Enriching Traditional Databases with Fuzzy Definitions to Allow Flexible
and Expressive Searches

Victor Pablos-Ceruelo and Susana Munoz-Hernandez
Facultad de Informatica, Universidad Politécnica de Madrid, Campus de Montegancedo s/n, Boadilla, Spain

Keywords: Databases, Fuzzy Logic, Search Engine.

Abstract:

Although the relevance of fuzzy information to represent concepts of real life is evident, almost all databases

contain just crisp information. The main reason for this, apart from the tradition, is that fuzzy information
is most of the times subjective and storing all users points of view is unfeasible. Allowing fuzzy concepts in
the queries increases the queries’ expressiveness and asking for cheap products, big size, close hotels, etc is
much more interesting that asking for products with a price under X, of the size Y, hotels at most X kilometers
far, etc. The way we propose for achieving this more expressive databases’ queries is adding to the basic
knowledge offered by a database (e.g. distance to hotel is 5 km) the link between this crisp concept and
multiple fuzzy concepts that we use in real life (e.g. close hotel). We present FleSe, a framework for searching
databases in a flexible way, thanks to the fuzzy concepts that we can define. In this paper we describe the easy
procedure that let us define fuzzy concepts and link them to crisp database fields.

1 INTRODUCTION

Databases are, in principle, for storing crisp data, not
fuzzy data. So, we cannot ask which are the restau-
rants close to our place, but which ones are at most
2km far from our place. Adding a column of text type
and storing inside the value “close” could be a solu-
tion for examples like this one, but it does not work
always because of the inherent subjective character of
fuzzy attributes. Take, for example, Andrew’s height:
1’90 cm. There is no problem in storing this crisp
value (it is just a float number), but it is no so easy if
we try to store if Andrew is “tall”, “very tall”, “no tall
at all” or any other fuzzy value, because it might not
be true for all the people retrieving the value from the
database. Elsa, whose height is 1’41 cm, might con-
sider him very tall, while Luzia, whose height is 1’72,
might consider him just tall.

Our proposal to allow querying the database with
fuzzy concepts relies on knowing the link between
any of them and the non-fuzzy concept stored in the
database. This link is what we (humans) use to de-
termine how much the fuzzy concept is satisfied. We
present here a framework for encoding this relations,
always with the subjective characteristic of fuzzy con-
cepts in mind. The main difference with respect to
other approaches is that we do not provide a complex
syntax for querying the database nor a free text area

Pablos-Ceruelo V. and Mufioz Hernandez S..

field to enter the query. We evaluate the information
in the configuration file and in the database to deter-
mine all the possible queries that a user can perform
and provide a form to enter any of this queries.

The paper is structured as follows: In preliminar-
ies (Sec. 2) we introduce to the ideas our framework
is based on. In implementation details (Sec. 3) we
talk about the underlying infrastructure needed for the
framework to work as expected. We explain just after
how to use the framework from a developer point of
view (Sec. 4) and the search engine a general user can
use to ask queries (Sec. 5). Conclusions and current
work go in last place (Sec. 6), as usual.

2 PRELIMINARIES

It was Lotfi Zadeh in 1965 who introduced fuzzy set
theory (Zadeh, 1965), proposed their division in type-
1 and type-2 fuzzy sets and systems (Zadeh, 1975)
and justified its existence in his paper ”Is there a need
for fuzzy logic?” (Zadeh, 2008).

In this section we talk a little bit about history, fo-
cusing in what matters for our contribution: Fuzzy
Queries to Regular Databases (Subsec. 2.1), and Pri-
orities in Fuzzy Logic (Subsec. 2.2).

111

Enriching Traditional Databases with Fuzzy Definitions to Allow Flexible and Expressive Searches.

DOI: 10.5220/0005074101110118

In Proceedings of the International Conference on Fuzzy Computation Theory and Applications (FCTA-2014), pages 111-118

ISBN: 978-989-758-053-6

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

FCTA 2014 - International Conference on Fuzzy Computation Theory and Applications

2.1 Fuzzy Queries to Regular Databases

Getting fuzzy answers for fuzzy queries from non-
fuzzy information stored in non-fuzzy databases has
been studied in some works, as SQLF, presented by P.
Bosc and O. Pivert in (Bosc and Pivert, 1995), FQL,
presented by Takahashi (Takahashi, 1991), FIIS, pre-
sented by M. Zemankova (Zemankova, 1989), FIRST,
presented by D. Lucarella and R. Morara (Lucarella
and Morara, 1991), the tool proposed by Chen and
Jong (Chen and Jong, 1997) and others. \ery
good revisions of this ones and some other propos-
als are the works of Leonid Tineo (Tineo, 2005) and
Herrera-Viedma and Lopez-Herrera (Herrera-Viedma
and Lopez-Herrera, 2010).

Most of the works mentioned before focus in im-
proving the efficiency of the existing procedures, in
including new syntactic constructions, in allowing to
introduce in the queries the conversion between the
non-fuzzy values needed to execute the query and the
fuzzy values in the query, or in improving the trans-
lation of the fuzzy query into the SQL syntax (so any
regular database can answer it). Our proposal focus
less on the technical aspects (so we cannot compare
the evaluation speed or the resources consumption of
ours against any of them) because it tries to present
the user an interface intelligent enough to allow the
user to pose only the queries that we can answer from
the knowledge introduced in the configuration file and
the information in the database. It is, the framework
is able to determine the whole set of queries that it can
answer from the knowledge introduced in the config-
uration file and presents the user a web interface to
pose easily any of this queries.

Our work is maybe more similar to works re-
lated to information retrieval, like the one of Ropero,
Gobmez, Carrasco and Lebdn (Ropero et al., 2012)
or the one of Zadrozny and Nowacka (Zadrony and
Nowacka, 2009), although we consider it rather dif-
ferent. Most of the works in this line focus in creating
an index for answering queries by using different term
weighting procedures (even logic-based ones). Their
goal is obtaining an index with enough information to
answer any query, some of them analyzing it previ-
ously by using natural language processing and some
others by providing a slightly complicated query syn-
tax. Ours, as told before, focus in providing an easy
to use interface allowing the user to represent with it
any query that can be answered from the knowledge
introduced in the configuration file.

When starting the development of our proposal
we wanted to do it under the logic programming
paradigm, because we know that it is more declara-

112

tive 'than the other ones. The frameworks for fuzzy
logic allowing the developer to code programs un-
der the logic programming paradigm (called fuzzy
logic systems) we know about are Flopper (Morcillo
and Moreno, 2008), Fuzzy Prolog (Guadarrama et al.,
2004), Rfuzzy (Mufioz-Hernandez et al., 2011) and
FuzzyDL (Bobillo and Straccia, 2008).

2.2 Priorities in Fuzzy Logic

The inherent subjective character of fuzzy concepts
needs to be taken into account when performing fuzzy
searches. Some users might want to redefine or per-
sonalize some concepts, but some others might not
want to. So, we might give more priority to the con-
cepts redefined by users, but only when they are the
ones posing the query.

In (Mufioz-Hernandez et al., 2011) the authors
extend the multi-adjoint satisfaction and immediate
consequences operator in (Medina et al., 2004; Med-
ina Moreno and Ojeda-Aciego, 2002) to take care
of conditions and introduce a three levels priority
system. These three levels were designed to dis-
tinguish results computed by rules that do not rely
on other rules (highest priority), rules that rely on
others (medium priority) and rules used when no
other rule was able to obtain a valid result (low-
est priority). The proposal was adequate but, as
the same authors pointed out in (Pablos-Ceruelo
and Mufoz-Hernandez, 2011), insufficient for mod-
elling user preferences. This is why in (Pablos-
Ceruelo and Mufioz-Hernandez, 2011) they changed
the three symbols by a real number between 0
and 1, in the direction proposed by the authors of
(Theodorakopoulos and Baras, 2004). We take the
idea of using priorities to represent user preferences
from (Pablos-Ceruelo and Mufioz-Hernandez, 2011;
Theodorakopoulos and Baras, 2004).

3 IMPLEMENTATION DETAILS

The framework we present runs on a computer with a
Linux Operating System and is divided in two appli-
cations: the first one written in Java and running on
a Tomcat server and the other one written in Prolog
(Lloyd, 1987; O’Keefe, 1990; Sterling and Shapiro,
1987) and executed by demand of the first one. The

L\We say that it is more declarative because we know that
it is not fully declarative yet. It removes the necessity to
specify the flow control in most cases, but the programmer
still needs to know if the interpreter or compiler implements
depth or breadth-first search strategy and left-to-right or any
other literal selection rule.

Enriching Traditional Databases with Fuzzy Definitions to Allow Flexible and Expressive Searches

database is managed directly by the Prolog code,
which allows us to use the Prolog facilities for linking
to it: we are not restricted to any database or database
interface.

The justification of using Prolog lies on the fact
that it is one of the most successful programming lan-
guages for representing knowledge in computer sci-
ence. Its main advantage with respect to the other
ones is being a more declarative programming lan-
guage. Prolog is based on logic. It is usual to identify
logic with bi-valued logic and assume that the only
available values are “yes” and “no” (or “true” and
“false”), but logic is much more than bi-valued logic.
In fact we use fuzzy logic (FL), a subset of logic that
allow us to represent not only if an individual belongs
or not to a set, but the grade in which it belongs. Sup-
posing the database contents in Table. 1, the definition
for “close” in Fig. 1 and the question “Is restaurant X
close to the center?” with FL we can deduce that Il
tempietto is “definitely” close to the center, Tapashar
is “almost” close, Ni Hao is “hardly” close and Kenzo
is “not” close to the center. We highlight the words
“definitely”, “almost”, “hardly” and “not” because the
usual answers for the query are “1”, “0.9”, “0.1” and
“0” for the individuals 1l tempietto, Tapasbar, Ni Hao
and Kenzo and the humanization of the crisp values is
done in a subsequent step by defuzzification.

Table 1: Restaurants’ database contents.

name distance | price avg. | food type
Il_tempietto 100 30 italian
Tapasbar 300 20 spanish
Ni Hao 900 10 chinese
Kenzo 1200 40 japanese
Zalacain 2000
Don_Jamon spanish

100 1000 distance

Figure 1: Close fuzzification function.

Choosing Java instead of other programming lan-
guages is a decision guided by the necessity to have
a good communication between Prolog and the user
interface. Since we decided to have a web user in-
terface and use Asynchronous Ajax for improving the
user experience, and Java has very well management
of asynchronous http petitions and libraries to control
Prolog, the decision was easy.

4 THE FRAMEWORK

We present here how to define the links between the
fuzzy concepts and the fields in the database. Since
Prolog offers us to access the database as if a predicate
it was, we take this as a fact and start by the definition
needed by the framework to understand what is stored
in each database column.

The construction in Eqg. 1 serves to define what
is stored in each database column. In the con-
struction pT is the name of the database table
or virtual database table (vdbt)?, pA is the arity
of the vdbt, pN is the name assigned to a col-
umn of the vdbt pT and pT' is the type of the
information stored in the column, (a basic type,
one of T boolean_type; enum_type; integer_type;
float_type; string_type g). We provide an exam-
ple in Eq. 2 to clarify. In the example we define the
restaurant database with four columns. The first for its
name, the second for the food type served there, the
third for the restaurant’s price average and the last one
for the distance to the city center from that restaurant.

define_database(pT=pA;[(pN; pT"H]) (1)
define_database(restaurant=4;
(name; string-type);
(food_type; enum_type);
(price_average; integer_type);
(distance_to_the_city_center; integer_type)]): (2)

The previous construction (Eq. 1) serves too to de-
fine the non-fuzzy predicates we can use when linking
fuzzy and non-fuzzy concepts. In addition to the links
we can define truth values for some fuzzy predicates
and under some conditions. The construction in Eq. 3
serves to define the rare situation in which for all the
individuals in the vdbt we have the same result. It is
usually limited to some individuals by using the con-
structions in Eqgs. 4, 5 and 6 as tails (explained below).
In Eq. 3 the variable pT means the same as in Eq. 1,
TV is the truth value (a float number between 0 and
1) and fPredName is name of the fuzzy predicate we
are defining. In Eq. 7 we present an example in which
we say that all the restaurants are cheap with a truth
value of 0:5.

2\We usually name the database “virtual database table”
(vdbt) because the database that we define can be mapped
to more than one database by using Prolog to database li-
braries. We do not enter here into these low-level details.

113

FCTA 2014 - International Conference on Fuzzy Computation Theory and Applications

fPredName(pT): value(TV) 3)
if(pN(pT) comp value): 4
with_credibility(credOp; credval) (5)
only_for_user "UserName’ (6)

cheap(restaurant) : value(0:5) @)

The constructions in Egs. 4, 5 and 6 serve as tails
for the constructions in Egs. 3, 11, 13, 16, 17, 19, 20
and 23. The tail in Eq. 4 (not applicable to the
construction in Eq. 23) serves to limit the in-
dividuals for which we want to use the fuzzy
clause or rule (limits its application to subsets
of the set of individuals in the vdbt). In the
construction pN and pT mean the same as in
Eg. 1, comp can take the values “is_equal_to”,
“is_dif ferent_from”, “is_bigger_than”,
“is_lower_than”, *“is_bigger_than_or_equal to” and
”is_lower_than_or_equal to” and value can be of
type integer_type, enum_type or string_type. The
only restrictions are that the type of value must be
the same as the one given to to the column pN of pT
and that if they are of type enum_type or string_type
the only available values for comp are “is_equal to”
and “is_dif ferent_from”. We show an example in
Eqg. 8 in which we say that the restaurant Zalacain is
cheap with a truth value of 0:1.

cheap(restaurant) : value(0:1)
i f (name(restaurant) is_equal _to zalacain): (8)

The tail in Eq. 5 serves to define a credibility for a
clause, together with the operator needed to combine
it with its truth value. In its syntactic definition in
Eq. 5 credVal is the credibility, a number of float type,
and credOp is the credibility operator.®> We show an
example in Eq. 9 in which we say that the restaurant
Don Jamon is cheap with a truth value of 0:3 but this
rule has a credibility of 0:8 and the operator that must
be used to combine the credibility with the truth value
is the minimum (called too Gddel conjunctor).

cheap(restaurant) : value(0:3)
i f (name(restaurant) is_equal_to don_jamon)
with_credibility(min; 0:8): 9)

The tail in Eq. 6 is aimed at defining personalized
rules, rules that only apply when the user logged in
and the user in the rule are the same one. In the con-
struction Username is the name of any user, a string.

3The credibility operator (called conjunctor in most of
the papers cited in Sec. 1) is a mathematical functions that
must be monotone and non-decreasing in their coordinates.
Immediate examples for conjunctors that come to mind are
product, t.ukasiewicz conjunctor and Gédel conjunctor. All
of them are included in the framework. They can be used
by writting “prod”, “luka” and “min” in the field “credOp”.

114

We show an example in Eg. 10 in which we say that
Lara considers that the restaurant Zalacain is not close
to the center. So, if it is she who poses a query to the
system asking for restaurants close to the city center
she will obtain that the Zalacain restaurant is not.

close_to_the_city_center(restaurant) : value(0)
i f (name(restaurant) is_equal _to zalacain)
only_for_user "Lara’ (10)

The links between non-fuzzy values the individ-
uals in the database have and the fuzzy concepts is
done by means of the constructions called fuzzifica-
tions, of the form shown in Eq. 11. This fuzzifica-
tion functions allow us to know how much satisfied
is a fuzzy predicate for some individual stored in our
database, from a non-fuzzy value that we have in the
database for that individual. In Eg. 11 pN and pT
mean the same as in Eq. 1, fPredName is the name
of the fuzzy predicate that we are defining (the fuzzi-
fication), [(valln; valOut)] is a list of pairs of values
such that valln belongs to the domain of the fuzzifi-
cation function and valOut to its image*. Anexample
in which we compute how cheap is a restaurant from
its average price is presented in Eq. 12. The graphi-
cal representation corresponding to this example is in
Fig. 2.

fPredName(pT): function(pN(pT);
[(valln; valOut)]): (11)
cheap(restaurant) : function(

price_average(restaurant);
[(0; 1);(10; 1);(20; 0:9);(50; 0);(200;0)]): (12)

10 100 euros
Figure 2: Cheap function (for restaurant).

When defining the satisfiability of a fuzzy pred-
icate from a value stored in a database we can get
an unexpected behaviour if the database contains a
null value. To avoid this malfunctioning of the sys-
tem we provide syntax for defining the satisfaction of
the fuzzy concepts in this cases. We usually say that
this constructions (shown in Eq. 13) are for defining
default truth values for the fuzzy concepts. In Eq. 13
pT means the same as in Eq. 1, fPredName the same

4[(valln;valOut)] is basically a piecewise function defi-
nition, where each two contiguous points represent a piece.

Enriching Traditional Databases with Fuzzy Definitions to Allow Flexible and Expressive Searches

asin Eq. 11 and TV the same as in Eq. 3. We provide
two examples in Egs. 14 and 15 in which we say that,
in absence of information, we consider that a restau-
rant will not be close to the city center (this is what the
zero value means) and that, in absence of information,
a restaurant is considered to be medium cheap®.

fPredName(pT): defaults_to(TV) (13)

close_to_the_city_center(restaurant)
defaults_to(0): (14)

cheap(restaurant) : defaults_to(0:5): (15)

In addition to the definition of fuzzy concepts
from non-fuzzy concepts, the definition of their sat-
isfaction in special cases and the definition of default
values to avoid that the inference process stops when
a needed value is missing, we can define fuzzy con-
cepts from other fuzzy concepts. The possibility to do
this allows us to increase the number of fuzzy predi-
cates that can be used to query the database. We can
do that by using rules, synonyms and antonyms.

Rules allow us to define the satisfaction of a fuzzy
predicate from the satisfaction of other fuzzy pred-
icates. We have two syntactical forms for defining
rules, the first one used when the body depends on
more than one fuzzy predicate, shown in Eq. 16, and
the second one when it depends in just one, shown
in Eq. 17. In Eq. 16 aggr is the aggregator used to
combine the truth values of the fuzzy predicates in
complexBody, which is just a conjunction of names
of fuzzy predicates (and the vdbt they are associated
to, represented by pT), while in Eq. 17 simplexBody
is just the name of a fuzzy predicate (and the vbdt it
is associated to). In both of them pT means the same
as in Eq. 1 and fPredName the same as in Eq. 11.
We show an example in Eg. 18 in which we say that
a restaurant is a tempting restaurant depending on the
worst value it has between being close to the center
and being cheap, which means that a restaurant must
be close to the center and cheap at the same time to
consider it a tempting restaurant.

fPredName(pT): rule(aggr;complexBody) (16)
fPredName(pT): rule(simpleBody) an
tempting_restaurant(restaurant) : rule(min;
(close_to_the_city_center(restaurant);
cheap(restaurant))) (18)
The syntax for defining a fuzzy predicate from a

synonym is shown in Eq. 19 and the one for defin-
ing it from an antonym in Eq. 20. In Egs. 19 and 20

SWe include two examples here so if one builds a pro-
gram by taking all the examples in the contribution the rule
in Eq. 18 the framework is able to obtain results for all the
restaurants in our database.

pT means the same as in Eq. 1, credOp and credVal
the same as in Eq. 5 and fPredName the same as
in Eq. 11, while fPredName2 is the fuzzy predicate
from which we are defining the synonym or antonym.
Its name must be different from fPredName. In the
examples in Egs. 21 and 22 we define an unexpensive
restaurant as a cheap restaurant and an expensive one
as the opposite of a cheap one.

fPredName(pT):
synonym_of (fPredName2(pT);
crepOp; credVal) (19)
fPredName(pT) :
antonym_of (fPredName2(pT);
crepOp; credval) (20)

unexpensive(restaurant) :

synonym_o f (cheap(restaurant); prod; 1): (21)
expensive(restaurant) :

antonym_of (cheap(restaurant); prod;1): (22)

Apart from the definition of fuzzy concepts, we
might be interested in allowing the user to search for
individuals that have a characteristic similar to the
characteristic they enter in the query. Suppose we are
looking for a “Mediterranean” food restaurant and we
have in the database the values “Spanish”, “Italian”,
“Portuguese”, etc. We want to allow the user to ask
for restaurants serving food similar to the “Mediter-
ranean” one, so we need to tell the system about this
relation. This is what the construction in Eq.23 serves
for. In Eq. 23, pT and pT' mean the same as in Eq. 1,
TV the same as in Eq. 3 and valuel and value2 are
two values for the vdbt column pT? of the vdbt pT.
In the example in Eq. 24 we say that the food type
mediterranean is 0:6 similar to the spanish one (but
not in the other way. If we want to say that the span-
ish food is 0:6 similar to the mediterranean one we
need to add another line of code saying that).

similarity_between(pT; pT'(valuel); pT’(value2);
TV): (23)

similarity_between(restaurant;
food_type(mediterranean);
food_type(spanish); 0:6): (24)

5 THE FRAMEWORK USER
INTERFACE

The framework user interface gets a lot of information
from the framework, providing the final user an inter-

115

FCTA 2014 - International Conference on Fuzzy Computation Theory and Applications

face “intelligent” enough to allow him to perform any
query that the framework can solve with the knowl-
edge it has.

Suppose, for example, that we are looking for a
restaurant near the city center and with a menu price
under 25 e. We start choosing the database we want
to query, “db_leisure” (Fig. 3).

Please, select a database to load:

— -

db_shopping.pl (owned by appAdministrator)
db_relocation.pl (owned by appAdministrator)
db _leisure.pl (owned by appAdministrator)

Figure 3: Choosing the database.

Once selected the user interface allows us to select
what are we looking for (a restaurant this time, Fig. 4).

Your query: I'm looking for a

film
restaurant

Figure 4: Choosing what we are looking for.

The interface shows then a combo for choosing a
fuzzy or non-fuzzy attribute of the individuals and a
plus sign to the right (Fig. 5). The attributes are the
names we give to the columns by using the construc-
tion in Eq. 1 and the fuzzy predicates defined by using
the constructions in Egs. 3, 11, 13, 16, 17, 19, 20 and
23 (although we can use multiple sentences to define
a fuzzy predicate it will appear only once). The plus
sign serves to add more conditions to the query (it
only has a line at the beginning) and the “show op-
tions” label can be used to switch the operator we use
to combine the truth values from minimum to product,
tukasiewicz or any other (it needs to be previously
defined in the framework).

One of the most interesting characteristics of the
framework user interface is that it interacts with the
framework, so it knows if the attribute selected is
fuzzy or not. In case the predicate is fuzzy it shows
to its left two combos, one for choosing negation and
the other one for choosing a modifier (Fig. 6), while if
it is a non-fuzzy one it shows a combo for choosing a
comparison operator and, depending on the operator
chosen, a combo with the available values or a free
text field for entering a value (Fig. 7). We show in
Fig. 8 the query we want to pose to the system.

After posing the query (Fig. 8), we need to press
the button labelled “search”. The search engine then
shows the query results, grouped in five tabs: “10 best

116

Your query: I'm looking for a restaurant -

——— - -
‘cheap i ;
‘food type am File

menu price

traditional

distance to the city center
tempting restaurant
unexpensive

price average

restaurant type
expensive

near the city center

name

years since opening

Figure 5: The available attribute(s) for writing the query.

3 ot_T‘ __~!_

e

'near the city center =

ery

v
search oo much plize Program File |

Figure 6: Available modifiers for the fuzzy attribute.

menu PI’iCe - |

r - =
Search or Personalize Progr _,—
>

Figure 7: Available comparison operators for the non-fuzzy
attribute.

Your query: I'm looking for a restaurant ~

-—---|* |-—— |~ |near the city center |~ . d

: show options
menu price ~ll< |+ |25 .

Search or | Personalize Program File

Figure 8: Query example.

results”, “results over 70%”, “results over 50%"”, “re-
sults over 0%” and “all results”. This allows the user
to select the results that best fit his query or, if they do
not satisfy his expectations, to navigate through re-
sults that do not satisfy the query entered but might
be the ones he is looking for. We show in Fig. 9 the
results for the query entered in Fig. 8. The data in
the first column corresponds to the information in the
virtual database table. The user can choose between
seeing it or not.

Enriching Traditional Databases with Fuzzy Definitions to Allow Flexible and Expressive Searches

Results over 70% Results over 50%

Results over 0%

All results

restaurant name restaurant|food years |distance|price |menu|Truth

type type since |to the |average|price [Value

opening|city
center

restaurant(meson del jamon, fast food, spanish, 8, 100, 20, |[meson del jamon fast food |[spanish|8 100 20 15 1.00
15)
restaurant(museo del jamon, fast food, spanish, 8, 150, 20, |museo del jamon fast food |[spanish|8 150 20 15 0.95
15)

Figure 9: Answers returned for the query example in Fig. 8.

| want to personalize how it is determined that a |

restaurant is near the city center from the value it has for distance to the city center
A restaurant whose value for distance to the city restaurant is traditional from the value it has for years since opening

restaurant is cheap from the value it has for price average

0 film is modern from the value it has for release year

film is long duration from the value it has for duration in minutes

100

1 1

1000

¥

0.1 {011

Save modifications

Figure 10: Selection of the fuzzy attribute the user wants to personalize and introduction of the user definition.

The button “Personalize Program File” allows the
user to introduce his point of view about a fuzzy con-
cept. In this way the user can personalize how the
framework translates the non-fuzzy attributes stored
in the database into the fuzzy ones he uses in his
query. When pressing the button the interface shows
a pop-up window (Fig.10) in which it asks the user
which fuzzy predicate he wants to personalize and his
preferences for the fuzzification of the values stored
in the database.

At last, but not least important that the previous
facilities, we allow any user to use our application for
querying any existing (and available) database. The
only requisite is that they need to upload their pro-
gram file to our application, for which they need to
write a program in the syntax explained in Sec. 4, ac-
cess our application (the url is shown in Sec. 6) and
upload the file.

6 CONCLUSIONS

We have presented FleSe, a framework that allows
to enrich regular queries to databases with the use
of fuzzy concepts. FleSe allows the user to perform
fuzzy and non-fuzzy queries to regular databases by
linking the regular non-fuzzy concepts for which we
store values in databases with fuzzy concepts. By do-
ing this we can query the database about fuzzy con-
cepts and the framework will take care of translating
the fuzzy concepts into queries that the database can
answer.

The framework offers to developers a clear syntax

with sound and complete semantics that allows them
to define satisfaction values for fuzzy concepts from
values stored in databases, from the configuration file
itself, from the configuration file when a null value is
found in the database for some individual (or database
row), and from other fuzzy concepts.

A beta version of FleSe is available at
https://fake.url.for.double.blinded.process, where
we have the examples presented here, some others
and the possibility to personalize them and/or include
your own examples. We hope this contribution
helps to improve the existing search mechanisms for
databases, specially the possibility to use human-
oriented attributes (cheap, fast, ..) instead of
computer-oriented attributes (price under X, speed
over,..).

Our current work goes in the direction of offer-
ing via the web interface the possibility to create and
manage the program files (we only offer now the pos-
sibility to upload them). With this facility any final
user could develop his own fuzzy concepts for query-
ing the database, just by knowing database structure
he wants to query.

ACKNOWLEDGEMENTS

This work is partially supported by research projects
DESAFIOS10 (TIN2009-14599-C03-00) funded by
Ministerio Ciencia e Innovacién of Spain, PROMETI-
DOS (P2009/TIC-1465) funded by Comunidad
Autdnoma de Madrid and Research Staff Training
Program (BES-2008-008320) funded by the Spanish

117

FCTA 2014 - International Conference on Fuzzy Computation Theory and Applications

Ministry of Science and Innovation.

It is partially supported too by the Universi-
dad Politécnica de Madrid entities Departamento
de Lenguajes Sistemas Informéticos e Ingenieria de
Software and Facultad de Informatica.

REFERENCES

Bobillo, F. and Straccia, U. (2008). fuzzydl: An expres-
sive fuzzy description logic reasoner. In 2008 In-
ternational Conference on Fuzzy Systems (FUZZ-08),
pages 923-930. IEEE Computer Society.

Bosc, P. and Pivert, O. (1995). Sqlf: a relational database
language for fuzzy querying. Fuzzy Systems, IEEE
Transactions on, 3(1):1 -17.

Chen, S.-M. and Jong, W.-T. (1997). Fuzzy query trans-
lation for relational database systems. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transac-
tions on, 27(4):714-721.

Guadarrama, S., Mufioz-Hernandez, S., and Vaucheret, C.
(2004). Fuzzy prolog: a new approach using soft
constraints propagation. -~ Fuzzy Sets and Systems,
144(1):127 - 150.

Herrera-Viedma, E. and Lopez-Herrera, A. (2010). A re-
view on information accessing systems based on fuzzy
linguistic modelling. International Journal of Compu-
tational Intelligence Systems, 3(4):420-437.

Lloyd, J. W. (1987). Foundations of Logic Programming,
2nd Edition. Springer.

Lucarella, D. and Morara, R. (1991). First: Fuzzy informa-
tion retrieval system. Journal of Information Science,
17(2):81-91.

Medina, J., Ojeda-Aciego, M., and \ojtas, P. (2004).
Similarity-based unification: a multi-adjoint ap-
proach. Fuzzy Sets and Systems, 146(1):43-62.

Medina Moreno, J. and Ojeda-Aciego, M. (2002). On first-
order multi-adjoint logic programming. In 11th Span-
ish Congress on Fuzzy Logic and Technology.

Morcillo, P. J. and Moreno, G. (2008). Programming
with fuzzy logic rules by using the floper tool. In
RuleML °08: Proceedings of the International Sym-
posium on Rule Representation, Interchange and Rea-
soning on the Web, pages 119-126, Berlin, Heidel-
berg. Springer-Verlag.

Mufioz-Hernéndez, S., Pablos-Ceruelo, V., and Strass, H.
(2011). Rfuzzy: Syntax, semantics and implemen-
tation details of a simple and expressive fuzzy tool
over prolog. Information Sciences, 181(10):1951 —
1970. Special Issue on Information Engineering Ap-
plications Based on Lattices.

O’Keefe, R. A. (1990). The Craft of Prolog. The MIT Press.

Pablos-Ceruelo, V. and Mufioz-Hernandez, S. (2011). Intro-
ducing priorities in rfuzzy: Syntax and semantics. In
CMMSE 2011 : Proceedings of the 11th International
Conference on Mathematical Methods in Science and
Engineering, volume 3, pages 918-929, Benidorm
(Alicante), Spain.

118

Ropero, J., Gmez, A., Carrasco, A., and Len, C. (2012).
A fuzzy logic intelligent agent for information ex-
traction: Introducing a new fuzzy logic-based term
weighting scheme. Expert Systems with Applications,
39(4):4567 — 4581.

Sterling, L. and Shapiro, E. (1987). The Art of Prolog. The
MIT Press.

Takahashi, Y. (1991). A fuzzy query language for re-
lational databases. Systems, Man and Cybernetics,
IEEE Transactions on, 21(6):1576-1579.

Theodorakopoulos, G. and Baras, J. S. (2004). Trust eval-
uation in ad-hoc networks. In WiSe '04: Proceedings
of the 3rd ACM workshop on Wireless security, pages
1-10, New York, NY, USA. ACM.

Tineo, L. J. (2005). A contribution to database flexible
querying: Fuzzy quantified queries evaluation (PhD.
thesis).

Zadeh, L. A. (1965). Fuzzy sets. Information and Control,
8(3):338-353.

Zadeh, L. A. (1975). The concept of a linguistic variable
and its application to approximate reasoning - i. In-
formation Sciences, 8(3):199-249.

Zadeh, L. A. (2008). Is there a need for fuzzy logic? Infor-
mation Sciences, 178(13):2751-2779.

Zadrony, S. and Nowacka, K. (2009). Fuzzy information
retrieval model revisited. Fuzzy Sets and Systems,
160(15):2173 — 2191. Special Issue: The Application
of Fuzzy Logic and Soft Computing in Information
Management.

Zemankova, M. (1989). Fiis: A fuzzy intelligent informa-
tion system. IEEE Data Eng. Bull., 12(2):11-20.

