized as 
follows. Section 2 covers background information 
on the FPA and EFPA. Section 3 provides the 
description of the Loney’s solenoid benchmark. 
Section 4 presents the simulation results and 
discussions. Finally, we present concluding remarks 
on this work in Section 5. 

2 FPA AND EFPA ALGORITHMS  

Swarm intelligence is based on self-organized 
individuals, generally called agents, whose actions 
and interaction add up to intelligent global behavior. 
In particular, agents communicate to one another 
merely by modifying their local environment. These 
local interactions finally yield to the global self-
properties that make a system self-managing. 

This section describes the classical FPA and the 
proposed EFPA, both swarm intelligence 
approaches. First, the fundamentals of the FPA are 
introduced, and finally the mechanisms of the 
proposed EFPA are mentioned. 

2.1 FPA 

FPA is a swarm intelligence inspired paradigm by 
the flow pollination process of flowering plants. 
FPA is useful to solve multimodal continuous 
optimization problems. For simplicity, we use the 
following four rules in the FPA, all rules suggest by 
Yang (2012): 

1. Biotic and cross-pollination can be considered 
as a process of global pollination process, and 
pollen-carrying pollinators move in a way which 
obeys Lévy flights (Rule 1). 

2. For local pollination, abiotic and self-
pollination are used (Rule 2). 

3. Pollinators such as insects can develop flower 
constancy, which is equivalent to a reproduction 
probability that is proportional to the similarity of 
two flowers involved (Rule 3). 

4. The interaction or switching of local 

pollination and global pollination can be controlled 
by a switch probability p in the range [0, 1], with a 
slight bias towards local pollination (Rule 4). 

In reality, each plant can have multiple flowers, 
and each flower patch often release millions and 
even billions of pollen gametes. However, for 
simplicity, we assume that each plant only has one 
flower, and each flower only produce one pollen 
gamete (Yang, 2012). 

In order to formulate updating formulas, we have 
to convert the aforementioned rules into updating 
equations. For example, in the global pollination 
step, flower pollen gametes are carried by 
pollinators such as insects, and pollen can travel 
over a long distance because insects can often fly 
and move in a much longer range (Yang, 2012). 
Therefore, Rule 1 and flower constancy can be 
represented mathematically as: 

 ])([)()()1( BtxL txtx iii    (1)

where )(txi  is the pollen i or solution vector ix  at 

iteration t, and B is the current best solution found 
among all solutions at the current 
generation/iteration. Here γ is a scaling factor to 
control the step size. In addition, L(λ) is the 
parameter that corresponds to the strength of the 
pollination, which essentially is also the step size. 
Since insects may move over a long distance with 
various distance steps, we can use a Lévy flight to 
imitate this characteristic efficiently.  

The Lévy distribution, named for the French 
mathematician Paul Lévy (Lévy, 1925), is important 
in the study of Brownian motion. Lévy stable 
distribution (Nolan, 2010) is a rich class of 
probability distributions. It is worthy of noting that 
the well-known Gaussian and Cauchy distributions 
are its special cases. 

A Lévy flight is a random walk in which the 
step-lengths have a probability distribution that is 
heavy-tailed. That is, we draw L>0 from a Lévy 
distribution:  
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Here, Γ(λ) is the standard gamma function, and 
this distribution is valid for large steps S > 0. Then, 
to model the local pollination, both Rule 2 and Rule 
3 can be represented as 

 ])()([)()1( txtx Utxtx kjii   (3)

where )(tx j  and )(txk  are pollen from different 

flowers of the same plant species. This essentially 
imitates the flower constancy in a limited 
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neighborhood (Abdel-Raouf et al., 2014).  
In order to imitate this, we can effectively use the 

switch probability like in Rule 4 or the proximity 
probability p to switch between common global 
pollination to intensive local pollination.  

The procedure for implementing the FPA can be 
summarized by the following steps: 

Step 1: Initialization of a population of flo-
wers/pollen gametes: Initialize a vectors population 
(floating-point representation) of flowers/pollen 
gametes in the n-dimensional problem space using 
uniform probability distribution function. The 
counter of generations t is initialized too. 

Step 2: Evaluation of population’s fitness: 
Evaluate each flower’s fitness value. 

Step 3: Determine the best solution in the 
population: Find the best solution B in the initial 
population. 

Step 4: Apply local or global pollination: 
Randomly with a switch probability p if a global 
pollination using Lévy distribution is applied or a 
local pollination using a uniform probability 
distribution function. This procedure is applied to all 
flowers in the population. Update t = t + 1; 

Step 5: Repeating the evolutionary cycle: Return 
to Step 2 until a stopping criterion is met. In this 
paper, evolutionary process is performed predefined 
maximum number of generations (adopted as 
stopping criterion) tmax is reached. 

2.2 Proposed EFPA 

In spite of the prominent merits, sometimes FPA 
shows the premature convergence and slowing down 
of convergence as the region of global optimum is 
approached. In this context, a trade-off between 
exploration and exploitation actions must be 
developed. Exploration is the process of visiting 
entirely new regions of a search space, whilst 
exploitation is the process of visiting those regions 
of a search space within the neighborhood of 
previously visited points. 

In the classical FPA, the proximity probability p 
is constant during the optimization process and p 
takes values in the range [0, 1]. However, no optimal 
choice of p was proposed in Yang (2012). This 
means p is strongly problem-dependent and the user 
should choose p carefully after some trial and error 
tests.  

In this paper, the proposed EFPA presents three 
modifications in Step 4 in relation to the classical 
FPA using beta probability distribution. The use of 
the beta probability distribution (Ali, 2007) can be 
useful to preserve diversity and helps to explore 

hidden areas in the search space. The modifications 
are the following: 
1. The EFPA incorporates the tuning of p during the 
evolutionary cycle given by: 

  )1.0,(5.0)max/(5.0 rrttp    (4)

where )1.0,( rr   is a beta distribution probability, r 

is a random number generated with uniform 
distribution in range [0,1], r and r1.0 are beat 
distribution parameters (see script betarnd in 
MatLab environment). 
2. The EFPA uses beta distribution probability 
instead of Lévy distribution (see equation (1)) to 
global pollination given by: 

 ])([)1.0,()()1( Btixrr tixtix    (5)

where   is a scale parameter (adopted  =1.6 in 

this paper). 
3. The EFPA uses beta distribution probability 
instead of uniform probability distribution (see 
equation (3)) to local pollination given by: 

if ra > 0.7 then  
     1  
else  
       5.0)max/(5.0  tt    

end 
])()([)1.0,()()1( tkxtjxrrtixtix    

where ra is a random number generated with 
uniform distribution in range [0,1] and   is a scale 
parameter. 

3 LONEY'S SOLENOID DESIGN 

Loney’s solenoid design problem is to find the 
dimensions called position (l) and size (s) of two 
coils to generate possibly uniform magnetic field on 
the segment (-z0, z0). This is a minimization problem 
with non-analytical objective function. The box 
constraints are  cm 200  s  and  .cm 200  l  The 
upper half plane of the axial cross-section of the 
system is presented in Fig. 1. 

 

Figure 1: Axial cross-section of Loney’s solenoid (upper 
half-plane). 
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4 OPTIMIZATION RESULTS 

In the following sub-sections, the optimization 
results are presented and discussed. 

4.1 Benchmark Functions Results 

The performance of the EFPA and the classical FPA 
has been analyzed over five benchmarks functions 
(minimization problems) applied to dimension equal 
to 10. The optimization methods, EFPA and FPA, 
were employed using the following parameter 
settings: population size equal to 50 flowers and the 
stopping criterion is 2,000 generations.  

Fifty independent runs of each algorithm on each 
problem are taken. The minimum, maximum, mean 
and the standard deviation of the best objective 
function values (50 runs) are presented in Tables 1-
5. Best entries have been marked in boldface in 
Tables 1-5. A closed look in Tables 1-5 reveals that 
the EFPA has the ability to avoid local optima and it 
presents superior performance when compared with 
the FPA. However, FPA presents a promising 
performance in the Griewank case. 

Table 1: Results of f1 (Rastrigin function). 

Index FPA EFPA 

Maximum 
(Worst) 

35.81 8.19×10-12 

Mean 19.44 2.22×10-13 

Minimum 
(Best) 

3.98 0 

Standard 
Deviation 

7.61 1.17×10-12 

Table 2: Results of f2 (Ackley function). 

Index FPA EFPA 

Maximum 
(Worst) 

6.28 8.99×10-13 

Mean 3.31 1.07×10-13 

Minimum 
(Best) 

4.93×10-12 7.99×10-15 

Standard 
Deviation 

1.44 1.71×10-13 

4.2 Loney’s Solenoid Results 

We used the following parametric setup for tested 
FPA and EFPA to optimize the Loney’s solenoid 
benchmark problem (with dimension equal to 2): 
population size equal to 20 flowers and the stopping 
criterion  is  150   generations.   In  particular,  three 

Table 3: Results of f3 (Sphere function). 

Index FPA EFPA 

Maximum 
(Worst) 

100 0 

Mean 140 0 

Minimum 
(Best) 0 0 

Standard 
Deviation 

35.05 0 

Table 4: Results of f4 (Griewank function). 

Index FPA EFPA 

Maximum 
(Worst) 

6.65×10-1 7.40×10-3 

Mean 2.19×10-1 6.57×10-4 

Minimum 
(Best) 

3.94×10-2 0 

Standard 
Deviation 

1.42×10-1 2.05×10-3 

Table 5: Results of f5 (Rosenbrock function). 

Index FPA EFPA 

Maximum 
(Worst) 

408.49 1.29 

Mean 31.22 6.18×10-2 

Minimum 
(Best) 

1.86×10-2 6.15×10-6 

Standard 
Deviation 

69.57 1.99×10-1 

different basins of attraction of local minima can be 
recognized in the domain of f with values of f>4·10-8 

 

(high level region), 3·10-8 < f < 4·10-8
 (low level 

region), and f < 3·10-8 
 (very low level region – 

global minimum region) (Coelho and Alotto, 2007). 
Table 6 summarizes the optimization results of 

FPA and EFPA. A result with boldface means the 
best values in terms of minimum and mean values in 
f found in Table 6.  

As seen from Table 6, EFPA outperforms FPA 
clearly. The best result (minimum) using EFPA 
presented f = 2.0666·10-8 with s = 11.6013 cm and 
l=1.5110 cm. On the other hand, the best f using 
FPA was with s = 12.3459 cm and l = 2.0691 cm. 

Table 6: Results of Loney’s solenoid problem. 

 F(s, l)·10-8 

Approach 
Maximum 

(Worst) 
Mean 

Minimum 
(Best) 

Standard 
Deviation 

FPA 3.9526 3.4920 2.2524 0.5259 
EPFA 3.9952 3.0206 2.0666 0.6098 
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5 CONCLUSION 

Although during the last years, research on and with 
swarm intelligence has reached an impressive state, 
there are still many open problems, and new 
application areas are continually emerging for the 
optimization paradigms.  

We undertook a comparative study of EFPA with 
classical FPA over a test-suite comprising 5 well-
known numerical benchmarks and the Loney’s 
solenoid problem. Our simulation results indicate 
that the EFPA remains always better than FPA. In 
near future, we are planning to compare the EFPA 
with good performing algorithms available in 
literature, such differential evolution and covariance 
matrix adaptation evolution strategy. 
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