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Abstract: This paper describes the concurrent optimization of flight distance and ‘robustness’ of the equipment and 
skills in a discus. Two objective functions are considered. One is the flight distance, and the other is 
robustness. Robustness is defined as insensitivity to deviations from the local optimal release conditions. 
The aim of the optimization is to maximize both the flight distance and the robustness. Fourteen design 
variables are considered. Eight of the fourteen are concerned with the skill of the thrower. They determine 
the launch conditions, which are controlled by the thrower when he or she throws. The other six variables 
are concerned with the design of the equipment. These are the dimensions of the discus, the moment of 
inertia about the transverse axis and finally the mass of the discus. The dependences of size and the angle of 
attack on the aerodynamic data are estimated by using CFD (computational fluid dynamics) technique. It 
was found that there is a trade-off between flight distance and robustness. The flight distance is 78.8 meters 
at the sweet spot solution, where both objective functions have better values simultaneously. The stalling 
angle for the sweet spot solution is relatively high. 

1 INTRODUCTION 

Discus throwing is a sport in which the thrower 
attempts to gain the longest flight distance. In this 
study, two objective functions are considered (Multi-
objective optimization (Deb, 2001)). One is the 
flight distance, and the other is the robustness. There 
are fourteen design variables that are considered, 
including the release conditions (skills), sizes of the 
discus, the mass and the moment of inertia of the 
discus (equipment). 

Flight distance has usually been treated as the 
only objective function in the optimization of the 
discus so far (Hubbart and Cheng, 2007). Generally, 
it is considered that there are many local longest 
flight distances (= local optimal solutions) with 
respect to the design variables. Some of local longest 
flight distances are sensitive to changes in the design 
variables. This sensitivity is a difficult problem for 
throwers. The thrower sometimes makes mistakes 
when trying to achieve the global optimal release 
condition. The thrower is not a robot, but a human. 
Therefore, robustness is also important, especially 
for the world of competitive sports. Here, robustness 
can be defined as insensitivity to deviations from the 
local optimal release conditions. 

2 FLIGHT TRAJECTORY 

2.1 Inertial Coordinate System 

The inertial coordinate system is shown in Figure 1. 
The origin is defined as being at the center of the 
throwing circle, while the XE-axis is in the horizontal 
forward direction, the YE-axis is the horizontal 
lateral direction and the ZE-axis is vertically 
downward.  

2.2 Body-fixed Coordinate System 

The coordinate system in the discus body-fixed 
system is denoted by xb, yb and zb (Figure 2-c). The 
origin is defined as the center of gravity of the 
discus. It is assumed that the geometric center of the 
discus coincides with the center of gravity, that its zb 
axis is aligned with the transverse axis (axis of 
symmetry), and that xb and yb are aligned with the 
longitudinal axes in the discus planform. Assuming 
that the origin of the inertial coordinate system (XE, 
YE, ZE) is displaced without any rotation to the center 
of gravity of the discus, the new reference frame is 
defined as (X0, Y0, Z0) in Figure 2-a. The sequence of 
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rotations conventionally used to describe the 
instantaneous attitude with respect to an inertial 
coordinate system is shown in Figure 2 (Stevens and 
Lewis, 2003). Starting with (X0, Y0, Z0) the following 
sequence is followed; 1) Rotate about the Z0 axis, 
nose right (positive yaw Ψ, Figure 2-a), 2) Rotate 
about the y1 axis, nose up (positive pitch Θ, Figure 
2-b), 3) Rotate about the xb axis, right wing down 
(positive roll Φ, Figure 2-c). 

 

Figure 1: The inertial coordinate system. The origin is 
defined as being at the center of the turning circle, while 
the XE-axis is in the horizontal forward direction, the YE-
axis is the horizontal lateral direction and the ZE-axis is 
vertically downward. 

 

Figure 2-a: Definition of Ψ. 

 

Figure 2-b: Definition of Θ. 

 

Figure 2-c: Definition of Φ. 

Figure 2: Definitions of Euler angles that are used to 
describe the instantaneous attitude with respect to the 
inertial coordinate system. 

2.3 Flight Trajectory Simulation 

Since there is a mathematical singularity (Gimbal 
lock) at Θ= 90°, quaternion parameters (q0, q1, q2, 
q3) should be used instead of Euler angles when the 
flight trajectory is simulated. Therefore, the initial 
set of Euler angles is first transformed into the initial 
quaternion parameters by Equations (1) through (4) 
(Stevens and Lewis, 2003). 
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The force equations and moment equations of 
motion in the discus body-fixed system are denoted 
by Equations (5) through (10). 
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Here, (U, V, W), (P, Q, R), (Xa, Ya, Za) and (La, Ma, 
Na) are the (xb, yb, zb) components of the velocity 
vector, the angular velocity vector, the aerodynamic 
forces and the aerodynamic moments, respectively. 
The mass of the discus is denoted by md, and the 
gravitational acceleration is denoted by g. The 
moments of inertia about the transverse axis and the 
longitudinal axis are denoted by IT and IL. Due to the 
symmetry of the discus, the principal moments of 
inertia on the xb and yb axes are set to Ixx=Iyy = IL in 
Equations (8) through (10), and the cross inertia 
terms are zero. The aerodynamic forces (Xa, Ya, Za) 
and moments (La, Ma, Na) are derived from CD, CL 
and CM on the basis of the cross product (Seo, et al, 
2010). Aerodynamic coefficients, CD, CL and CM are 
estimated by using CFD (computational fluid 
dynamics) technique, which will be described in the 
next section. Other aerodynamic coefficients are 
assumed to be 0. 

The derivatives of the quaternion parameters are 
expressed by the angular velocity vector (P, Q, R) 
(Stevens and Lewis, 2003). 
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In terms of coordinate transformations we then have 
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Here, [mij] is the Euler-angle transformation matrix 
(Stevens and Lewis, 2003). The flight trajectory 
(XE(t), YE(t), ZE(t)) can be obtained by integrating 
Equations (5) through (15) numerically. 

 

 

 

 

3 ESTIMATING AERODYNAMIC 
COEFFICIENTS 

3.1 CFD 

In order to understand the dependence on the size of 
the discus of the aerodynamic forces, it is necessary 
to study many discuses of various sizes. In this 
study, the CFD technique was applied to estimate 
the aerodynamic forces. 

A discus was initially developed using Ansys 
DesignModeler. It had the same width (w) of 
181.5mm, thickness (THK) of 37mm, metal rim 
radius (RMR) of 6.15mm and diameter of the flat 
center area (DFCA) of 50mm as the competition 
discus (Super HM, Nishi Athletics Goods). A cube 
in which all 12 edges are 4000mm, was constructed 
around the discus as an enclosure. The frontal area 
of the cube was defined as a velocity inlet, while the 
rear of the cube was set as a pressure outlet where 
the airflow exits. The rest of the boundaries were 
defined as walls. These were then imported to Ansys 
Meshing, a pre-processor of CFD code FLUENT. 
Hybrid meshes of tetrahedrons and hexagons were 
used. The size function and the inflation controls 
were also used to mesh the volumes. If the number 
of cells were more than one million, then the 
aerodynamic coefficients determined by CFD would 
agree with those determined by EFD. However, the 
computing time for CFD is more than three hours for 
just one case. Here, there are hundreds of cases to be 
calculated. Since the computing time is also 
important, the number of cells was set 213,314 by 
local inflation settings. It takes about 30 minutes to 
estimate aerodynamic coefficients (Core i7-960, 
3.2GHz, 6 cores). In this case, the values of (CD, CL, 
CM) = (0.23, 0.71, 0.18) at AoA=25° and 30ms-1 are 
almost same as those (CD, CL, CM) = (0.23, 0.74, 
0.18) determined by the fine mesh (1,171,589 cells). 
The average skewness in the case of 213,314 cells 
was 0.25. The growth rate was 1.2. 

The aerodynamic forces in the steady flow state 
were calculated by FLUENT 14.0. Comparisons 
between EFD and CFD at AoA=25° and 30ms-1 are 
shown in Figure 3. The ordinates are the ratio 
between CFD and EFD. If CFD/EFD is equal to 1, 
the aerodynamic coefficients derived by CFD 
coincide with those obtained by EFD. The abscissa 
shows four combinations of RANS-based turbulence 
model and wall treatments. It can be seen that CD 
and CL derived by CFD are all smaller than those 
derived by EFD. The combination of the standard k-
epsilon (ske) model and the enhanced wall treatment 
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(ewt) gives the best agreement with EFD, though CM 
derived by CFD is 20% larger than that by EFD. 
Moreover, the standard k-epsilon model is robust. 
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Figure 3: Comparisons of aerodynamic coefficients 
between CFD and EFD. AoA=25 and U=30 ms-1. 
ske=standard k-epsilon, rke=realizable k-epsilon, 
swf=standard wall function, ewt=enhanced wall treatment. 

Therefore, the standard k-epsilon model with the 
enhanced wall treatment was used for the turbulence 
modelling. The second-order upwind method was 
selected for all equations, and the convergence 
criterion for continuity equations was set as 10-3. 

3.2 Comparison between EFD 
(Experimental Fluid Dynamics) 
Results and CFD Results 

Comparisons between the EFD results and the CFD 
results is shown in Figure 4. The aerodynamic 
coefficients, CD, CL and CM, as a function of AoA are 
shown. The definition of the drag coefficient, CD, is 
the drag divided by the dynamic pressure and the 
area of the discus planform. The lift coefficient, CL, 
and the pitching moment coefficient, CM, are defined 
in the same manner. Since there is little difference 
between aerodynamic coefficients for wind speeds 
in the ranges from 15 to 30 ms-1 and from 0 to 7 
revolutions per second (Seo et al., (2012)), the data 
at 30 ms-1 and 0 revolutions per second are shown 
with error bars. The open circles denote EFD results 
from wind tunnel tests during the process of 
increasing AoA from 0° to 90°, while the open 
triangles show the process when decreasing AoA 
from 90° to 0°. The closed diamonds show CFD 
results. It can be seen that the aerodynamic 
coefficients obtained by CFD qualitatively agree 
with those obtained by EFD. In the experiments, 
there are differences in CL and CM in the process of 
decreasing AoA, compared with the data when the 
process is increasing. Therefore, hysteresis occurs in 
CL and CM in the experiments. On the other hand, 

CFD could not detect the hysteresis in CL and CM so 
far, though it could detect the effect of the stall.  
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(a). The drag coefficient, CD. 
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Figure 4: AoA dependence of aerodynamic forces. 

3.3 Estimating Aerodynamic 
Coefficients 

Aerodynamic forces were calculated by CFD for 247 
cases, in which AoA and the size (DFCA, RMR, THK 
and w) in Figure 5 were changed. The size was 
varied in the design regulations for the discus, and 
AoA was varied from 0° to 90°. In order to estimate 
aerodynamic forces with respect to an arbitrary set 
of values (DFCA, RMR, THK and w), the concept of 
‘inverse distance weighting interpolation’ was 
applied. Inverse distance weighted interpolation are 
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based on the assumption that the interpolating 
surface should be influenced most by the nearby 
points and less by the more distant points. There are 
four procedures. At first, each variable in the 
arbitrary set and in all of the 247 cases were 
normalized, respectively. The second procedure is to 
calculate the Euclidean distance between the 
normalized arbitrary set and each of 247 the 
normalized cases. The third procedure is to find the 
shortest Euclidean distance, li, and the second 
shortest Euclidean distance, lj. The forth procedure is 
to estimate the aerodynamic forces from the known 
CFD results on the basis of li and lj. Defining the 
subscript i as the shortest Euclidean distance and the 
subscript j as the second shortest Euclidean distance, 
the drag coefficient, CD, can be estimated from the 
247 known CFD results in Equation (16). The lift 
coefficient, CL, and the pitching moment coefficient, 
CM, can be estimated in the same manner. 
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Figure 5: Design variables concerned with the size of the 
discus. 

4 OPTIMIZATION 

4.1 Objective Function 

The flight distance, which is considered to be the 
first objective function, is defined as in Equation 
(17). 
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The flight time is denoted by tf. In the 
optimization process, F1 should be minimized 
because of the negative sign on the right hand side. 

On the other hand, robustness is considered as 
the second objective function. Robustness is defined 
as the insensitivity to deviations from the local 
optimal release and equipment conditions at the 
local longest flight distance. In this study, the 
standard deviation around the local optimal solution 
is considered to be the second objective function, 
which is defined in Equation (18). The concept of 
robustness is explained by Figure 6, which shows a 
contour map of the flight distance with respect to 
two arbitrary design variables. The local longest 
flight distance, ×, is denoted by FDcandidate in 
Equation (18). Here, FD stands for the flight 
distance. The points denote the flight distances, FDi, 
around FDcandidate. The circle shows the range of 
design variables corresponding with the human error 
or the manufacturing error. Therefore, estimating F2 
requires many trajectory simulations around 
FDcandidate. The number of trajectory simulations 
with respect to sets of initial conditions around 
FDcandidate is denoted by n in Equation (18). 

In the optimization process, both objective 
functions should be minimized. The optimization is 
carried out with the aid of an adaptive range genetic 
algorithm (Sasaki et al. (2005)). The population for 
each generation is 500, and the number of 
generations is also set to 700. 

 

Figure 6: The concept of ‘robustness’. Contour map of the 
flight distance with respect to two arbitrary design 
variables. The local longest flight distance is denoted by ×. 
The points, ●, denote the flight distances around ×. The 
circle shows the range of design variables corresponding 
with the human error or the manufacturing error. The 
standard deviation of ● is defined as robustness. 

4.2 Design Variables 

The fourteen design variables are shown in Table 1. 
The ‘ranges for GA’, which are also shown in Table 
1, are defined such that they can cover practical 
values for the skill level of the thrower (Leigh et al. 
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(2010)) and the design regulations for the discus. 
Eight of the variables, from γ to R in Table 1, are 
concerned with the skill of the thrower at the point 
of launch. The other six, from IT to w, are concerned 
with the equipment, which are controlled by the 
designer. In this study, concurrent optimization of 
both the thrower’s skill and the equipment is carried 
out. Since the linear relationship between IL 
(Moment of inertia on the longitudinal axis) and IT is 
derived from CAD data, IL can be uniquely 
determined in accordance with IT. 

Table 1: Design variables. 

Design 
variables 

Abb. Ranges for 
GA 

Ranges 
for MC 

Flight path 
angle 

γ 15～60° ±5° 

Azimuth 
angle 

Χ -30～30° ±5° 

Roll angle Ψ -45～45° ±5° 
Pitch angle Θ -60～60° ±5° 
Yaw angle Φ -45～45° ±5° 
Spin rate 

about the xb axis 
P -3～3 rev/s ±0.1 

rev/s 
Spin rate 

about the yb axis 
Q -3～3 rev/s ±0.1 

rev/s 
Spin rate 

about the zb axis 
R 0～7rev/s ±0.1 

rev/s 
Moment of 

inertia on the 
transverse axis 

IT 0.0055～0.006 
kgm2 

±0.0001 
kgm2 

Mass m
D 

1.005～1.025 
kg 

±5 g 

Diameter of the 
flat center area 

DFCA 50～57 mm ±0.1 mm 

Radius of the 
metal rim 

RMR 5.85～6.45 
mm 

±0.1 mm 

Thickness THK 37～39 mm ±0.1 mm 
Width W 180～182 mm ±0.1 mm 

Since a right-handed thrower is assumed, the 
launch position is considered to be in the right-hand 
side of the throwing circle. The launch position is 
assumed to be (XE, YE, ZE) = (1.0, 1.0, −1.6) in this 
study. The negative sign of ZE means the vertically 
upward direction, and the value of -1.6 is almost the 
highest launch position achievable for women. The 
release height is generally 90% of the thrower’s 
height. The magnitude of the velocity vector at 
launch is assumed to be 26 ms-1. 

 

 

 

4.3 Constraint 

A constraint, g1, is considered, as shown in Equation 
(19). This constraint means that the discus should 
make ground contact within the sector. 

     01  fEfELine tYtXYg  (19) 
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
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




2

92.34
tan


 (20) 

Here, YLine(XE(tf )) is the side line value of YE 
corresponding to XE(tf), which is defined by 
Equation (20). The angle of 34.92° is shown in 
Figure 1. 

4.4 Monte Carlo Method 

In order to estimate F2 in Equation (18), the flight 
distance should be simulated around FDcandidate. The 
higher the value of n in Equation (18), the more 
convergent (constant) F2 will be, but the simulations 
will take a longer time to complete. It is possible to 
simulate FDi with respect to a constant interval for 
each control and design variable. However, fourteen 
design variables are too many to do this. Therefore, 
the Monte Carlo method was applied. Monte Carlo 
methods rely on repeated random sampling to obtain 
numerical results. The simulation points are defined 
by the uniform random numbers in this study. The 
number of simulations (time for the simulation) can 
be controlled easily by changing n in Equation (18). 
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n=50
n=10,000

F
2

Trial number  

Figure 7: The n dependence of F2. In the case of n=50, the 
standard deviation among the ten trials is 0.29 meters. In 
the case of n=10,000, the standard deviation is 0.025 
meters. 

Figure 7 shows the dependence on n of F2. Ten 
trials (abscissa in Figure 7) were carried out, when 
the flight distance of the candidate for the optimal 
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solution, FDcandidate, was 78 meters. It can be seen 
that the value of F2 is almost constant among all of 
the trials in the case of n=10,000, while it is not 
constant in the case of n=50. In the case of n=50, the 
standard deviation among the ten trials is 0.29 
meters. In this study, n=50 is applied to minimize 
the simulation time on the computer, although there 
is then an uncertainty of 0.29 meters (there is a 
possibility of an inaccuracy of 0.29 meters in F2 
because of the smaller number of trajectory 
simulations n, which depends on the random 
number.). 

The range for each design variable should be 
comparable with the human error in the competition 
and manufacturing error. Here, the ranges of the 
design variables are shown as ’Range for MC’ in 
Table 1. 

5 RESULTS AND DISCUSSIONS 

The trade-off between F1 and F2 is shown in Figure 
8. Although the lowest value (longest flight distance 
and smallest standard deviation) is ideal for each of 
the two objective functions, it is impossible for two 
objective functions to achieve their lowest values 
simultaneously. This is because the two objective 
functions conflict with each another. Therefore, 
multi-objective optimization involves a set of 
solutions, each of which is better regarding one 
objective function but worse regarding the others. 
These kinds of objective-conflicting solutions are 
called Pareto-optimal solutions, and represent the 
trade-off features among the objective functions. If 
F1 were a single objective (not optimized regarding 
F2), it would be possible to achieve a flight distance 
of 79.0 meters, which is 2 meters longer than the 
world record. However, it is not robust. There is a 
possibility of losing flight distance of 1.3 meters 
(=standard deviation), if the release condition 
slightly deviates from the optimal release condition. 
If F2 were a single objective (not optimized 
regarding F1), the flight would be robust for the 
deviation from the optimal release condition. 
However, the flight distance is merely 45.3 meters. 
The sweet spot, where both objective functions have 
better values simultaneously, is denoted by × in 
Figure 8. The flight distance is 78.8 meters at the 
sweet spot, while the standard deviation is 0.48 
meters. Both the objective functions and the design 
variables are also shown in Table 2. The spin rate 
about the transverse axis is a relatively high R of 
6.22 rev/s, the moment of inertia on the transverse 
axis is a relatively high IT of 0.0058 kgm2 and the 

mass is almost the lowest permissible md of 1.007 
kg. 

The lift coefficients, CL, as a function of AoA are 
shown in Figure 9. The open circles denote CFD 
results for the minimum case, in which all variables 
concerned with the sizes are the lowest. The open 
triangles denote CFD results in the maximum case, 
in which all variables are the highest. The closed 
triangles denote CFD results in the case of the sweet 
spot solution. It can be seen that the sweet spot 
solution is close to other cases, except around the 
stalling angle. Stalling for the sweet spot solution 
occurs at 34°, while stalling for other cases occurs at 
less than 29°. 
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Figure 8: Trade-off (Pareto front) between both objective 
functions. An × denotes the sweet spot solution. 

Table 2: Sweet spot solution. 

Abb. Sweet spot solution 
F1 -78.82 m 
F2 0.72 m 
γ 37.70° 
χ 11.07° 
Ψ 1.78° 
Θ 34.30° 
Φ 36.29° 
P 0.024 rev/s 
Q 0.018 rev/s 
R 6.22 rev/s 
IT 0.0058 kgm2 

mD 1.007 kg 
DFCA 55.09 mm 
RMR 6.31 mm 
THK 38.01 mm 

w 181.51 mm 

Figure 10 shows pressure distribution for three 
cases shown in Figure 9. The wind direction is from 
the left to the right. The wind speed was set at 30 
ms-1, and the angle of attack was set to 30°. The 
highest gauge pressure of 600 Pa is denoted by the 
red, while the lowest gauge pressure of -2000 Pa is 
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denoted by the blue. It can be seen that the pressure 
difference between the pressure side and the suction 
side becomes a maximum for the sweet spot solution 
(Figure 10-c). This means that the lift for the sweet 
spot solution becomes the highest of these three 
cases. The high pressure appears on the upstream 
side of the pressure side in all three cases. This is 
because the effective angle of attack on the upstream 
side becomes larger than that on the downstream 
side. The angle of incline for the sweet spot solution 
is 16.72°. 
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Figure 9: AoA dependence of CL.                                         
Min: (DFCA, RMR, THK, w)= (50, 5.85, 37, 180)             
Max: (DFCA, RMR, THK, w)= (57, 6.45, 39, 182)                 
Sweet spot: (DFCA, RMR, THK, w)= (55, 6.3, 38, 181.5) 

10-a) Maximum case. The upper is the pressure side, 
while the lower is the suction side.  

(DFCA, RMR, THK, w)= (57, 6.45, 39, 182) 

 

10-b) Minimum case. The upper is the pressure side, while 
the lower is the suction side. 

(DFCA, RMR, THK, w)= (50, 5.85, 37, 180) 

10-c) Sweet spot solution. The upper is the pressure side, 
while the lower is the suction side. 

(DFCA, RMR, THK, w)= (55, 6.3, 38, 181.5) 

Figure 10: Pressure distribution at AoA=30° and 30ms-1. 
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6 CONCLUSIONS 

In this study, two objective functions are considered. 
One is the flight distance, the other is the robustness. 
The flight distance is the most important, but 
robustness is also important, especially for the world 
of competitive sports. Therefore, concurrent 
optimization of flight distance and robustness of 
discus throwing is carried out using a genetic 
algorithm. Fourteen design variables are considered, 
which include the skill of the thrower and the 
inherent features of the equipment. The design 
variables concerned with the skill and the equipment 
were treated concurrently. The conclusions are 
summarized as follows: 
 There is a trade-off between flight distance and 

robustness. 
 The longest flight distance that could be 

achieved was 79.0 meters. However, it is not 
robust. There is a possibility of losing flight 
distance of 1.3 meters, if the release condition 
slightly deviates from the optimal release 
condition. 

 The flight distance is 78.8 meters at the sweet 
spot solution, where both objective functions of 
the flight distance and the robustness have 
better values simultaneously. There is a 
possibility of losing flight distance of 0.48 
meters. 

 The stalling angle for the sweet spot solution is 
relatively high. In other words, the maximum 
lift for the sweet spot solution becomes greater. 

 At the sweet spot solution, the spin rate about 
the transverse axis is a relatively high R of 6.22 
rev/s, the moment of inertia on the transverse 
axis is a relatively high IT of 0.0058 kgm2 and 
the mass is almost the lowest permissible md of 
1.007 kg. The width is a relatively high w of 
181.5mm, the thickness is 38mm, the metal rim 
radius is a relatively high RMR of 6.3mm and 
the diameter of the flat center area is a 
relatively high DFCA of 55mm. 
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